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Preface

New graduate students often experience something like shock when they are asked to
solve real-world problems for the first time. These problems can be only rarely solved
with pen and paper and the use of computational techniques becomes mandatory. The
role of computation in any scientific endeavor is growing, and presents an increasing set
of challenges. Numerical algorithms play a central role in theoretical prediction and in the
analysis of experimental data. In addition, we see an increasing number of less numerical
tasks taking on major importance in the life of young scientists. For example, how do
you blend together two computing languages or split a computation between multiple
computers? How does one design program libraries of numerical or scientific code for
thousands of users? How is functionality added to a million-line reconstruction program?
How can complicated datasets be visualized? What goes into a monitoring program that
runs in a control room? These tasks are not particularly numerical or even scientific,
but they are nonetheless important in the professional lives of scientists. From data
acquisition systems to solving quantum field theory or presenting information, students
face an intimidating computational environment with many languages and operating
systems, multiple users with conflicting goals and methods, and complex code solving
subtle and complicated problems.

Unfortunately, the typical student is marginally prepared for the challenges faced
in modern computational ecosystems. Most students have had some exposure to a
programming language such as C, C++, Java, or Fortran. In their first contact with
“real” code, they may well be exposed to a proliferation of legacy software that in
some cases is better used as a counterexample of good modern coding practices.
Under these circumstances the usual solution is to learn on the fly. In a bygone
era when the computing environment was simple this learning process was perfectly
satisfactory, but today undirected learning leads to many false starts and some training
has become indispensable. The search for help can be difficult because the nearby senior
physicist probably grew up in an era preceding the explosive development of languages,
paradigms, and computational hardware.

This book aims to fill some of the holes by introducing students to modern computa-
tional environments, object-oriented computing, and algorithmic techniques. We will rely
on ‘canned’ code where reasonable. However, canned code is, by definition, incapable of
solving research problems. It can at best solve portions of problems. At worst, it can lead
the student researcher to false or incomplete conclusions. It is therefore imperative that
the student understands what underlies his code. Thus an explanation of the numerical
issues involved in common computational tasks will be presented.

Sometimes the numerical methods and applications will be quite technical; for this
reason we regard this book as appropriate for newly graduated students. Our examples
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will be drawn primarily from experimental and theoretical physics. Nevertheless, the
book is also useful for students in chemistry, biology, atmospheric science, engineering,
or any field in which complex analytical problems must be solved.

This text is meant for advanced (or graduate) students in the sciences and engineering.
The physics ranges from advanced undergraduate topics in classical and quantum
mechanics, to very advanced subject matter such as quantum field theory, renormal-
ization, and scaling. The concepts of object oriented computing are introduced early in
the text and steadily expanded as one progresses through the chapters. The methods of
parallel computation are also introduced early and are applied in examples throughout.
Since both the physics and the coding techniques can be replete with jargon, we attempt
to be practical and provide many examples. We have not made any effort to prune away
any discussion of fairly pedestrian material on the pretext that it is not advanced enough
for a sophisticated audience. Our criterion is that the topics we discuss be useful, not that
they be graduate-level, particularly since some topics are interdisciplinary in nature.

The numerical algorithms we consider are those applied in the major domain areas
of physics. Classical problems involving a finite number of degrees of freedom are most
often reduced to a coupled set of first-order differential equations. Those involving an
infinite number of degrees of freedom require techniques used to solve partial differential
equations. The study of quantum mechanical systems involves random processes, hence
the temporal evolution of the system is handled though simulation of the underlying
randomness. The computation of physical processes thus can be generally categorized
according to the number of degrees of freedom and the stochastic or deterministic nature
of the system. More complicated situations can mix these. For example, to follow a
charged particle through a magnetic field in the presence of multiple scattering involves
both deterministic and stochastic processes.

The flip side of simulation is data modeling. This is the procedure by which a
mathematical description of data, often along with the values of physically interesting
parameters, is obtained. Data modeling is an activity that consumes much of the time and
creativity of experimental physicists working with datasets, large or small. While many
treatises exist on the statistical analysis of data, the goal here is to explore, in somewhat
greater detail than is usually found, the computational aspects of this field.

This text is neither a treatise on numerical analysis nor a guide to programming, but
rather strives to develop practical skills in numerical and non-numerical methods applied
to real world problems. Because of the emphasis on practical skills, students should
expect to write programs and to refine and develop their programming techniques along
the way. We assume a basic knowledge of C++ (the part of the language taken directly
from C, minus the anachronisms), and treat the newer features in dedicated chapters. We
do not, however, give a complete lesson on the syntax and symantics of any language,
so we advise the reader who has not mastered C++ to learn it in parallel using any one
of a number of sources. Our emphasis can then fall on using the language effectively for
problems arising in physics.

A key ingredient to effective programming nowadays is mastery of object-oriented
programming techniques—we strive to develop that mastery within the context of
greatest interest to the target audience, namely physics. As noted in Numerical Recipes
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(Press 2007), object-oriented programming has been “recognized as the almost unique
successful paradigm for creating complex software”. As a result, object-oriented tech-
niques are widespread in the sciences and their use is growing. The physicist appreciates
object oriented programming because his day-to-day life is filled with a rich menagerie
of interesting objects, not just integers and real numbers, but also vectors, four-vectors,
spinors, matrices, rotation group elements, Euclidean group elements, functions of one
variable, functions of more than one variable, differential operators, etc. One usually gets
more from a programming paradigm that allows user-defined datatypes to fill in gaps left
at the language level. Encapsulation and polymorphism can be effectively used to build
up a more functional set of mathematical primitives for a physicist—and also to build up
an important set of not-so-mathematical objects such as are found in other nonscientific
code.

Many books are devoted to object oriented analysis and design, and while some of
these treatises are perfect for their target audience, a typical scientist or engineer most
likely gets tired of examples featuring the payroll department and looks for a discussion
of object oriented programming that “speaks his language”. Accordingly, we include
three chapters on object oriented programming in C++: Encapsulation, Polymorphism,
and Templates. Other chapters of the book provide excellent examples of object-oriented
techniques applied to various practical problems.

A companion web site has been established for this text at:

• http://www.oup.co.uk/companion/acp

The site includes example code (EXAMPLES area), skeletons which students can use
as a starting point for certain exercises appearing in the text (SKELETONS area), and
raw data for other exercises (DATA area). In addition the site provides user’s guides,
reference manuals, and source code for software libraries provided free of charge and
used within this text. This software is licensed under the GNU Lesser General Public
License. In referencing examples, skeletons, data, etc., we generally omit the full URL
and refer simply to the directory, e.g. EXAMPLES, SKELETONS, DATA, etc.

Course organization

It is our experience that most of the material in this text can be covered in two terms
of teaching. There are three main strands of emphasis: computational, numerical, and
physical, and these are woven together, so the reader will find that emphasis alternates,
though the book begins with more computational topics, then becomes more numerical,
and finally more physical.

Computational topics include: Building programs (Chap 1), Encapsulation (Chap 2),
Some useful classes (Chap 3), How to write a class (Chap 6), Parallel computing
(Chap 9), Graphics for physicists (Chap 10), Polymorphism (Chap 12), and Templates,
the standard library, and modern C++ (Chap 17).

http://www.oup.co.uk/companion/acp
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Numerical topics include Interpolation and extrapolation (Chap 4), Numerical
quadrature (Chap 5), Monte Carlo methods (Chap 6), Ordinary differential equations
(Chap 11).

Topics related to applications in experimental and theoretical physics are Percolation
and universality (Chap 8), Nonlinear dynamics and chaos (Chap 14), Rotations and
Lorentz transformations (Chap 14), Simulation (Chap 15), Data modeling (Chap 16),
Many body dynamics (Chap 18), Continuum dynamics (Chap 19), Classical spin
systems (Chap 20), Quantum mechanics (Chap 21 and 23), Quantum spin systems
(Chap 22), and Quantum field theory (Chap 24).

Finally, there are nearly 400 exercises of widely varying difficulty in the text. To assist
students and instructors in selecting problems, we have labelled those exercises that are
meant to be worked out without the aid of a computer as theoretical [T]; exercises which
are more open-ended and require significant effort are elevated to the status of a project
and labelled with a [P].

Acknowledgments
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The goal of this book is to develop computational skills and apply them to problems
in physics and the physical sciences. This gives us a certain license to try to teach
any (legal) computational skill that we believe will be useful to you sooner or later in
your career. The skill set you’ll need includes scientific computing and not-specifically-
scientific computing. For example, applying statistical techniques in data analysis or
solving the Schrödinger equation on the computer are distinctly scientific computing
tasks, whereas learning how to work collaboratively with a code management system is
a not-specifically-scientific task. But you will use both as you progress in your career
and so we will aim to teach you a little of both. We will go back and forth to some
extent between scientific computing topics and general computing topics, so that the
more generic skill set becomes useful in writing programs of a scientific nature, and
the scientific programs provide opportunities to apply and reinforce the full skill set of
numerical and not-so-numerical techniques.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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Like mathematics, computing often appears to be a collection of tricks, with the well-
known tricks elevated to the status of techniques. Deciding which tricks and techniques to
teach is a difficult question, and a book like this has no traditional road-map. Our selection
criterion is usefulness. Many of the topics are concerned with the simulation, classification
and modeling of experimental data. Others (like integration or computational linear
algebra) provide a basis for some of the later topics in simulation and modeling.
Later, application to classical and quantum mechanical problems will be discussed.
Like mathematics, computation is an art, and as practitioners we will pass on our own
approach. If you learn to play a saxophone from John Coltrane, you will be absorbing
John Coltrane’s style, but also, hopefully, developing your own style along the way. So it
is with the art of computation.

Writing executable programs and toolkits is of course central to this enterprise; since
we are not about to describe computational techniques in wholly abstract terms, we have
to be specific about which language(s) we are proposing to use. Our coding examples
are usually expressed in the modern C++ language, or occasionally in the older, simpler
computing language “C”. We will sometimes also employ “pseudocode”, which is a
generic code-like description of any algorithmic process. Like almost any choice in
computation, the focus of C++ is not totally obvious or universally acclaimed, but rather
involves certain pros and cons–a debate that we will not lead you through here. The
motivation for our choice is:

• In physics our lives consist of manipulating objects which are more abstract than
scalar data types, including vectors, spinors, matrices, group elements, etc. While
calculations involving these objects can be done in many computer languages, our
lives will be vastly simpler if our computer languages support the objects of day-
to-day life. No language is vast enough to support these at the language level,
but languages supporting the object-oriented paradigm do allow you to add user-
defined objects to the set of built-in data types. C++ also allows us to define basic
operations on these data types, and maintains the speed of a compiled language.

• Most of a typical operating system is written in C and you will find it very easy
to integrate specifically scientific software together with a vast body of generic
software, particularly lower-level system calls.

Few people learn how to write software by writing programs from the bottom up.
The “software stack” of even a very simple program can already involve toolkits that
have taken a generation or two of computer scientists and physicists to develop. It is
very common to make big scientific contributions by working on a small part of a
huge program. Making modifications to an existing program, or filling in a piece of
an incomplete program, can be a valuable learning experience. Some infrastructure for
building programs is generally required. At a very minimum, a computing platform,
operating system, and suite of compilers is needed. More complicated projects may even
require a sophisticated set of tools to coordinate the development, distribution, and build
of a software system. As more and more software is packaged and distributed for re-use,
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the build of computer programs becomes more challenging. In this chapter we introduce
the basic ideas related to the building of software with some very simple examples.

Our reference operating systems are the popular Ubuntu linux (now at version 17.04)
and macOS (version 10.12.6). These are both variants of unix, an operating system
written in C and dating back to the 1970s; and we will refer to them generically as
such. The commands required for writing, building, and executing programs as well
as tailoring the environment will be expressed as required by the bash shell on a Ubuntu
linux machine. Because of its low cost and portability, the linux operating system is
widely used in scientific computing. Not only can it be used on personal computers
(laptops, desktops, and now even smart phones), but it can also be found running in
the machine rooms of large computer centers on thousands of high-density rack mount
computers. The latest version of Ubuntu linux can always be installed on a PC after
downloading from the website www.ubuntu.com. The installation, management and
customization of operating systems are not trivial skills, but they are also extremely useful.

Your first task is to get a laptop or a PC, and equip it with a basic linux operating
system. We recommend that you install and maintain the operating system yourself.
It is possible to dual-boot desktop and/or laptop computers, preserving the original
operating system (e.g. Windows) which then coexists with linux. A Macintosh
computer, which runs macOS, will also do for this book, since it runs an operating
system similar to linux.

We assume a working knowledge of C++ basics–the part of C++ which is essentially
just the C programming language, but minus anachronisms such as malloc, free,
printf, scanf. In this text we develop in a few chapters that which is necessary to
go beyond the ground level and understand classes, inheritance, polymorphism, and
templates. For those who need to brush up on the basics, a good, short, but somewhat
anachronistic introduction is the famous text of Kernighan and Ritchie (1988). The first
few chapters of Capper (1994) or Bronson (2013) also cover the basics and provide
a more modern introduction to the same subject. Another good source is the tutorial
section of the online reference www.cplusplus.com. While our presentation of the
C++ language will be far less formal than other common treatments of this powerful
computing language, the physics applications will be more interesting and appropriate
for the physical sciences, and you will “learn by doing”, though it may be a good idea to
refer to the above references occasionally if you prefer a more formal treatment of the
language.

1.1 The editor, the compiler, and the make system

You write a program with an editor. There are a large number of these available on
linux, and in principle any one will do. The emacs text editor (provided by the GNU

www.ubuntu.com
www.cplusplus.com
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Table 1.1 List of programs (center column) commonly used to
compile major computer languages (left column).

Language Compiler under linux, OS X Provided by

Fortran gfortran GNU Project

C cc gcc GNU Project

C++ c++ g++ GNU Project

Java javac Oracle

project; homepage www.gnu.org/s/emacs/) has features such as syntax highlighting,
which can be very helpful in writing code, since it can recognize and draw to your
attention syntax errors so that you can recognize them before they are reported by
the compiler. The gedit text editor (provided by the GNOME project, homepage
projects.gnome.org/gedit/) also has some of these features, and is perhaps more
intuitive though less powerful. A much more basic editor called vi is generally pre-
installed on even the most basic linux distributions. This is the editor of choice for gnarled
veterans. On the other end of the spectrum, interactive development environments
such as Eclipse (provided by the Eclipse foundation, homepage www.eclipse.org)
embed powerful editors in a suite of tools for code development in C++ as well as
other languages. There can be a steep learning curve with Interactive Development
Environments (IDEs) such as Eclipse, but the effort can be worthwhile.

A single file of instructions is called a compilation unit. A compiler turns these into
object code, and a linker puts different pieces of object code together into an executable
program. Each computing language (Fortran, C, C++, Java) has its own compiler. Since
C++ is a superset of C we can and will use the C++ compiler everywhere. Under linux,
g++ and c++ are the same program. A table of common compilers is given in Table 1.1.

We look at a simple program which is a single compilation unit. It has a routine called
main and like other functions takes arguments and returns an integer value (more on
that, later). We call the file containing these lines foo.cpp. “.cpp” is the most common
extension for c++ code. The program illustrates the important features of the main
program unit, particularly how to write new commands under a unix operating system.

int main (int argc, char ** argv) {
return 0;

}

Here are three ways to build an executable program from this source:

1. Compile to object code and then link to make an executable program.

$c++ -c foo.cpp -o foo.o
$c++ foo.o -o foo

www.gnu.org/s/emacs/
www.eclipse.org
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2. Compile/link at the same time to make an executable program in one step.

$c++ foo.cpp -o foo

3. Use make

$make foo

The compilation step transforms human-readable C++ into machine instructions that
the CPU can understand, and is called object code. The link step links together object
code from various sources into an executable program. Which sources? The example
above may give you the impression that there is only one, called foo.cpp but that is
not true. Your program also contains pieces from the C standard library libc.so as
well as others.

Even when the compilation and link is performed in one single command, there are
still two phases to the process, and thus two points of failure. If you get an error message,
try to figure out whether the error message is a compile error or a link error. Link errors
do not occur at specific instructions, but constitute a failure to assemble the final program
from the various pieces of object code, and usually in this case a piece of the program, or
the object code containing the piece has been omitted, is missing, or cannot be located.

Once you’ve built the program you can see which run time libraries have been linked
by issuing the command:

$ldd foo

which will generate the output

linux-vdso.so.1 => (0x00007fffc77fe000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f19f6313000)
/lib64/ld-linux-x86-64.so.2 (0x00007)

In addition to these libraries that are included automatically in the link of any C++
program, additional libraries can be linked by mentioning them explicitly in the list of
arguments to the compiler as we will soon see, using the -l and -L flags. In general
programs will include program libraries containing useful functions and class libraries
containing useful classes (extensions to the basic data types of the language).

Our first example (foo.cpp) is extremely simple and not at all a typical project,
which these days can consist of many thousands of compilation units. Managing the
development and build of large software infrastructure becomes a complicated job. Usu-
ally the make system (provided by the GNU project, homepage http://www.gnu.
org/software/make/) is used to build projects containing multiple compilation
units. A pedagogical guide can be found in Mecklenburg (2004). The third way of
building the program foo illustrates the basic principle of the system: make knows that
a program (foo) can be built from its sources (foo.cpp) with g++, the C++ compiler.

http://www.gnu
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It applies a set of rules to build the target from its prerequisites. One of those rules says
that the g++ command can be used to build an executable with name foo from a source
code file named foo.cpp.

The make system can be extensively customized (and usually is) whenever make is
used in the context of a large software project. The customization is achieved through
Makefiles, which are files usually named makefile, Makefile, or GNUMakefile that
are placed in directories that contain the source code. In some cases these makefiles are
written by hand and in others they may be generated automatically by another tool. We
will describe this further as the need arises. Powerful as make is, it is often not sufficient
on its own to organize the build of large or complicated projects, so additionally, a number
of code management systems are available to coordinate and manage the distributed
development of software on top of make.

1.1.1 Troubleshooting mysterious problems

On a few occasions you are likely to find that properly written code does not compile,
link, or execute because of the configuration of the platform and not the code itself. Header
files (with .h or extensions, discussed below) are normally installed in a system directory
such as /usr/include or /usr/local/include; they can also be installed in other
locations but then the qualifier

-I/path/to/include/area

must be added to the command line during the compile step. If the header files are
not installed there then obviously the compile step will fail. Libraries, discussed in
Section 1.8, are specified during the link step with the -l flag, and their search path is
specified using the -L flag. These libraries must exist, they must be located during the
link step, they must actually contain the symbols that they are supposed to provide, and
they must be compatible. These symbols are all of the local and global variables known
to the compiled code, as well as all the known structures, classes, free subroutines and
member functions.

Computing hardware and operating systems exist in both 32 bit and 64 bit archi-
tectures, and object code which has been compiled for a 64 bit machine will generally
not run on a 32 bit machine. Normally this type of object code would not be built or
installed on the wrong architecture, but computers are machines and machines can go
wrong. You might find a program or object library on a cross-mounted disk drive shared
by machines having different architectures. Even the execution step can fail if bits of
object code collected in shared libraries (files with the .so extension, discussed below)
do not exist, cannot be located, or are incompatible. Incompatibilities can sometimes
be caused by linking together object code produced by different compilers, or even the
same compiler with different options. If these problems arise, the best approach is to be
systematic in investigating and determining the cause.

To that end, it’s useful to know about a few utilities in unix to help debug mysterious
problems with “perfectly good” code. Table 1.2 summarizes a few of them to help you
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Table 1.2 Table of utilities for examining executable files. This is useful for investigating
“mysterious problems” as described in the text.

Linux command OS X equivalent Purpose

ldd otool -L check shared libraries required by a
program. Prints the location of these
libraries and flags any missing libraries.

file file classifies files. This command can yield
useful information about how object files,
and libraries, were compiled.

nm nm lists symbols in the object files, archives,
shared libraries, and executables (variables
and subroutines). Output can be very long!

c++filt c++filt Decodes “mangled” C++ symbols (for
example, from nm or link error messages)
and prints them in human-readable form.

see what you have just built; the unix manual pages for these commands give more
information.

1.2 A quick tour of input and output

The first program you will generally write, like the famous Hello, World example in
Kernighan and Ritchie (1988), simply echoes a few words to the terminal. In Fortran,
input/output (IO) is handled at the language level; in C it is handled at the level of
standard C functions, and in C++ it is handled through objects. Three important objects
you must learn about are std::cout (the standard output), std::cerr (the standard
error output), and std::cin (the standard input). In fact, since C++ is a superset of
C, the C standard library routines (printf and scanf for the cognoscenti) can also be
used but they are considered obsolete and should be avoided because they are unable to
handle user-defined data types.

Basic usage of the std::cin, std::cout, and std::cerr objects is extremely
easy. You will need to include the iostream header file at the top of any compilation
unit that uses them:

#include <iostream>

Consider the following line:

std::cout << " Hel lo , World " << std::endl;
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The “<<” characters in the above line constitute an operator, the left shift operator,
which is defined in the C++ standard library for the std::cout object. The operator
can stream bits of text,ints, floats, and doubles, and even user-defined data types (if
the designer allows it) to the standard output, i.e. the terminal. You should try this on your
own. This is all we will say about std::cout for the moment. About std::cerr, we
will say only that under unix operating systems (i.e. linux, Mac OS, and other variants), it
is convenient sometimes to have two streams, both of which will normally end up printing
to the terminal, because it is possible to redirect each stream separately1 to a file or a unix
pipe, for example. So, std::cerr functions just like std::cout except that normally
program output is sent to std::cout while informational status, warning, and error
messages are sent to std::cerr.

Your program can read input from the terminal using the std::cin class. This class
can read in bits of text but also read the values of int, float, double (among others)
from text strings from standard input–normally you think of typing these in using your
actual fingers, but under unix you can also tell a program to take its “standard input”
from a file, like this:

$ foo < file.txt

We use std::cin as follows in our programs:

#include <iostream>
...
int i, float f;
std::cin >> i >> f;

Input has one unique subtlety which we need to discuss: it can fail for several reasons.
One reason is that the input may not be convertible to the right data type. For example,
the word “particle” cannot be interpreted as an integer. Another reason is that the input
may have reached its end, if the input were a file, or if the typing were terminated by C^D
(Control+D). So we normally test that input has worked with the following incantation:

int i;
if (std::cin >>i) { // success!
...

}
else { // failure!
...

}

1 for more information, see the unix manual page on bash, particularly the section REDIRECTION.
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1.3 Where to find information on the C++ standard library

The objects std::cout, std::cerr, and std::cin are all part of the C++ standard
library, which contains a very large set of functions and objects, many of which will
be extremely useful. The most usable documentation that we have encountered so far
is an online reference, www.cplusplus.com, particularly the section called “library
reference”.

The C++ standard library is beyond the scope of our treatment and we will not
attempt to explain more than the essentials, just what you’ll need to follow this text
and complete the exercises. We use it throughout the text, and discuss certain aspects
in more detail in Chapters 6, 12, and 17. When you need detailed information, the
ultimate authority on the C++ language and the C++ run time library is the ISO
C++ standard. An updated standard was published in August 2011 by the International
Standards Organization (ISO) and the International Electrotechnical Commission (IEC)
as report number ISO/IEC 14882:2011. While this document is authoritative, it has little
pedagogical value and is really intended for experts.

The best advice we can give to students confronted with such a large and complex set
of standard software tools is to read the documentation as you go along, and try to learn,
along the way, some of the tricks that will make you more efficient in your work. In this
text we will explain bits and pieces of the C++ standard library as we go along, without
any intent or commitment to treat the subject comprehensively.

1.4 Command line arguments and return values

An executable program is, generally speaking, a command like any other command
in unix. Like any command, you can pass in command-line arguments. These are
available through the variable char **argv, an array of character strings, whose length
is given by int argc. Let’s modify our program foo now so that it simply echoes the
command line arguments:

#include <iostream> // Include headers for
basic i/o

int main (int argc, char ** argv) { //
for (int i=0;i<argc; i++) { // Loop over command

line args
std::cout << argv[i] << " "; // Print each argument

to screen.
} //
std::cout << std::endl; // End-of-line.
return 0; // Program successful

}

www.cplusplus.com
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If you build this program and execute it with a few command-line arguments, it will
behave as follows:

$./foo A B C D
./foo A B C D

Notice that the zeroth argument is the command name itself. The $ symbol in the
preceding example is the command prompt, echoed by the shell unless the user has
configured his system otherwise.

If you are new to unix, you may not know that the operating system looks for
commands in a standard set of directories. An ordered list of directories is held in the
environment variable PATH. To see what directories are in your path, you can type

$echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:
/usr/games

For that matter, since you have now written a program very much like echo, you can use
it to discover your path as well:

$./foo $PATH
./foo /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin

You can create your own directories where you can create important programs that you
have written:

$mkdir ~/bin
$cp ./foo ~/bin
$export PATH=~/bin/:$PATH

This latter command can be added to the .bashrc file in your home directory, so
that it is executed every time you log in. Then the program foo will appear as a
built-in command, just like any other unix command, which, in fact, are built for the
most part in exactly the same way. The source code for every command in Linux is
free and publicly available–and most are written in the C programming language. For
example, the echo command, which echoes the command line in a way very similar to
foo, is compiled from source code which can be seen in http://git.savannah.
gnu.org/cgit/coreutils.git/tree/src/echo.c; this web page points to a
software repository which also contains other linux commands that may be familiar to
you. You now have a partial glimpse of how a unix operating system, particularly many
of the commands, are constructed.

Now back to our program, foo. The main routine of our program returns an integer
value, zero in our example. This is the return status of the program. It’s value can be

http://git.savannah.gnu.org/cgit/coreutils.git/tree/src/echo
http://git.savannah.gnu.org/cgit/coreutils.git/tree/src/echo
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accessed after the program has executed by the “special” parameter “?”. Its value is
decoded by prepending a “$”, as for any environment variable (try it! type echo $?). It
is typical to signal successful completion of a command by returning 0, and one or more
failure modes with a nonzero value.

1.5 Obtaining numerical constants from input strings

One way of inputting numerical constants to a program is to read them from standard
input. This is convenient in some circumstances but not in others, since from the point
of view of the user of the program (who is also often the developer) the most useful way
to communicate input to the program may be via the command line. However, as we
have seen, command line arguments are made available as an array of character strings.
How do we extract numbers from these strings?

Part of the C++ standard library is a class called std::istringstream. To use this
object, you initialize it with a character string and then extract the numerical data through
the right shift operator, >>. As with the object std::cin, which is closely related to
std::istringstream objects, you can test for success. Here is an example of how to
parse an integer from the second item on the command line:

#include <sstream>
...
int main (int argc, char **argv) {

...
int anInteger;
std::istringstream stream(argv[1])
if (stream >> anInteger) { // Success!
...
}
else { // Failure!
...
}

}

1.6 Resolving shared libraries at run time

Note that most programs are not complete without a set of shared libraries that are
required by the program. Those shared libraries are to be found, normally, in standard
locations. By default the area /usr/lib is searched for these libraries first, then /lib. By
defining an environment variable called LD_LIBRARY_PATH, which is an ordered
list of colon-separated directories, you can specify other libraries to search. If a shared
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library cannot be found, the system will report an error when you attempt to execute a
program:

$myprogram
myprogram: error while loading shared libraries:
libMyLibrary.so.1: cannot open shared object file: No such file
or directory

Missing libraries will also be reported by the ldd utility, described in section 1.1.

1.7 Compiling programs from multiple units

In textbooks and exercises, programs consist of a few lines of code typed into a single
source code file. In the real world of physical sciences, computations this simple are
rare. In the context of large scientific experiments, often the software infrastructure
is a behemoth consisting of multiple millions of lines of code split across tens of
thousands of individual files, representing a major financial investment on the part of
national governments. This is the ecosystem in which students in the physical sciences,
particularly physics and astrophysics, may find themselves trying to operate. It should
be quite obvious that organizing and managing software infrastructure involves breaking
it down into more manageably sized units. In this and the following sections we will see
how to compile a program from multiple compilation units, and then how to archive the
units and coordinate the build of the program.

While the necessity of splitting up source code arises from very complicated systems,
we will illustrate the basic idea by splitting up a small one. Our program, called iterate,
is designed to make a certain number of calls to the system routine sleep. It takes two
command line parameters: the number of iterations, and the duration of each iteration:

$ iterate 6 4
0 sleeping for 4 seconds
1 sleeping for 4 seconds
2 sleeping for 4 seconds
3 sleeping for 4 seconds
4 sleeping for 4 seconds
5 sleeping for 4 seconds
$

Here is the program, all in one single file, which we call iterate.cpp

#include <iostream> // for std::cout, & cetera
#include <sstream> // for istringstream
#include <cstdlib> // for exit
//
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// Define a data structure
//
struct Control {

int iterations;
int seconds;

};
//
// Parse the command line:
//
Control *initialize (int argc, char ** argv) {

Control *control=NULL;
if (argc!=3) {
std::cerr << " Usage : " << argv[0] << " i t e r a t i o n s seconds "

<< std::endl; exit(0);
}
else {
control =new Control;
control->iterations=0;
control->seconds=0;
{
std::istringstream stream(argv[1]);
if (!(stream >> control->iterations)) return control;

}
{
std::istringstream stream(argv[2]);
if (!(stream >> control->seconds)) return control;

}
}
return control;

}
//
// finalize:
//
void finalize(Control *control) {

delete control;
}
//
// execute:
//
void execute(Control *control) {

if (control) {
for (int i=0;i<control->iterations;i++) {
sleep(control->seconds);



14 Compiling programs from multiple units

std::cout << i << " s l e e p i n g f o r " << control->seconds
<< " seconds " << std::endl;

}
}

}
//
//
//
int main(int argc, char ** argv) {
Control *control = initialize(argc, argv);
execute(control);
finalize(control);
return 0;

}

The simplest way to build this is to type make iterate, which will in turn execute the
following command in a child process:

$g++ iterate.cpp -o iterate

To illustrate the typical way of organizing a project with multiple compilation units, we
will separate iterate.cpp into several pieces. The main program declares and defines
three functions (in addition to main): initialize, execute, and finalize. It also
declares a single data structure, called Control. The functions are defined where they
are declared, which must be before they are used. Hence main is the last function to be
defined, rather than the first.

In C++, as in C, every function and data structure (or class) must be declared
before it is used, once, and only once; this amounts to specifying the interface to the
function and/or class. The first step to breaking up this program is to separate the
declarations from the definitions, putting them in a header file that can be included by
each compilation unit. We therefore now create the header file iterate.h, and put it
in the same directory as the source code:

#ifndef _ITERATE_H_
#define _ITERATE_H_

// Data structure controlling the iteration loop:
struct Control {
int iterations;
int seconds;

};

// Initialize. Parse the command line:
Control *initialize(int argc, char ** argv);
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// Execute the iteration loop:
void execute(Control *control);

// Finalize. Clean up the memory:
void finalize(Control *control);

#endif

The preprocessor directives (those including #ifndef, #define, #endif) form an
include guard, guaranteeing that the declarations occur only once, even if the same
header file is included twice, for example, directly, and indirectly.

We can now split our program into four compilation units, which we will call
iterate.cpp (containing only main), initialize.cpp, finalize.cpp, and
execute.cpp. Each one of these should include the header file iterate.h at the
top, along with any other header files that it needs. For example the file execute.cpp
looks now like this:

#include " i t e r a t e . h "
#include <iostream>
void execute(Control *control) {

if (control) {
for (int i=0;i<control->iterations;i++) {
sleep(control->seconds);
std::cout << i

<< " s l e e p i n g f o r "
<< control->seconds
<< " seconds "
<< std::endl;

}
}

}

The functions initialize and finalize have been moved into their own files, in a
similar way; and the program iterate.cpp now becomes very simple:

#include " i t e r a t e . h "
int main(int argc, char ** argv) {

Control *control = initialize(argc, argv);
execute(control);
finalize(control);
return 0;

}

At this stage our directory contains four source code files–one of them containing the
function main, which is required in any program. We can build the program iterate
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in a number of different ways from these sources. The first option that we have is to
compile and link all of the source code at the same time:

$g++ iterate.cpp initialize.cpp execute.cpp finalize.cpp \
-o iterate

This is fine except it has the drawback that if you change one part of this “project” you
need to recompile all of its files. This is not too high a price for the program iterate,
but could be very high in a real-world project. The preferred option is to compile each
unit to object code separately, and then link them together at the end. The g++ command
can be used for both stages of this procedure (here, the -c flag indicates that g++ should
compile to object code and not bother to attempt a link):

$g++ -c -o iterate.o iterate.cpp
$g++ -c -o initialize.o initialize.cpp
$g++ -c -o execute.o execute.cpp
$g++ -c -o finalize.o finalize.cpp
$g++ iterate.o initialize.o execute.o finalize.o -o iterate

A mixed approach can also be taken:

$g++ -c -o iterate.o iterate.cpp
$g++ -c -o initialize.o initialize.cpp
$g++ iterate.o initialize.o execute.cpp finalize.cpp -o iterate

Stepping back and looking at what we have done, we notice that the modularity of the
program is greatly improved; the protocol for each routine is clear from looking at the
header file (where additional documentation can also be collected), and developers can
work individually on one piece of the program at a time. On the other hand, while the
program development itself is simplified, the price is additional complexity on the side
of building the program. In the real world the management of very many compilation
units is an extremely complicated task often carried out by teams of full-time people.
Fortunately, a number of standard tools have been developed to better manage the build
of a program. In the following section we will discuss several of them that are almost
always at the core of any project: libraries of object code, the make system, and a source
code management system.

1.8 Libraries and library tools

Having seen how to break up the source code into more manageable units, we now
address the issue of how to keep the compiled code together in order to ease the
process of compilation. Files containing object code (with the .o extension) are often
collected together into libraries, so that the client code (iterate.cpp in the above
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example) can link with one library rather than many different object files. In the world of
professional programming the library (and associated header files and documentation) is
the implementation of what is called the API, or application programming interface,
which represents a toolkit for the development of applications, vulgarly referred to as
“apps” amongst the rabble.

There are two kinds of libraries, called static (files ending with .a) and shared (files
ending with .so on linux systems or with .dylib on the mac). The main difference
is that at link time, the object code in static libraries becomes part of the executable file;
i.e., it is copied in. Programs linked to a shared library contain only pointers to bits of
executable code which are not copied into the executable; and therefore the shared library
file must be resolved at run time, before the program can be executed (see Section 1.6).
Working with static libraries is usually simpler though it does create larger executables.

The linux command ar manipulates a static library. To create the static library
libIterate.a, give the command:

$ar rc libIterate.a initialize.o execute.o finalize.o

The modifier rc stands for “replace” and “create”: the library (or archive) is created if
it doesn’t exist, and if it does exist then any object files within the library are replaced
by those given on the command line. The contents of the library can be examined
with ar t:

$ar t libIterate.a
initialize.o
execute.o
finalize.o

Also, the contents of the library can be manipulated; for example individual pieces of
object code may be extracted (ar x) or deleted (ar d). More information can be
obtained from the ar manual page.

Now that you’ve built the library, you naturally will wonder how to link it to other
code. The g++ command has two important compiler flags that can be used, -L and
-l. The first one, -L, specifies a directory to be searched for the library. The working
directory is not on that path by default, so if your library lives in your working directory
you should add -L. or -L‘pwd‘ to the g++ command. The second one, -l, gives the
name of the library to link, but with an odd rule: to link to libIterate.a, you should
write -lIterate. In other words, transform “lib” into -l and drop the extension .a.
Both flags can be repeated on the command line and specify a search list: if the library
is not found in the first directory, the second is searched; likewise if the symbols are
not found in the first library on the command line, the second is searched. Therefore
the order of -L and -l arguments is important. In our example, you will use the
command:

$g++ iterate.o -L. -lIterate -o iterate
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To make a shared library, you can use the versatile g++ command again, giving the
list of object files on the command line in addition to the -shared flag, and specifying
a lib prefix and an .so extension for the output file, like this:

$g++ -shared initialize.o execute.o finalize.o -o libIterate.so

Some compilers also require the -fPIC qualifier during the compilation of object code
files like initialize.o in order to produce “relocatable” code required in a shared
library2. The only way to examine the contents of a shared library file is with the nm
command, which dumps the symbol table. It is usually best to pipe this through c++filt,
so that subroutine names are demangled into a readable form. You can link to the shared
library in the same way as you link to a static library, and by default libIterate.so
(for example) will be take precedence over libIterate.a if both files are found.
Typically, when you then run the program, the shared object library will need to be
resolved as well, as we have discussed in Section 1.6.

The software on a linux system is built from packages and these packages include
programs, APIs, and sometimes both programs and APIs. One good (and useful)
example is the gnu scientific library, or gsl, which can be installed (on a Ubuntu
linux system) by typing:

$sudo apt-get install libgsl0-dev

This installs the libraries /usr/lib/libgsl.a, /usr/lib/libgsl.so, as well as
the headers /usr/include/gsl/*.h, and a manual page that can be referenced by
typing

$man gsl

1.9 More on Makefile

The example we have been developing over the last few sections now constitutes a mini-
project with a number of steps in the build process, namely (if we are going to use a static
library):

• build the object files initialize.o, execute.o, finalize.o

• build the archive libIterate.a

• build the executable iterate

Extrapolating our experience to a large project, we can see that while building each
constituent requires knowledge of a few compiler flags at the very least, building the entire

2 This is particularly the case with the gnu compiler g++.
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project interactively quickly becomes prohibitive. One way to automate this is to script
the build (in bash, csh, or a similar scripting language); however with large projects
one prefers to skip compiling code that has not changed since the last compilation. The
make system was invented to build components of a large project from prerequisites.
It can detect when a component is stale (because its prerequisites have changed) and
rebuild it. It does this from rules, some of them built-in, while others can be specified
to the system. The typical way to extend the set of built-in rules is to write a Makefile
which lives in the same directory as the source code. We demonstrate this by an example.
First, notice that the make system already knows that a .cpp file is prerequisite to an .o
file with the same base name; typing make initialize.o is sufficient for the system
to execute

g++ -c -o initialize.o initialize.cpp

when initialize.cpp is found in the working directory and has been modified more
recently than initialize.o. Ditto for execute.o and finalize.o.Makefile does
not know (yet) that these object files are prerequisite to the archive libIterate.a.
Thus, we create a file named Makefile and add the following lines:

libIterate.a:initialize.o execute.o finalize.o

This says that libIterate.a is a target and that it depends on the three listed object
files. Since it is the first target in the Makefile (and the only one for the moment), typing
make will automatically build the three prerequisite files, from built-in rules. Following
this line in the Makefile, one can specify which actions to take to build the target. Such
lines must begin with a tab. The make system is very sensitive to this and using spaces
will cause make to fail. We revise the Makefile so that it looks like this:

libIterate.a:initialize.o execute.o finalize.o
ar rc libIterate.a initialize.o execute.o finalize.o

This can also be written a little differently, since the syntax of Makefile allows you to use
the expression $@, which means “the target”; $? which means “the list of prerequisites”;
and “$<”, which means “the first prerequisite”. Thus one can write:

libIterate.a:initialize.o execute.o finalize.o
ar rc $@ $?

Macros can be defined in a Makefile too, so one can write this as:

OFILES=initialize.o execute.o finalize.o

libIterate.a:$(OFILES)
ar rc $@ $?



20 The subversion source code management system (SVN)

Additional targets can be added to this list which now only includes libIterate.a.
A common one to add is clean which removes all compiled code (.o files, static and/or
shared libraries, the executable) and sometimes the backup files (ending in ~) left by the
emacs editor. Such a line would look like

clean:
rm -f *.a *.o iterate *~

(obviously you must be extremely careful!) and we can clean our directory now by typing
make clean, which will rid the directory of everything but source code. Now we still
have not told the make system how to build the final executable. We insert (at the top, after
macro definition but before any other target) a line that determines how the executable
iteratewill be built; because this line will be the first target in the Makefile,iterate
will be the default target. It will be built merely by typing make from that directory. The
final version of Makefile looks like this:

OFILES=initialize.o execute.o finalize.o

iterate:iterate.o libIterate.a
g++ -o $@ $< -L. -lIterate

libIterate.a:$(OFILES)
ar rc $@ $?

clean:
rm -f *.a *.o iterate

you can build the whole project by typing make, or pieces of it:

$make execute.o
$make libIterate.a

for example.
This probably looks like a nice tool, but even Makefile has its limits and many code

management systems have been built on top of Makefile when things get even more
complicated. We will not discuss these in this book, but be prepared for a shock when
you enter the world of million-line software projects.

1.10 The subversion source code management
system (SVN)

The last important tool that we will discuss in this introduction is the Subversion
system, or SVN, which is very widely used to manage the process of distributed software
development. This is an example of a source code management system. Other examples
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include the Concurrent Version System (CVS), which is now practically obsolete and
git which is more recent and rapidly gaining popularity. In some ways these systems
resemble a dropbox service, which is perhaps more familiar to a general audience.
While a source code management system provides a central synchronized repository
for code, it contains special features that enable tracking source code development and
even restoring an entire project to a specific version and/or date. Some of the exercises
in this book will require you to reposit the assignment in SVN; and your instructor
will provide access to an SVN repository on a remote machine. Besides the ability
to track changes and restore the code to some previous state, SVN allows for multiple
developers to work on the same piece of code. Alternatively, the same individual can
work on a project from multiple locations. This, for example, allows you to move
potentially valuable pieces of work (including, but not limited to code, perhaps your
thesis!) off of your laptop computer and onto a central site. Like many of the tools
discussed in this chapter, SVN has a lot of powerful functionality and we will describe
just enough of it so that you can get started using it. We assume that for your first
experience with the system, somebody else (i.e. your instructor) will set up the SVN
repository for you, set up the necessary access mechanisms, and grant you the necessary
access rights.

1.10.1 The SVN repository

A repository is an abstract concept that implies a central place where code resides. How
central? Repositories can be set up and administered by unprivileged users as files on a
single laptop computer, if desired; more privileged administrators can configure servers
where contributions from users around the country or around the world are centralized;
and now commercial “cloud computing” services operate servers that can be accessed
by users at little or no expense.

In the first case the SVN repository is a single file that the user creates:

$svnadmin create /path/to/repositoryfile

This creates a repository in a file called /path/to/repositoryfile that can now
be filled, but never by acting directly on the repository file, which is henceforth only to be
modified using SVN commands; i.e., those with the format svn command options.
One useful command, svn ls, simply lists the contents of the repository, which, if you
have just created it as explained above, is empty. The syntax of the command is

$svn ls file:///path/to/repositoryfile

If you wish to execute this from a remote machine (assuming that both local and remote
machines can communicate via the secure shell, ssh), you can issue the following
command from the remote machine:

$svn ls svn+ssh://user@host.domain/path/to/repositoryfile
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where user@host.domain specified the username, hostname, and domain name of
the local machine. Other types of servers, using other protocols, may have other prefixes
such as http://, https://, or svn://.

For the following examples we assume that you have access to an SVN repository
because either

• You have created a repository, as described above.

• You have requested and received a repository through a web-hosting service such
as Sourceforge (www.sourceforge.com) or Cloudforge
(www.cloudforge.com).

• Your instructor has set up a repository via one of the above methods, and given you
access and instructions.

Web-hosting services have interesting benefits, first because they require no effort from
the users to maintain and administer, second because they often add additional useful
tools such as web-based code browsing. Whatever solution is adopted will will refer to
the repository in the following as protocol://repository.

1.10.2 Importing a project into SVN

A project can be imported to SVN as follows. First we assume that the original source
code lives in a directory called /path/to/PROJECT. To import that code into SVN issue
the following command:

$svn import /path/to/PROJECT protocol://repository/PROJECT

This creates a project within the repository, and copies all of the files in /path/to/PRO-
JECT into the repository. The project then grows only when additional directories are
added to it, additional files are added to directories, or files are modified.

Each change to the repository is logged, and all the logged information is accessible
via the command svn log. If you execute the svn import command as it appears
above, an editor window will pop up and prompt you for a log message. Alternately, short
log messages can be added by adding the option -m "here is my log message"
to the command line.

1.10.3 The basic idea

We now have both a repository and a project residing in that repository. With this
initialization out of the way, we describe the basic SVN operations for source code
management.

The main idea behind SVN is that the repository holds a master copy of the project,
while developers check out a local copy to their machine and make modifications. When
they are satisfied, they check their modifications back into the master copy (repository).
This is called a copy-modify-merge model. The simplest scenario is illustrated in
Figure 1.1. The command

www.sourceforge.com
www.cloudforge.com
http://, https://, or svn://.


Building programs in a Linux environment 23

Repository

Local Copy

1. SVN checkout

2. SVN commit

Figure 1.1 Sketch of the simplest SVN transaction; first a checkout, then a commit following
modification to the local copy.

$svn checkout protocol://repository/PROJECT.

checks out the package (step 1 in Figure 1.1), and the command

$svn commit -m "message"

puts the modifications back into the repository (and adds the message “message” to the
log). This is all that is needed as long as the file content of the project does not change.
If files need to be added to the project then this is done with svn add file1 [file2]
[file3] . . . ; the command schedules files for addition but does not add them until svn
commit is issued; directories are added in the same way. svn remove file1 [file2]
[file3] . . . can be issued to remove files from the repository (after the files are removed
from the local copy).

With multiple local copies in play (e.g., with multiple developers) the situation is more
complicated because the master copy can change while one of the developers is making
modifications to his or her local copy. Figure 1.2 shows a diagram of a typical transaction.

1. User 1 checks out the package to his/her local copy.

2. User 2 checks out the package to his/her local copy.

3. User 2 commits a modification to the repository. At this point user 1’s local copy
is out of date. User 1 will not be able to commit until he refreshes his own copy with the
changes that have gone into the repository.

4. User 1 refreshes by typing svn update.

5. Then user 1 checks his changes into the repository with svn commit, after
resolving any conflicts.
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Repository

Local Copy 1

1. SVN checkout

3. SVN commit
Local Copy 2

2. SVN checkout package

4. SVN update 

5. SVN commit

Figure 1.2 A diagram of a more complicated set of SVN transactions arising from two users
simultaneously developing within the same package. See text for details.

Conflicts can arise when two users simultaneously work on the same package, but
usually SVN is smart enough to resolve those without user intervention. SVN will resolve
situations in which two users work on two different files in the same project. It will also
resolve conflicts when two users have altered different parts of the same file. The only
situation that normally requires user intervention is when two users have changed the
same part of the same file; this can occur when two people jump in to fix the same bug.
Conflicts are clearly indicated in the text and generally do not cause much trouble. We
refer the reader to Collins-Sussman et al. (2004) for a detailed description of what to do
when these cases arise.

The entire set of operations is carried out with very few SVN commands: checkout,
commit, update, add, remove, status, and log; which suffices for most needs. The
svn checkout and update commands have options that let users checkout, or update
to, a tagged version, or a version that was current on a specific date and time. The
SVN log command allows one to view the whole revision history of a file, including
all of the comment messages that were given as arguments to the commit command.
Finally, svn status displays the status of the project as a whole and/or individual file,
depending on the parameters to the command.

It is important to never introduce executable programs, libraries, object code, backup
copies, or large binary data files into the repository. These will make the administration
of the repository difficult. Besides, these files need not be stored in the repository since
they are typically regenerated from source. Putting Makefiles in the repository to aid
in the build is generally a good idea.
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After this brief introduction, we leave the reader to explore the full set of SVN
operations using the references and/or the exercises.

1.11 Style guide: advice for beginners

We close with an offering of advice for beginners that has been gleaned over 80 combined
years of programming experience. Presumably these good practices will be set by
protocols if you are working in a large group. If you are not, read on.

dive in. Learning a computer language should be like learning French or German.
You don’t need to have mastered all the nuances of the plus-que-parfait tense to
order a burger in Paris. Look at examples, learn some basics, and get coding!

adopt a convention. Adopting a convention for naming your files, libraries, vari-
ables, objects, and classes is important. Established conventions do exist, but we
will not venture to advocate one over another since this is a matter of personal
choice (or a choice that has been imposed by management). Peruse the Wikipedia
article on Hungarian notation to get an idea of the options, and controversy, in
adopting conventions.

use descriptive names. Calling an index i is traditional, but it is much better to give
it a descriptive name such as particleNumber.

document your code. You will not remember the inner workings of your code
after a few months. Describe its purpose, method, important variables, compiler
directives, and usage somewhere (often at the top of the main file). If you are not
using a repository, record revision history.

write clear code. You might think this is obvious, but it is quite easy for code to
become unclear and one must be vigilant. Sooner or later you will find some clever
compact way to do something and add it to your code. But you will not remember
the trick the next time you look at your program and will not feel so clever. If you
are going to be clever at least document it.

At a more general level, clear code is the result of clearly understanding the
computational issue. Of course, as scientific programmers it is your duty to
understand your problem to the best of your ability.

Lastly, if your code is destined to be used by others you should also consider
the typical user’s conceptualization of the code. In particular, you want the user
interface to match the user’s expectations. A familiar version of this problem is
when a user attempts to change an aspect of text in a word processing program
and all sorts of unexpected and frustrating code behavior ensues.

trap errors. A part of structured programming is trapping and dealing with errors
when they are generated. This is implemented, for example, in C++ or java with
the try and catch statements. Unfortunately, no such functionality exists in C or
Fortran. Do what you can.
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avoid magic numbers. Strings of digits should not appear in your code. You may
recognize 0.197327 as h̄c in the appropriate units but the next person to work on
your code may not. Better to place a statement such as static float hbarc =
0.197327 somewhere. While we are on this, why would you ever write double
pi = 3.1415926 when you could write double pi = 4.0*atan(1.0), or
even better include the header <cmath>, which defines many mathematical
constants, including M_PI?

allow for parameter input. Students tend to code parameter values directly into
their programs. In our experience, programs are never run once and it is therefore
important to allow for flexible parameter input. This is typically accomplished in
one of three ways: (i) query the user for console input, (ii) via the command line,
(iii) via an input file. Option (i) is simple; option (ii) permits easy scripting; and
option (iii) is useful when many parameters are required but is more difficult to
manage. One approach is to query the user and echo input data into a file. This
file can then be modified and redirected as input in subsequent runs: ./foo <
input.txt. A more sophisticated approach might use a graphical user interface
or a database.

specify default parameters. It is easy to spend days or weeks determining param-
eter values that optimize sought behavior. Once these are found they should
be documented with the project, preferably as defaults in the code itself. We
guarantee that you will not remember the preferred temporal grid spacing in your
electromagnetic field computation a few months from now.

document the output. Most scientific code produces output files, sometimes
dozens of them. These files should contain header information that specifies the
program that created them, parameter values that were used, and the meaning (and
units) of the output.

learn a debugger. Simple programs can be debugged with judicious print state-
ments. However more complicated issues will require the use of a debugger, such
as gdb. The GNU collaboration has created a free graphical front end for a variety
of debuggers called DataDisplayDebugger that we happily recommend. Integrated
Development Environments (such as Eclipse) often have debugging capability as
well. It is worth the effort to learn to use these.

squash kludge. As you develop code you will often find yourself adding options to
deal with an ever-increasing number of cases. The result is a kludgy mess with
multiple layers of if or case statements. At this stage it is better to redesign the
program or, more simply, to clone variant code.

develop systematically. Plan the general code structure before writing anything.
Develop code in small logical chunks and debug as you go. Rushing ahead is a
guarantee of future headache.
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test extensively. If you are writing scientific code, you are doing science, and your
code must be reliable. Check your results against known limits and special cases
with analytical solutions. If you must strike out on your own, try to make the
change from known territory as minimal as possible (for example, substituting a
complicated potential for a square well potential in a quantum mechanics problem).
Debugging Monte Carlo code is extremely difficult! You need analytic limits and
simple cases worked out for comparison.

understand code parameters. Students often confuse physical parameters and
algorithmic parameters. The former define the physics problem that you want to
solve. The latter specify the method in which you solve the problem–in principle
your answer should be independent of algorithmic parameters. It is up to you to
confirm this! In practice this means extrapolating to infinity or zero. You can always
double or halve an algorithmic parameter and confirm stability of your answer.
Even better is to plot how your answer changes with algorithmic parameters, and
better yet is to have a theoretical understanding of the functional form of that
dependence so that reliable extrapolations can be made.

Similar advice with additional detail is contained in Wilson (2014).

1.12 Exercises

1. Write and compile an empty program. Name it exp.cpp, and put in in a directory
called CH1/EX1. Compile it, and use the four utilities in Table 1.2 to examine the
output file. Add to your empty program a call to the math library function exp,
which requires you to include the header file:

#include <cmath>

Run the nm and the ldd utilities on the program and describe carefully what happens
before and after the call to exp is added. Try this with both a constant and a variable
argument to exp. Pipe the output of nm through c++filt and explain how the
output is different. (This is called “name mangling” and “demangling”).

2. Now write a variant of this program in a directory called CH1/EX2. Add to your
program a single command line argument. Your program should now accept a single
command line argument and echo the exponential of that argument, like this:

$exp 5
148.413

Examine the program with ldd and nm. Pipe the output of nm through c++filt.
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3. In a directory called CH1/EX3, replace the call to your own version of the exp
function. Use a Taylor series expansion3. Check again with ldd, nm and nm |
c++filt. Tabulate x vs. exp(x) for x = {−10,−8,−6....6, 8, 10}. By switching
between your version of exp, and the one in the math library, determine how nm tells
you whether the exp routine is internal or external to the executable program file.

4. In unix the wildcard character is the star or asterisk, “*”. In a directory called
CH1/EX4, write the program foo described in Section 1.4. Go into your home
directory and execute /path/to/foo *. Explain the output.

5. Write a program called plus (in a directory called CH1/EX5) which expects two
integers on the command line, adds the two integers and prints out the answer. The
expected behavior of this program is:

$plus 3 7
3+7=10

6. In the previous example, break the code up into three compilation units:

a) main.cpp – main program

b) parse.cpp – parses the command line

c) add.cpp – adds the two input values

d) print.cpp – prints the result

Put these four files together a directory called CH1/EX6, and add a Makefile which
builds:

a) a library called libPlus.a

b) an executable called plus

Make sure that the Makefile contains a “clean” target to remove all object code and
executables generated by the compiler during the make procedure.

7. Clone the directory CH1/EX6 into a directory CH1/EX7; then modify your Makefile
so that the shared library libPlus.so is used, rather than a static library. Check and
report the size of the final executable in both circumstances.

8. Write Makefiles in the directories (CH1/EX1-CH1/EX7) to build all of the targets
in the previous exercises. Make sure each executable has a “clean” target.

9. Your instructor will provide access to a SVN repository. Add the source code and
Makefiles for CH1/EX1-CH1/EX7 to the repository.

a) make sure that you do not reposit any object code.

b) make sure that you can check out and build each executable from scratch.

3 In Chapter 4 we will learn a better way to implement an exponential function
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2.1 Introduction

In the previous chapter we concentrated on how computer codes are written, compiled,
archived, linked, and executed; how executable systems interact with the linux operating
system; how source code is managed; and how build procedures can be automated. In this
chapter we will talk more about the code itself, assuming that the reader has familiarity
with the basics of C++, namely things like operations, control structures, functions,
arrays, and pointers.

While datatypes are likely also familiar to the reader, we discuss integer, floating point,
and complex datatypes in some detail for two reasons. The first is that in numerical
calculations, one needs to understand the limitations in accuracy arising from the
representation of numbers on a computer and the way in which they are acted upon
by the CPU during an arithmetic calculation.

The second reason is more subtle. A new feature of C++ (relative to its predecessors
C and Fortran), and probably the most important building-block of modern code, is the
user-defined datatype or class. Some of these datatypes, like those you are already using
for input and output, are part of the C++ standard library, while others may be imported
from other sources and ultimately written by you.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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If the notion of a class is unfamiliar, we will not give a full or accurate definition
here, but for our numerically literate target audience it is productive to initially think
of a class as a new type of numerical datatype, like a floating point number or an
integer. For example, in C++ complex numbers are not built into the language; they
are represented by their own class in the C++ standard library. Vectors, four-vectors,
matrices, quaternions, octonions, and other useful entities can be imported from a variety
of sources.

When a skilled programmer implements a class in C++, his or her implementation
shares some of the same features that make the built-in datatypes convenient to use.
Most notably, there is a clean separation between the representation of the datatype and
its interface; i.e., the set of operations to which it responds. This separation is called
encapsulation. We expect to find this feature in classes as well. Along with inheritance
and polymorphism, to be tackled later, encapsulation is one of the key components in
the object-oriented style of programming.

2.2 The representation of numbers

A number, floating point or otherwise, is represented by a array of bits held on a
magnetic storage device or a silicon flip-flop circuit. Encoding this information is fairly
simple in the case of integers but can be quite complicated in the case of floating point
numbers. Encapsulation is achieved by hiding all of this internal structure in several
datatypes:

• int

• unsigned int

• float

• double,

which respond to four basic operations +,-,/,*, as well as a few others. The encapsulation
of the internal representation of these numbers is so effective that many programmers
seldom consider it. For numerical work it is, however, important to know about the
internal structure because the accuracy of numerical computations depends on it. We
therefore describe the manner in which numbers are represented and the attendant
consequences for computation.

Numbers are stored in arrays of bits, which are comprised of 0’s and 1’s. A collection
of eight bits is called a byte. All built-in datatypes require at least one byte of storage. The
number of bytes used to store a datatype is called the size of the datatype, and it varies
from platform to platform. The size can can be determined with the sizeof operator
in C(++):

int sizeofA=sizeof(a);



32 The representation of numbers

A short program to print out the size of the major built-in datatypes is shown below:

#include <iostream>
int main(int argc, char **argv) {
std::cout << sizeof(bool) << std::endl;
std::cout << sizeof(char) << std::endl;
std::cout << sizeof(int) << std::endl;
std::cout << sizeof(unsigned int) << std::endl;
std::cout << sizeof(long int) << std::endl;
std::cout << sizeof(long unsigned int) << std::endl;
std::cout << sizeof(short int) << std::endl;
std::cout << sizeof(short unsigned int) << std::endl;
std::cout << sizeof(float) << std::endl;
std::cout << sizeof(double) << std::endl;

}

You should copy this into an editor and compile and run it on your machine.

2.2.1 Integer datatypes

An unsigned int has 4 bytes or 32 bits. It uses these to express a number in base-2
according to the expression:

x = a31231 + a30230 + . . .+ a020

where ai is either 1 or 0. This is called fixed-point notation. Other unsigned integer
datatypes are char, with a size of one byte, and long unsigned int, which is 32 bits
on some machines and 64 bits on more modern ones. In an int variable the upper bit
is reserved for the sign:

x = (−1)a31(a30230 + . . .+ a020)

A consequence is that there is a maximum and minimum integer that can be represented
for every datatype; between those limits integers are stored exactly. Integer operations
+ (addition),– (subtraction) and * (multiplication) are also exact as long as one does not
overflow or underflow the range, but the operation / (division) discards any remainder
to obtain an integer result. The range of integer datatypes can be obtained using the
std::numeric_limits class:

#include <iostream>
#include <iomanip>
#include <limits>
int main( int argc, char ** argv) {
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std::cout << std::numeric_limits<bool>::min() << std::endl;
std::cout << std::numeric_limits<bool>::max() << std

::endl;
std::cout << (int) std::numeric_limits<unsigned char>

::min() << std::endl;
std::cout << (int) std::numeric_limits<unsigned char>

::max() << std::endl;
std::cout << std::numeric_limits<int>::min() << std::endl;
std::cout << std::numeric_limits<int>::max() << std::endl;
std::cout << std::numeric_limits<unsigned int>::min()

<< std::endl;
std::cout << std::numeric_limits<unsigned int>::max()

<< std::endl;
std::cout << std::numeric_limits<long int>::min() << std::

endl;
std::cout << std::numeric_limits<long int>::max() << std::

endl;
std::cout << std::numeric_limits<long unsigned int>::min()

<< std::endl;
std::cout << std::numeric_limits<long unsigned int>::max()

<< std::endl;
}

Good documentation on this class can be obtained from the online reference www.
cplusplus.com. Running this code reveals that a 32 bit int has an allowed range
of −2147483648 to 2147483647. For an unsigned int the range is [0,4294967295].
A char has a range of [0,255]. These ranges are not big; for larger numbers one needs
to resort to floating-point datatypes.

2.2.2 Floating point datatypes

A fixed-length datatype can store a finite number of values, while (even within a finite
range of values) the number of rational numbers is infinite, and the number of real
numbers is even larger. Thus only certain floating point numbers can be represented
exactly, and the result of floating point operations involves some roundoff error.

The typical error in a floating point calculation is called the machine precision; for
float variables this is between 6 and 7 decimal places, and for double variables it is
between 15 and 16 decimal places. The class numeric_limits reveals that the range
of floats is between 1.17549·10−38 and 3.40282·1038, while that of double variables
is from 2.22507·10−308 to 1.79769·10+308.

A modern CPU does not require more time to carry out floating point opera-
tions on double variables than on floats, so double will be our preferred float-
ing point datatype (unless memory or disk space forces us to use a more compact
representation).

www.cplusplus.com
www.cplusplus.com
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Table 2.1 Bit allocation for float and double
datatypes.

Type Sign Exponent Fraction

double 1 Bit 11 Bits 52 Bits

float 1 Bit 8 Bits 23 Bits

The IEEE-754 standard format for a floating point number is the following:

x = (−1)s1.f × 2e−b

where:

• s is the sign bit.

• 1 is always implied. It is called the “ghost bit”

• 1.f is the mantissa, with f being the fraction. For doubles, it is stored in 52 bits
(23 for float)

• e is the exponent. For doubles, it is stored in 11 bits (8 for float)

• b is the bias. For doubles, it has a fixed value 1023 (127 for float).

Note that zero can have the sign bit set or unset, so the numbers +0 and −0 are distinct,
though they give the same results in all floating point operations. Table 2.1 shows bit
allocation for float and double datatypes.

The exponent of a floating point number is stored exactly, so the precision of the
number is the precision of the full mantissa.

In scientific notation the numbers 3.0 × 104 and 30 × 103 are the same. Since a fixed
number of bits are allocated for the mantissa it is advantageous to have the mantissa as
left-shifted as possible. In this form the binary representation is 1.x×2n. Since the binary
digit to the left of the decimal point is always 1 it is not stored. The resulting number is
referred to as normalized.

2.2.3 Special floating point numbers

The result of a numerical operation can be undefined if, for example, a division by zero is
made. Even if the result of a calculation is defined mathematically, it can still result in an
underflow or overflow due to the limited range of floating point variables. For doubles
the exponent is stored in eleven bits. The normalized numbers discussed above have an
exponent between 0 and 2046 (in binary 11111111110). Underflows, overflows, and
other the results of undefined operations are represented by an exponent field with all
eleven bits set (i.e., decimal 2047).

Infinity of either sign is represented by a fraction of zero, with the sign determined by
the sign bit. When the fraction is nonzero the number represents an undefined quantity,
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called NaN (“not a number”). This could result, for example, from dividing by zero
or taking the square root of a negative number. The value of the fraction (called the
payload) contains extra information that can be decoded by clever programmers.

If the first bit of a fraction is nonzero the invalid number is called a signalling NaN .
When such variables arise, many floating point routines will raise a signal and exit with
an error. If the first bit is not set, the invalid number is called a quiet NaN . Computations
are expected to fail silently when they encounter such a number. These numbers can be
obtained from the numeric_limits class:

double qNaN=double nan=std::numeric_limits<double>
::quiet_NaN();

double sNaN=double nan=std::numeric_limits<double>
::signaling_NaN();

double inf =double nan=std::numeric_limits<double>
::infinity();

The smallest floating point numbers are represented with an exponent e = 0. In this
case a smaller bias is taken (1022 for double, instead of 1023; for float 126 instead
of 127) and the ghost bit is taken but subnormal numbers. Subnormal numbers lie
between true underflow and the result ofstd::numeric_limits<double>::min()
which in fact returns the smallest normalized number. They lack the precision of
normal numbers. A routine called std::fpclassify is available as part of the
runtime library:

#include <cmath>
int std::fpclassify(double x);

which classifies floating point numbers as zero, NaN, normal, or subnormal. Like all
library and system calls, the routine is documented in the linux manual pages and you
can read the documentation by typing

man fpclassify

A related routine called

int std::isfinite(double x);

returns 1 if the number is normal or subnormal and 0 if it is infinite or NaN. This is useful
when debugging code. For example, the following code illustrates how isfinite can be
used to track down a divide-by-zero error.

#include <sstream>
#include <stdexcept>
...
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double z = y/x;
if (!std::isfinite(z)) {
std::ostringstream stream;
stream << " x , y , z =: " << x << " , " << y << " , " << z << std::

endl;
throw std::runtime_error(stream.str());

}

This example throws an exception, which is a good way for C++ to signal that
something has gone wrong; calling routines can catch the exception and take appropriate
actions. In an interactive debugger, one can not only print out information about the
condition that led to an infinite or undefined value of z, but also set a breakpoint at the
print statement and examine other variables at that point in the program’s execution in
order to determine why the abnormal condition has occurred.

Routines called std::isnormal, std::isnan, and std::isinf also exist and
are defined in the <cmath> header file. Their functionality is pretty obvious; details can
be found in the manual pages.

2.2.4 Floating point arithmetic on the computer

When two floating point numbers are added in the CPU, the mantissa of the smaller of
the two numbers is right-shifted (divided by two), an operation that is compensated by
incrementing the exponent by one unit, until the exponents of the two numbers are equal.
As a result the lower-order bits are shifted away and precision is lost. Once this is done,
the CPU takes the sum of the two mantissas and uses the common exponent to form the
result, which it then normalizes. The summation is carried out in an arithmetic logic
unit that mostly consists of simple gates capable of carrying out Boolean operations on
the bits of the numbers.

A simple example illustrates the loss of precision in base−10 arithmetic.

• We are going to add 1.276 × 106 to 2.852 × 108.

• The smaller number is expressed as 0.012 × 108.

• The sum is 2.864 × 108. Notice that the last two digits in the first operand have
been lost.

The same type of rounding error takes place in base-2 arithmetic with floating point
operations in the CPU and one has to worry about the cumulative effect of these
rounding errors. Notice that the entire mantissa is shifted away when the number of
digits in the mantissa is less than the difference in the exponents of two summands. In
this case the sum is equal to the larger summand.The largest number for which this
occurs is the machine precision mentioned before. The numerical value of the machine
precision depends on the data type and can be accessed via the numeric_limits class:

std::numeric_limits<float>::epsilon()
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Example: In the Large Hadron Collider (LHC), experiments energy deposits of
hundreds of GeV can be placed in the heavy materials of a device called a calorimeter.
The deposit consists of very many smaller ionizations called hits, where the hits can
consist of deposits down to about one KeV. The full deposit and the hits that contribute
to this deposit therefore range over about eight orders of magnitude. When summing
all of the smaller hits into one deposit using floats, one eventually reaches a point
where including additional low energy hits produces no difference, and this energy is
lost to the calculation. The simplest resolution is to employ higher precision data types
such as double. An algorithmic alternative is to sum small numbers in a hierarchical
fashion.

A similar loss of precision occurs with subtraction. Subtraction is performed in very
much the same way as addition: the two numbers are expressed with a common exponent
(shifting the mantissa if needed) and then the mantissas are subtracted using logic gates
in the CPU. When two numbers of similar size are subtracted, the result will be expressed
in only a few bits. When the result is normalized, those bits will be shifted left as much
as possible and the trailing bits will be filled with zeros. The resulting roundoff error can
be significant.

Sometimes the problem can be avoided with a little cleverness. For example, consider
the stretch factor γ = 1/

√
1 − β2 for a relativistic particle, where β = v/c, v is the

particle’s speed, and c is the speed of light. Since relativistic particles have β ≈ 1, there is
a good chance that a loss of precision will make the denominator of this expression zero.
One can instead express 1−β2 = (1+β)(1−β). Setting ε = 1−β gives γ = 1/

√
(2 − ε)ε,

which will generally be calculated to higher precision.
Machines carry out approximate computations on approximate representations of

real numbers. Nevertheless, one must admire the skill with which the developers of the
IEEE-754 standard, and our compiler set, have kept these details so effectively hidden
from our sight, thereby freeing us to frame the problems of our day-to day life in terms
of numbers, rather than bits. We will attempt to achieve the same functionality, via
encapsulation, when defining our own datatypes.

2.3 Encapsulation: an analogy

In discussing the notion of encapsulation, we find it germane to draw an analogy
to a development in electrical engineering that parallels developments in software
engineering. We are referring to the advent of integrated circuitry, which has promoted
the proliferation of highly complex circuitry such as sophisticated Central Processing
Units (CPUs) with up to 10 billion transistors on a single chip.

Figure 2.1 shows a popular operational amplifier called the LM741. On the right is a
circuit diagram, which gives one view of what is inside the neat little package.

Users of the LM741 need to be knowledgeable about the eight pins in the package,
which, counterclockwise from the upper left, are the offset null used to cancel voltages
that appear as the result of leakage currents, the negative and positive input, the negative
supply voltage, an unused pin, the output, the positive supply voltage, and a second offset
null. While sometimes a serious designer needs to know about the internal circuitry of this
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Figure 2.1 Picture (left) and circuit diagram (right) of the LM741 operational amplifier (adapted from
svg file by Daniel Braun from https://en.wikipedia.org/wiki/Operational_amplifier. Creative commons
BY SA 3.0).

device, most of the time he or she can forget those details when building more complex
devices, or at least relegate their consideration to the later stages of design.

The LM741 implements a clean separation between what is exposed to the outside
world and the messy internal hardware. The choice to hide the details of the circuit is a
matter of convenience and practicality. The choice of which parts of the circuit to expose
on the chip’s interface is a matter for the chip designer, who must develop a clear idea
of what is to be achieved with the chip. In this case, the LM741 is an amplifier. Should
it contain headphones then? No, because it is not an iPod.

In carrying out computational work we use (and sometimes write) classes for math-
ematics and physics that help us with these computations. Such classes can represent
vectors or matrices, for example. And these classes should, like the integrated circuit,
have a trustworthy mechanism on the inside which is not exposed, and a clean, simple,
and logical interface on the outside. This is what we call encapsulation. While the
LM741 is encapsulated in a plastic case, encapsulation in object-oriented programming
is conceptual and is applied to user-defined datatypes, namely the aforementioned
classes.

2.4 Complex numbers

Our next example of a numerical datatype is std::complex. Unlike float, double,
and the integer datatypes,std::complex is a C++ class; actually it is a class template;
roughly speaking this is essentially a recipe for generating a class for complex numbers
once the internal representation of real and imaginary numbers (float or double)

https://en.wikipedia.org/wiki/Operational_amplifier.


Encapsulation and the C++ class 39

is fixed. The choice is in your hands. The following incantation will create a complex
variable:

#include <complex>
std::complex<double> I(0,1);

This creates a variable I and assigns it the value i = √−1, where i is evaluated to double
precision. The statement is intended to closely parallel the declaration of an integer
variable i:

int i=1;

Here,std is a namespace, which is a mechanism to avoid clashes between the names we
give to constants, variables, and datatypes. If you don’t want to type the full namespace-
qualified form of the declaration, you can also add the line using namespace std;
prior to the declaration, usually at the top of a compilation unit or near the beginning of
a particular function.

We introduce some vocabulary which applies to classes. The declaration (found in
<complex>) of a class does not create any new variables, known as objects, but only
specifies how those variables are created and what they can do, i.e. their interface. New
objects are created typically with a statement that looks like the declaration of any other
variable. For a class representing a vector the statement might look like

Vector m(0,0,0)

—think:

int i(0);

The creation of an object actually results in a function call, to the so-called constructor.
Vector is the class, and m is the object. A class is a category of objects which all behave
according to a common interface. Each object is said to be an instance of the class, and
the creation of objects is also called instantiation.

Classes typically contain bound functions, which are invoked like this:

object.function(arguments);

rather than the free subroutine calls that you are used to, i.e.,

function(arguments);

When we invoke a function bound to an object we are said to be sending a message to
the object.
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The class template std::complex is a built-in part of the C++ standard library; we
say that it is parameterized on the data type used to represent the real and imaginary
parts of the complex number. To instantiate:

std::complex<double> U(1,0);
std::complex<double> I(0,1);

where the datatype double is called the template parameter, the values used in the
constructor call are the real and imaginary parts of the complex number. The first
variable declared above (U) is the real number 1, while the second variable I is the
imaginary number i = √−1. One way to simplify the declaration of variables such as
these is to use a type definition to establish a typedef-name:

typedef std::complex<double> Complex;

then, one can use the more convenient typedef-name (Complex) instead of the parame-
terized class (std::complex<double>). A number of functions are declared to carry
out elementary operations on complex numbers; these are defined in the Table 2.2. The
operations in this table can be used to add, subtract, multiply and divide any combination

Table 2.2 Summary of operations defined on complex numbers.

Operation Function Example

+ operator +() w=x+y

- operator -() w=x-y

* operator *() w=x*y

/ operator /() w=x/y

z∗ (complex conjugation) conj() w=conj(z)

Re(z) real() w=z.real()

Im(z) imag() w=z.imag()

|z| abs() double x=abs(z)

|z|2 norm() double x=norm(z)

arg(z) arg() double phi=arg(z)

addition assignment operator += w+=z

subtraction assignment operator -= w-=z

multiplication assignment operator *= w*=z

division assignment operator /= w/=z



Encapsulation and the C++ class 41

of floating point numbers and complex numbers. A number of important mathematical
functions (cos, cosh, exp, log, pow, sin, sinh, sqrt, tan, and tanh) have also
been overloaded to work with complex arguments.

Complex numbers find widespread use in physics. We will illustrate how to work with
the std::complex class with a simple problem in planar geometry. Complex numbers
can be used to represent a point in a plane, if we consider the number u = a + ib to be
a representation of the vector ax̂ + bŷ. Note that the magnitude of the complex number
|u| = √

a2 + b2 is the length of the vector. Also, if v = c + id, then uv∗ = (ac + bd) +
i(bc − ad), so that the real part of this number is the dot product of the two vectors and
the imaginary part is the magnitude of the cross product, �v × �u. To translate a point, we
merely have to add a constant (complex) number t = tx + ity to the point. Rotations can
be carried out by multiplying by exp(iφ), where φ is the angle of rotation; the sense of
the rotation is counterclockwise for φ > 0.

One of the earliest ways in which the value of the constant π was obtained was to
compute the perimeter of a polygon inscribed within a circle. Starting with a regular
hexagon, one obtains the approximate value of 3.0. One can then consider a regular
inscribed polygon of 12 sides, 24 sides, 48 sides, and so forth. In 265 AD the Chinese
mathematician Liu Hui found an approximation for π based on a 3,072 sided polygon,
and in 480 AD Zu Chongzhi found a more accurate value based on a 12,288 sided
polygon. We will compute these approximations to π by starting with a 6-sided polygon
centered at the origin, oriented so that one of the vertices is at x̂ and the other is
at 1

2 x̂ +
√

3
2 ŷ. The two points will be represented by complex numbers x0 = 1 and

x1 = 1
2 +

√
3

2 i. The length of the segment joining the two vectors is |x1 − x0|, so the
total perimeter of the inscribed polygon is six times this length, which is exactly equal to
3. From this first approximation we proceed to more accurate approximations with the
following steps.

• Find the midpoint of the line joining the two vertices. The complex number
representing that point is the average of x0 and x1.

• This point lies in the middle of a segment of the polygon, but not on the circle. We
can put it on the circle by normalizing it to unit length, i.e. transforming

x0 + x1

2
→ x0 + x1

2
/|x0 + x1

2
| = x1 + x0

|x1 + x0|

• At the next step this value becomes the new x1, and we double the number of sides.
The perimeter of the inscribed polygon is again taken.

As the number of sides is increased, the perimeter converges to twice the value of π . The
program shown below, called threePi, can be found in CH2/EXAMPLES/THREEPI.
It obtains the value of π in three ways. First, it just prints the value of the macro M_PI,
defined in the header file cmath. This illustrates the usual way of obtaining the value of
π in a program—it’s superior, of course, to typing in the value. The second way is the
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inscribed polygon algorithm, which is essentially an illustration of how to use the class
std::complex. The last way uses Euler’s famous expression eiπ = −1. Taking the
logarithm of both sides gives a number whose real part is zero and whose imaginary part
is π . This is included as an illustration of overloaded functions that operate on complex
numbers in the C++ standard library. Here is the code example:

#include <complex>
#include <iostream>
#include <cmath>
#include <iomanip>
#include <limits>
//
// threePi is a small program to obtain pi in three
// different ways:
//
typedef std::complex<double> Complex;
main () {

// 1. Just print out the macro:
std::cout << std::setprecision(16) << M_PI << std::endl;

// 2. From the area of inner inscribed polygons. Start
// with a hexagon and subdivide the arc into smaller
// pieces. Liu Hui(n=3072, 265 AD); Zu Chongzhi

(n=12288, 480 AD)

Complex x0=1.0;
Complex x1(1.0/2.,sqrt(3.0)/2.0);
unsigned int nsides=6;

while (nsides < std::numeric_limits<int>::max()) {
double lside = abs(x1-x0);
double approx=nsides*lside/2.0;
std::cout << " S ides "

<< nsides
<< " ; approx="
<< std::setprecision(16)
<< approx
<< std::endl;

x1=(x1+x0)/abs(x1+x0);
nsides *=2;

}
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// 3. Take the logarithm of the imaginary number -1:
std::cout << std::setprecision(16)

<< imag(log(Complex(-1,0)))
<< std::endl;

}

The notion of encapsulation applies to classes in C++. In the case of complex numbers,
one can see a clean separation between the internal structure of the number and the
protocol summarized in Table 2.2 that it obeys. In the next section we describe some of
the mechanisms for achieving this; for achieving, in other words, encapsulation.

2.5 Classes as user defined datatypes

C++ classes are major building blocks of modern computer codes, and we shall introduce
many examples in the next chapter. What is a class though, exactly? Historically, data
structures, which were mere agglomerations of related data, were the precursors to
classes. For example, the four components of a quaternion can be agglomerated into a
single entity called a structure. A quaternion is like a four-component complex number
which is useful for representing rotations in three dimensions, among other things. In C
and C++ the structure may be declared as:

struct Quaternion{
double a;
double b;
double c;
double d;

};

The structure can be passed to functions, returned from functions, and placed into
arrays. Since structures are agglomerations of data, they can also agglomerate other
structures to build hierarchies of structured data.

Classes add bound functions, a.k.a. methods, to structures. For example, a class called
Quaternion may return the magnitude,

√
a2 + b2 + c2 + d2:

class Quaternion{

public:

// return the magnitude
double abs() { return sqrt(a*a+b*b+c*c+d*d);}

private:
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double a;
double b;
double c;
double d;

};

In furnishing this example, we had to slip in two important keywords in order for our
Quaternion class to make sense. These are public and private, and they enforce
encapsulation. These keywords are like switches, switching back and forth between
two access modes, public and private. When data or a member functions are public,
it means that client code can invoke them. In contrast, clients may not access private
data or member functions, and the compiler generates an error whenever such access
is attempted. This locks away certain parts of the class which the designer does not
intend for general purpose use, thereby enforcing the separation between interface and
implementation.

In the above example, the quaternion’s components a, b, c, and d are private so, they
can be neither written nor read. At the very least the clients of this class need to initialize
them. This is done in a constructor, as shown in this more complete example (which also
provides accessors to the data members):

class Quaternion{

public:

// Constructor
Quaternion (double a, double b, double c, double d):
a(a),b(b),c(c),d(d){}

// return the magnitude
double abs() { return sqrt(a*a+b*b+c*c+d*d);}

// return the components
double getA() const {return a;}
double getB() const {return b;}
double getC() const {return c;}
double getD() const {return d;}

private:

double a;
double b;
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double c;
double d;

};

The syntax of the constructor may strike you as funny. We discuss it in more detail
in Chapter 6. Finally, for the sake of accuracy, we mention one fact about structures
and classes. While structures were originally simple agglomerations with data without
methods, C++ allows developers to add methods to structures, too, making them
technically nearly the same as classes. Like classes, the keywords public and private
also function within structure definitions to control access. There is in fact only one
difference between structures and classes: the default access, which is public for
structures and private for classes. In our work we generally use structures where simple
agglomeration without member functions is required.

2.6 Style guide: defining constants and conversion factors
in one place

In the physical sciences we encounter several types of constants that appear frequently
in our work: mathematical constants like π and e; fundamental constants like Planck’s
constant h̄, the speed of light c, the fine structure constant α, the Hubble constant H0,
masses of elementary particles, and so forth. It is not good style to repeat the definitions
of these constants in many places in the code. One common solution is to define them in
a header file. Namespaces, discussed in Section 2.4, are often used in conjunction with
this solution to prevent constants like α from clashing with local definitions. An excerpt
from a header file defining physical constants within a namespace is:

#ifndef _PHYSICALCONSTANTS_
#define _PHYSICALCONSTANTS_

// This file defines physical constants. All quantities
// are specified in SI units.

namespace physics {
static const double hBar =1.0545718E-34; // m^2 kg /s
static const double cLight=299 792 458; // m / s
static const double alpha =7.2973525664E-3; // dimensionless
...

};
#endif



46 Style guide: defining constants and conversion factors in one place

Client code can then access variables by including the header file and referencing the
variables as, for example physics::cLight. To input the value of a particle moving
at 4/5 the speed of light one could type, for example:

#include " phys i c s . h "
...
double velocity = 4.0/5.0*physics::cLight;

A related task is converting units. Suppose that one was working cheifly with SI units,
but one occasionally needed to input or output the value of some measure of length in
mm, cm, feet, or other unit of length. The conversion factors can also be collected in a
single header file and scoped within a namespace:

#ifndef _UNITS_
#define _UNITS_

// This file contains conversion factors from SI units to
// other common systems

namespace units {
//
// Length.
//
static const double meter =1.0;
static const double cm =0.01;
static const double mm =0.001;
static const double micron =1.0E-6;;
static const double nm =1.0E-9;
static const double feet =0.3048;
static const km =1000.0;
static const mile =1609.34;
...

};
#endif

To input constants one can then give a number and a unit:

#include " u n i t s . h "
using namespace units;
double distanceToMoon=238.9E3*mile;
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while to output a constant one can print something like,

#include " u n i t s . h "
...
using namespace units;
std::cout << " The d i s t a n c e from e a r t h to moon i s "

<< distanceToMoon/mile
<< " m i l e s . "
<< std::endl;

No single file is likely to be adequate for defining all of the physical constants and
conversion factors for all of physics, but centralizing definitions for particular projects
can eliminate redundant definitions, confusion, and errors.

2.7 Summary

In this chapter we have surveyed built-in numerical datatypes, and discussed their
representations and the limitations to numerical precision that these binary represen-
tations unavoidably imply. We also drew attention to the skillful way in which details
of the representation are hidden through clever compiler design so that application
programmers do not get hung up on these details. This feature, encapsulation, is also
evident in the design of the C++ template class std::complex, which we introduced
in Section 2.4, and will be part of every serious API, some of which will be introduced in
the following chapter. The keywords public and private control access to methods
and data within a class and enforce encapsulation. You will need to know about these
as you design your own classes and class libraries, but it’s also important to distinguish
these access patterns while using classes provided within the C++ standard library or by
third parties.

Further Reading

Basics on the representation of floating point numbers can be found in Press (2007). As
we are now beginning to discuss those features of C++ which are not a part of C, we
recommend a good introduction to the C++ language at this point. The online reference

www.cplusplus.com/doc/tutorial

is excellent, and in print works such as Bronson (2013) or Capper (1994) can be
consulted. When you get a little more practiced with the basic ideas of C++, you’ll start
to encounter minor dilemmas about how to write your own classes. We’ll scratch the

www.cplusplus.com/doc/tutorial
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surface in upcoming chapters, and you will find much more helpful advice in Meyers
(2005a and 2005b).

2.8 Exercises

1. Compute the expected machine precision of float and double datatypes, and then
check your calculation with a program.

2. Compute the “stretch-factor” γ for a relativistic particle for speeds approaching the
speed of light, i.e. for β = v/c=0.9, 0.99, 0.999, 0.9999.... Compute this in two ways,
first as γ = 1/

√
1 − β2 and then as γ = 1/

√
(2 − ε)ε where ε = 0.1, 0.01, 0.001,

0.0001.... Suppose that the the fractional error in the calculation is required to be
one part in one thousand or less. What is the maximum value of β for which this
accuracy can be obtained, if one computes it using the former method?

3. Three points labeled A = 3x̂ + 7ŷ, B = 3x̂ + 2ŷ, and C = 10x̂ + 2ŷ lie in a plane.

a) Using std::complex, write a program ex1 to compute the area of a triangle
whose vertices lie at points A, B, and C. Use the dot product and/or cross product
and carry out the computations with complex numbers.

b) Create a complex number t representing a translation to the point O = 4x̂ +
5ŷ. Apply the translation to A, B, and C, and print out the translated vectors
A′, B′, and C′. Check that the translation leaves your computation of the area of
the triangle invariant.

c) Create a complex number r such that |r| = 1 by using the exp function to
exponentiate a pure imaginary number. Choose the imaginary number such that
r represents a clockwise rotation about the origin through 45◦. Apply the rotation
to the vectors A′, B′, and C′ from the previous step. Print out the rotated vectors
A′′, B′′, and C′′, and check that the rotation leaves your computation of the area
invariant.

4. Modify the program in the previous exercise such that instead of computing the
area of triangle ABC, it computes and prints out the location of the point of closest
approach (in the plane) of segment AC to point B. Use the dot product and/or cross
product and carry out the computations with complex numbers. Check that this
distance is invariant to rotation and to translation.

5. Using std::complex, compute the position of the points A = 3x̂ + 7ŷ,
B = 3x̂ + 2ŷ, and C = 10x̂ + 2ŷ after they are rotated by +755◦ about the point
O = 4x̂ + 5ŷ.

6. Write a program, based on the example program threePi in this chapter (which is
available EXAMPLES/CH2/THREEPI). Your program should compute π from the
areas of small isoceles triangles making up the polygon inscribed within the radius
of a circle rather than the length of their base.

7. Consider the quantum mechanical problem of a particle of energy E incident upon
a potential barrier in one dimension of height V , which turns on at x = 0. Write
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a program that determines the wavefunction for all value of x, and compute the
transmission and reflection coefficients, R and T , for different values of the V/E.
Do not write a fundamentally different function for the case in which E < V and
E >V ; instead carry out the computation in complex numbers, in a manner which
is valid for both cases.

8. Two identities which relate the trigonometric functions to hyperbolic trig functions
are (for x real): sin (ix) = i sinh (x) and cos (ix) = cosh (x). Test these relations for a
few values using std::complex.

9. Write a function to solve the equation ax2 + bx + c = 0 which returns a pair of
complex values, and test this for the following values of a, b, and c:

• a = 1, b = 4, c = 0

• a = 1, b = 4, c = 2

• a = 1, b = 4, c = 6

• a = 1, b = 4i, c = −6

• a = 1, b = 4i, c = −4

• a = 1, b = 4i, c = 0

• a = 1, b = 2 + 2i, c = −6

• a = 1, b = 2 + 2i, c = −0

• a = 1, b = 2 + 2i, c = 6

10. Write a function to diagonalize a 3x3 complex matrix by solving its secular equation.
The function should take a 3×3 array of complex numbers as input and should
output

• An array of three complex numbers containing the eigenvalues of the matrix.

• A 3×3 array of complex numbers, the columns of which contain normalized
eigenvectors of the matrix.

Test your function on the following matrix and provide the result:

⎛

⎝
0.333333 −0.244017 0.910684
0.910684 0.333333 −0.244017
−0.244017 0.910684 0.333333

⎞

⎠.

..........................................................................................
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3.1 Introduction

We have seen that one of the reasons classes are useful is because they provide a
mechanism by which implementation details can be hidden from the user. In this chapter
we continue the exploration of classes by applying a number of high quality classes to
typical scientific problems. The practice of writing classes will be taken up again in
Chapter 6. Users requiring a more structured introduction to the C++ language are
directed to the references at the end of the previous chapter.

Use cases for these classes are taken from classical and quantum physics. In this
chapter we carry out numerical solutions to problems which admit, possibly, analytic
solutions with the idea that their familiarity makes them good learning examples.

In adopting a class library, we shall always prefer universally available software to
widely available software, and widely available software to custom software. Universally

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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available software is that which is found in the C++ standard library. Most of the widely
available software can be installed using package management software; on Ubuntu, this
would be either the apt-get command or the graphical installer synaptic.

3.2 Coupled oscillations

Consider the problem of N beads, arranged left to right on a taut frictionless wire. They
are free to move in one dimension, but they are connected to their neighbors with ideal
springs. The beads are labeled with the index i = 0, 1, 2...N − 1; the ith bead has a mass
of mi ; it is connected to its left neighbor by a spring constant ki and to its right neighbor
by a spring constant ki+1. The first and last beads are attached on one side only. Neither
the masses nor the spring constants need be taken equal in the general case. The position
of the ith bead with respect to its equilibrium position is denoted by xi(t).

The force on the ith bead is related to the stretch of its neighboring springs, and
Newton’s law yields:

mi
d2xi

dt2 = ki(xi−1 − xi)+ ki+1(xi+1 − xi) . (3.1)

This is a set of coupled differential equations. For the case N = 4 (the generalization is
clear) it can be written in matrix form as:

⎛

⎜⎜
⎝

m0 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m3

⎞

⎟⎟
⎠ ·

⎛

⎜⎜
⎝

ẍ0
ẍ1
ẍ2
ẍ3

⎞

⎟⎟
⎠ = −

⎛

⎜⎜
⎝

k1 −k1 0 0
−k1 k1 + k2 −k2 0

0 −k2 k2 + k3 −k3
0 0 −k3 k3

⎞

⎟⎟
⎠ ·

⎛

⎜⎜
⎝

x0
x1
x2
x3

⎞

⎟⎟
⎠

(3.2)

or

M · ẍ = −K · x (3.3)

where M is the mass matrix, K is the matrix involving the spring constants, and x is a
column vector containing the displacement of each mass from its equilibrium position.

This matrix equation can be solved in the time-honored tradition of guessing a trial
solution:

x = a e−iωt (3.4)

where a is a constant undetermined column vector, and where we imply the real part of
the right-hand side. Substituting this into Eq. 3.3, one obtains

K · a = ω2M · a (3.5)
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The matrix M is diagonal and has positive elements only. We can define a matrix M1/2

such that M1/2M1/2 = M, and M−1/2 to be its inverse, and re-express the previous
equation as:

M−1/2KM−1/2 · M1/2a = ω2M1/2 · a (3.6)

We define the matrix �2 ≡ M−1/2KM−1/2, and b ≡ M1/2a, so

�2 · b = ω2b (3.7)

and we see that we are faced with an eigenvalue problem. The matrix �2 is real
and symmetric; it is a well-known property of such matrices that they possess N
eigenvalues and eigenvectors which can be taken real. These will be denoted as λj = ω2

j
and bj , j = 0, 1..N − 1. The λ’s are not only real but also positive (Exercise 10),
and therefore the ω’s are real. The eigenvectors are mutually orthogonal in the case
of nondegenerate eigenvalues, and they may be chosen to be orthogonal in the case of
degenerate eigenvalues by a Gram-Schmidt orthogonalization procedure. They can be
normalized1 by rescaling them such that bT

j · bj = 1. Then, the eigenvectors constitute
an orthonormal set, such that:

bT
j · bk = δjk. (3.8)

Suppose that the initial positions and velocities of all of the beads are known at a give time
t = 0. The problem is to find the subsequent motion of all of the beads. There are two
steps to this: determining the eigenfrequencies ωj =

√
λj of �2 and their corresponding

eigenvectors bj for j = 0, 1 . . .N −1; and constructing the particular solution from these
eigenvalue/eigenvector pairs. This particular solution is the linear combination:

x(t) = Re
N−1∑

j=0

ηjaj e−iωj t

= Re
N−1∑

j=0

ηj

(
M−1/2 · bj

)
e−iωj t (3.9)

where x(t) is a column vector representing the positions of each of the beads, and ηj
(j = 0, 1..N − 1) is a set of N complex coefficients which are determined as follows.
Using the orthonormality (Eq. 3.8) of the bj ’s, we project out the coefficients:

bT
j · M1/2 · x(t) = Re

(
ηj e−iωj t

)
(3.10)

1 Numerical methods for diagonalizing symmetric matrices usually yield orthonormal eigenvectors sorted
by eigenvalue, freeing the user to think about other issues.
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which at t = 0 reads

Re(ηj) = bT
j · M1/2 · x0 , (3.11)

x0 being the initial position of the beads. Representing the velocity of the beads as a
column vector

v = dx
dt

(3.12)

and taking the time derivative of Eq. 3.9 we have

v(t) = Re
N−1∑

j=0

−iωjηj

(
M−1/2 · bj

)
e−iωj t (3.13)

which leads, in a similar way, to the equation

Im(ηj) =
bT

j · M1/2 · v0

ωj
(3.14)

(v0 indicates the initial velocities) and thus

ηj = bT
j · M1/2 · x0 + i

bT
j · M1/2 · v0

ωj
. (3.15)

This relation, when substituted into Eq. 3.9 furnishes a complete solution to the program.
To obtain it for a variety of configurations and initial conditions we will use a good class
library for linear algebra, which is the topic of our next section.

3.3 Linear algebra with the Eigen package

To carry out the computations arising in the previous section, we are going to need
a decent class library which provides for matrix algebra, vector algebra, and solutions
to eigenvalue problems. It would be nice if powerful linear algebra classes were an
integral part of the C++ standard library, because if that were the case one could have a
reasonable expectation that any compiler on any platform would compile the code with
no extra package installation required. However, no such set of classes has, so far, been
integrated with the C++ standard.

Fortunately, a class library known as Eigen:

eigen.tuxfamily.org
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contains a high-quality set of classes for linear algebra and geometry. It can be freely
downloaded and installed on your laptop. The package can be installed (on our reference
platform, Ubuntu) as follows:

$sudo apt-get install libeigen3-dev libeigen3-doc

After the installation is complete, you will find header files in the area

/usr/include/eigen3

and there are no libraries to install since all of the classes and functions provided
by the Eigen library are inline; in other words, they are expanded in the body of
the calling routine rather than compiled separately and placed into a static or shared
library of object code. This area should be added to the include search path (using the
-I/usr/include/eigen3 option) during compilation. Documentation can be found
at eigen.tuxfamily.org. Eigen is a very complete class library which we will not
describe in full detail; our goal for the moment is to familiarize you with a small portion
of the library that will prove immediately useful.
Eigen can handle both real and complex vectors and matrices. To begin with, we

consider real vectors and matrices, and return to complex vectors and matrices a little
further on.

We assume that you have installed a basic linux operating system on your laptop,
desktop, or other computer. Your next task is to install software development kits
in order to obtain a minimal environment for compiling and running the examples
given in this text, and for conducting the end-of-chapter exercises. The first external
package we ask you to install is Eigen.

In our first example we use two classes called Eigen::VectorXd and Eigen::
MatrixXd to solve a very simple matrix equation. The Xd suffix on these datatypes
signifies that the dimensionality of the object (matrix or vector) is determined at runtime
rather than compile time, and that the matrix elements are represented by doubles.
Complex vectors and matrices are denoted (in Eigen) by Eigen::VectorXcd and
Eigen::MatrixXcd. The cd indicates that std::complex<double> is used in the
representation of the matrix elements.

Let’s start by solving a simple matrix inversion problem. We seek �x where A · �x = �y
and:

A =
(

1.0 2.0
4.0 9.0

)

�y =
(

1
3

)
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This can easily be accomplished as follows:

#include <Eigen/Dense>
#include <iostream>
int main(int argc, char **argv) {
Eigen::VectorXd Y(2);
Y(0)= 1.0;
Y(1)= 3.0;
Eigen::MatrixXd A(2,2);
A(0,0)= 1.0; A(0,1)=2.0;
A(1,0)= 4.0; A(1,1)=9.0;

Eigen::MatrixXd AInv= A.inverse();
std::cout << AInv*Y;

}

To obtain a solution to the coupled oscillation problem of the previous section,
we need a mechanism for solving eigenvalue problems. A few remarks are necessary
before starting. Suppose we have a matrix with real elements, such as the matrix A of
the above example. It is still possible that the eigenvalues and eigenvectors are complex.
Therefore we would in general be looking for complex return values. However, in the case
of coupled oscillations, our matrix is real and symmetric and therefore the eigenvalues
and vectors will all be real.
Eigen provides two classes for the solution of eigenvalue problems; the first class

is called EigenSolver (namespace Eigen) and can always obtain a solution (but it
may be complex), while the second is called SelfAdjointEigenSolver and requires
self-adjoint matrices (and returns real eigenvalues and real, orthonormal eigenvectors).
Self-adjoint matrices, real or complex, are those for which A† = A, where A† ≡ (AT )∗.
Real symmetric matrices, like the ones we encounter in the coupled oscillator problem,
are a subset of self-adjoint matrices.

Like std::complex, the eigenvalue solvers are template classes, you need to furnish
the datatype of the matrix which is to be diagonalized as a template parameter. Here is
an example, using a simple 2 × 2 matrix:

#include <Eigen/Dense>
#include <iostream>
int main(int argc, char **argv) {

// Find the eigenvalues and the eigenvectors
// of the matrix
// A = 1.0 2.0
// 4.0 9.0

Eigen::MatrixXd A(2,2);
A(0,0)= 1.0; A(0,1)=2.0;
A(1,0)= 4.0; A(1,1)=9.0;
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// initialize an eigensolver with A

Eigen::EigenSolver<Eigen::MatrixXd> s(A);

// and solve

Eigen::VectorXcd val=s.eigenvalues();
Eigen::MatrixXcd vec=s.eigenvectors();
std::cout << val << std::endl;
std::cout << vec << std::endl;

}

The eigenvectors are returned in a complex-valued vector (VectorXcd val) and
the eigenvectors are returned together as a matrix (MatrixXcd vec); each column of
the matrix contains a complex eigenvector. Note that if you compute (numerically or
analytically) the eigenvalues of the original matrix,

A =
(

1 2
4 9

)
(3.16)

you will find that they happen to be real-valued, however Eigen cannot determine this
in advance so the results are returned in complex datatypes. If on the other hand we have
to find the eigenvalues(vectors) of

A =
(

1 2
2 9

)
(3.17)

then it is known in advance from the symmetric form of the matrix that the eigenvalues
and eigenvectors are real. The SelfAdjointEigenSolver can be used in this case; it
returns its results in real-valued datatypes, VectorXd and MatrixXd. In addition, the
matrix containing the eigenvectors will be orthogonal, i.e., it will satisfy the condition
that �T ·� = I, the identity matrix.

You now know everything you need to solve the coupled oscillators problem. Imple-
menting the solution is left to the exercises.

3.4 Complex linear algebra and quantum mechanical
scattering from piecewise constant potentials

In our second example, we develop a computational solution to a simple problem in one-
dimensional quantum mechanics. This problem is treated in almost every elementary
text, for example Gasiorowicz (2003) or Griffiths (2005). Analytical solutions give
insights that computational solutions cannot—and vice versa.

A particle with energy E > 0 is incident upon a rectangular potential barrier with
barrier height of V and a spatial extent from x = −a to x = a. The time-independent
Schrödinger equation is:
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[

− h̄2

2m
∂2

∂x2 + V (x)

]

ψ(x) = Eψ(x) (3.18)

We re-write this as:

[
− 1

k2

∂2

∂x2 + v(x)
]
ψ(x) = ψ(x), (3.19)

where v = V/E and k2 = 2mE/h̄2.
We will assume a particle incident on the barrier from the negative-x direction, and

we divide space into region I (x < −a), region II (−a < x < a), and region III (x > a).
In regions I and III, where the piecewise constant potential is zero, the Schrödinger
equation is:

d2ψ(x)
dx2 = −k2ψ(x) (3.20)

while in region II it is:

d2ψ(x)
dx2 = −n2k2ψ(x) (3.21)

where

n ≡ √
1 − v (3.22)

is a sort of “index of refraction” expressing (for fixed energy) the ratio of wavenumber
in a region with constant potential to the corresponding wavenumber in a potential-free
region; alternately it is the inverse of the ratio of the wavefunction’s phase velocity in the
two regions.

The general solution to the Schrödinger equation is:

ψ(x) = e±ikx regions I and III (3.23)

and

ψ(x) = e±inkx region II . (3.24)

The particular solution to the Schrödinger equation, describing an incident wave and
reflected wave in regions I and II and a transmitted wave in region III can be written as:
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ψ(x) = Aeikx + Be−ikx (region I)

ψ(x) = Ceinkx + De−inkx (region II)

ψ(x) = Feikx (region III)

The constants A, B, C, D, and F are constrained by the continuity of the wavefunction
and its first derivative at x = −a and x = a, whence:

Ae−ika + Beika = Ce−inka + Deinka

Ceinka + De−inka = Feika

ikAe−ika − ikBeika = inkCe−inka − inkDeinka

inkCeinka − inkDe−inka = ikFeika .

This can be written in terms of the amplitude of the incoming wave as:

⎛

⎜⎜
⎝

eika −e−inka −einka 0
0 einka e−inka −eika

−ik eika −ink e−inka ink einka 0
0 ink einka −ink e−inka −ik eika

⎞

⎟⎟
⎠ ·

⎛

⎜⎜
⎝

b
c
d
f

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

−e−ika

0
−ike−ika

0

⎞

⎟⎟
⎠ (3.25)

where b ≡ B/A, c ≡ C/A, d ≡ D/A, f ≡ F/A. This set of equations is solved
analytically in elementary textbooks; here we aim to solve it numerically with the help
of complex matrix classes from the package Eigen. An example is furnished in the
next section.

We remark that one of the advantages is that the technique can be extended easily to
deal with more complicated, piecewise-constant potentials. In fact, any potential in one
dimension can be treated in this way by dividing it into sufficiently small pieces. Thus
the general one-dimensional problem is equivalent to inverting an infinite size matrix
equation of the type just developed.

3.4.1 Transmission and reflection coefficients

The wavefunction ψ determines the particle probability density ρ(x, t) ≡ ψ(x, t)ψ∗(x, t)
and the probability current:

j(x, t) ≡ ih̄
2m

(
ψ(x, t)

dψ(x, t)∗

dx
− ψ(x, t)∗ dψ(x, t)

dx

)
. (3.26)

The two are related by a conservation law:

∂ j(x, t)
∂x

+ ∂ρ(x, t)
∂t

= 0 (3.27)
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which follows from the Schrödinger equation. In the barrier potential problem, the
transmission and reflection coefficients can be computed as the ratio of the mag-
nitude of the probability current of the transmitted and reflected waves to that of the
incoming wave. These are:

h̄k
m

⎧
⎪⎨

⎪⎩

|A|2 Incident wave
−|B|2 Reflected wave
|F |2 Transmitted wave

. (3.28)

3.5 Complex linear algebra with Eigen

In developing a numerical solution to the problem of the previous section, we
will need to manipulate complex vectors and matrices. The relevant datatypes are
Eigen::VectorXcd and Eigen::MatrixXcd. The following code can be found
in the directory EXAMPLES/CH3/RECTBARRIER. It computes the coefficients b, c, d,
and f , and also computes the transmission coefficient |f |2 and the reflection coefficient
|b|2; these should sum to unity, and this can verified as a sanity check. The inputs are V
(specified in units of E) and k (specified in units of a−1):

#include <Eigen/Dense>
#include <iostream>
#include <complex>
#include <string>
#include <sstream>
typedef std::complex<double> Complex;
int main(int argc, char **argv) {
using namespace std;
string usage = string( " Usage : ")

+ argv[0]
+ " [−?] [−v p o t e n t i a l ] [−k wvnumber ] ";

if (argc>1 && argv[1]==string( "−? ")) {
cout << usage << endl;
exit (0);

}

// default values
double v=0.5;
double k=0.2;

try {
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// overwritten by command line:
for (int i=1; i<argc;i+=2) {
istringstream stream(argv[i+1]);
if (string(argv[i])== "−v ") stream >> v;
if (string(argv[i])== "−k ") stream >> k;

}
}
catch (exception &) {
cout << usage << endl;
exit (0);

}

Complex I(0,1.0);
Complex nk=k*sqrt(Complex(1-v));

Eigen::VectorXcd Y(4);
Y(0)= -exp(-I*k);
Y(1)= 0;
Y(2)= -I*k*exp(-I*k);
Y(3)= 0;

Eigen::MatrixXcd A(4,4);
// First row:
A(0,0)= exp(I*k) ;
A(0,1)=-exp(-I*nk) ;
A(0,2)= -exp(I*nk) ;
A(0,3)=0 ;

// Second row:
A(1,0)= 0 ;
A(1,1)= exp(I*nk) ;
A(1,2)= exp(-I*nk) ;
A(1,3)=-exp(I*k) ;

// Third row:
A(2,0)= -I*k*exp(I*k) ;
A(2,1)=-I*nk*exp(-I*nk);
A(2,2)= I*nk*exp(I*nk) ;
A(2,3)=0 ;

// Fourth row:
A(3,0)= 0 ;
A(3,1)=I*nk*exp(I*nk) ;



62 Complex linear algebra with Eigen

A(3,2)=-I*nk*exp(-I*nk);
A(3,3)=-I*k*exp(I*k) ;

Eigen::MatrixXcd AInv= A.inverse();
Eigen::VectorXcd BCDF=AInv*Y;
Complex B=BCDF(0), F=BCDF(3);
cout << " Complex c o e f f i c i e n t s " << endl;
cout << BCDF << endl;
cout << endl;
cout << " R e f l e c t i o n c o e f f i c i e n t : " << norm(B)

<< endl;
cout << " Transmiss ion c o e f f i c i e n t : " << norm(F)

<< endl;
cout << "Sum: " << norm(B)+norm(F)

<< endl;

}

In addition to the operations illustrated in the above example, real and complex matrices
have a rich set of other operations that can be used. Some of these appear in Table 3.1,
and others can be found in the Eigen documentation.

Table 3.2 shows operations that apply to real or complex vectors. Note that transpose
and adjoint operations return a 1×N matrix and not a column vector, which is identical
to a N×1 matrix.

Table 3.1 Matrix operators.

Operation Function Example

(,) subscript A(2,3)

+ operator +() C=A+B

- operator -() C=A-B

* operator *() C=A*B

* operator *() B=2.0*A

- unary - A=-B

trA trace x=A.trace()

|A| determinant x=A.determinant()

A−1 inverse AINV=A.inverse()

AT transpose AT=A.transpose();

A† adjoint ADagger=A.adjoint()
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Table 3.2 Complex and real operations.

Operation Function Example

() subscript v(2)

+ operator +() v=u+w

- operator -() v=u-w

* operator *() u=2.0*v

- unary - u=-v

return norm norm() double x=norm(u)

return squared norm squaredNorm() x2=squaredNorm(u)

normalize in place normalize() v.normalize()

return normalized copy normalized() u=v.normalized()

vT transpose vT=v.transpose();

v† adjoint vDagger=v.adjoint()

3.6 Geometry

A “vector” has multiple meanings in mathematics, physics, and computer science. On
one hand it is a linear algebraic object, an n-dimensional tuple in a vector space, acted
upon by linear transformations in that space that are represented by matrices. On the
other hand (restricting ourselves to Cartesian 3-space) we identify a vector as an object
with magnitude and direction, which supports the operations of cross product and dot
product, which is affected by a rotation of spatial coordinates, and which are sometimes
called three-vectors; such three-vectors may be represented on a computer by a triplet
of coordinates, but one should not confuse a particular representation with the actual
vector, which is a more abstract notion–a thing with magnitude and direction, which
we may visualize as an arrow. Thus there are two possible abstractions: an algebraic
vector or a geometric vector. In Section 3.7 we will encounter another kind of “vector”,
representing a computer scientist’s notion of the term, and unlikely to be confused with
the algebraic or geometric vectors.

Some class libraries provide different classes for each type of object. The Eigen class
library stores both types of vector in the same object but provides the extra operation of
cross product which is valid when applied to three-dimensional vectors, Vector3f or
Vector3d. The former is represented by floats, the latter by doubles; and both classes
are typedef’d template classes. The length of these objects (3) is fixed at compile time.
The cross product and dot product for Eigen::Vector3d and Eigen::Vector3f
are invoked like this:



64 Geometry

#include " Eigen / Dense "
using namespace Eigen;
Vector3d u,v;
Vector3d w=u.cross(v);
double d=u.dot(v);

The vectors interoperate with a set of transformations (rotations and affine transfor-
mations) that are defined in the header Eigen/Geometry. In the following section we
provide a few examples of how one can use the vector classes for simple calculations.

3.6.1 Example: collisions in three dimensions

Consider two free particles in three dimensions. Particles 1 and 2 travel from positions
�P1 and �P2 with velocities �v1 and �v2, respectively. Our aim is to compute how close the
particles approach each other, and how close their straight trajectories become (these
are not the same thing). To compute how close the two particles become, step into the
reference frame of particle 1: the velocity of particle 2 in that frame is �v = �v2 − �v1, and
the position of particle 2 is �r = �P2 − �P1. The distance of closest approach is the quantity
|�r × v̂|. This can be implemented as a short function as follows:

#include " Eigen / Dense "
double distance(const Eigen::Vector3d & P1,

const Eigen::Vector3d & P2,
const Eigen::Vector3d & v1,
const Eigen::Vector3d & v2) {

// Compute the distance of closest approach of particle 2
// to particle 1:

return (P2-P1).cross((v2-v1).normalized()).norm();

}

To compute the distance between the two trajectories, we designate points �Q1 as the point
on the trajectory of particle 1 which lies closest to the trajectory of particle 2, and �Q2 as
the point on trajectory 2 which lies closest to trajectory 1. We can make a displacement
from �P1 to �P2 in three steps, first, by moving an unknown distance s from �P1 to �Q1 along
the direction v̂1; then by moving an unknown distance t from �Q1 to �Q2; then by moving
an unknown distance u from �Q2 to �P2 along the direction v̂2. The distances s, t, and u
are signed quantities, and the displacement from �Q1 to �Q2 takes place along a direction
which is perpendicular to both v̂1 and v̂2, and thus it lies along the direction v̂1 × v2. We
can therefore write:

sv̂1 + t( ̂�v1 × �v2)+ uv̂2 = �P2 − �P1
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We are interested in knowing the quantity t, which we can obtain by dotting this
expression into ̂�v1 × �v2:

t = ( �P2 − �P1) · ̂(�v2 × �v1)

This quantity can be positive or negative, and we only care about the magnitude. In code
we could write:

#include " Eigen / Dense "
double trajSeparation(const Eigen::Vector3d & P1,

const Eigen::Vector3d & P2,
const Eigen::Vector3d & v1,
const Eigen::Vector3d & v2) {

// Compute the distance of closest approach of
trajectory 2

// to trajectory 1:

return fabs((P2-P1).dot(v2.cross(v1).normalized()));

}

The quantities s and u can also be computed from the simultaneous solution to these two
equations:

s + u(v̂2 · v̂1) = ( �P2 − �P1) · v̂1

s(v̂1 · v̂2)+ u = ( �P2 − �P1) · v̂2 .

3.7 Collection classes and strings

The classes std::vector and std::string are similar in some regards to the more
basic built-in array-of-object and array-of-characters. However, they do considerably
more and are much easier to use. Classes like std::vector and std::string are
sometimes referred to as first-class datatypes, while their built-in cousins are called second-
class. First-class datatypes are so powerful and easy to use that they have practically
displaced the use of their second-class cousins in most application programming.

The std::vector class holds objects, like an array, but it can increase its size auto-
matically. The class is designed to simplify the storage of objects, and no mathematical
operations are defined for it. The most common way to add elements to a vector is by
pushing them onto the end of the array. The most common way to access the stored
element is by random access using the subscripting operator, [ ].
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Actually, like std::complex, std::vector is not a class, but a class template,
which means it’s a recipe for generating a class, and here the class can be generated by
specifying as a template argument what kind of object the vector holds. Templates avoid
the necessity of writing multiple classes when the only real difference between them is
the datatype used in the representation. To declare a vector of doubles one writes:

#include <vector>
std::vector<double> myVector;

To add a few doubles to the new vector you could write:

myVector.push_back(2.0);
myVector.push_back(3.14159);
myVector.push_back(7.0);

The vector can be copied (or passed by reference) between two functions, like typical
C++ objects. The size of the vector can be retrieved, as can the elements:

for (int i=0;i<myVector.size();i++) {
std::cout << myVector[i] << std::endl;

}

A good exercise is to type the preceding lines of code into a short program, and see what
it prints; then change the template parameter from double to int, recompile, and look
again at the output.

Another useful class is std::string. This class represents a basic string of char-
acters (words, sentences, paragraphs), and the interface supports searching strings,
appending strings (which is done with the “+” operator), and editing strings. A
std::vector can hold not only ints, floats, and doubles, but any kind of object,
such as a string. We modify the code written above, transforming our vector-of-doubles
into a vector-of-strings.

#include <vector>
#include <string>
main() {
std::vector<std::string> myVector;
myVector.push_back( " Trout ");
myVector.push_back( " F i sh ing ");
myVector.push_back( " In ");
myVector.push_back( " America . ");
for (int i=0;i<myVector.size();i++) {

std::cout << myVector[i] << std::endl;
}

}
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which outputs

Trout Fishing In America.

The class std::vector has a lot of other functionality, which you can explore yourself
or by consulting a good text such as Weiss (2014). The std::vector class is part of
the C++ standard library, which also contains more specialized container classes such
as deque, list, set, map, and multimap, which are also very useful, and make up
the so-called Standard Template Library(STL). The STL (Stepanov, 1995) was once a
separate package but is now fully integrated into the C++ standard library.

3.8 Function objects

Function-objects, or functors, are a type of first-class object that overload the function-
call operator, operator(). The unusual name is not a C++ keyword of any kind,
but just a descriptive name given to such classes. Our functors come from the
QatGenericFunctions library, part of the Qat libraries, which is custom software
developed by the authors and available through the companion website:

http://www.oup.co.uk/companion/acp

We shall discuss and use it throughout the book.

Go to http://www.oup.co.uk/companion/acp and follow instructions to
install the Qat packages.

The QatGenericFunctions library provides many classes, most of which repre-
sent functions of one or more variables. These objects are similar to their second-class
cousins, normal C/C++ functions, but they do more. Probably the simplest of these is the
class Variable, (namespace Genfun) which we will use to illustrate the most important
use cases. The function-call operator for this class simply returns its argument:

#include " QatGenericFunct ions / V a r i a b l e . h "
#include <iostream>
main() {

Genfun::Variable X;
std::cout << X(3.14) << std::endl;

}

The program prints out 3.14. The object X can be used in expressions, and these expres-
sions can be assigned to a datatype called Genfun::GENFUNCTION. The following

http://www.oup.co.uk/companion/acp
http://www.oup.co.uk/companion/acp
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expression manufactures the function f (x) = 1 + 2x + x3; it prints out a table of the
function and its derivative at three points:

main () {
Genfun::Variable X;
Genfun::GENFUNCTION f=1 + 2*X + X*X*X;
std::cout << 1 << " " << f(1) << " " << f.prime()(1) << std

::endl;
std::cout << 2 << " " << f(2) << " " << f.prime()(2) << std

::endl;
std::cout << 3 << " " << f(3) << " " << f.prime()(3) << std

::endl;
}

The class library contains basic functions (Sin, Exp, Gamma) and not-so-basic
functions, shown in Table 3.3. These functions can all be used interchangeably and
combined in expressions as here:

#include " QatGenericFunct ions / Sin . h "
.
.
.
{
Genfun::Sin sin;
Genfun::GENFUNCTION f=(1 + sin)/2;

}

Table 3.3 List of the most basic functions in the QatGenericFunctions library.

Name Description

Variable Basic building-block of expressions

F1D General purpose adapter to any function

FixedConstant, Power, Sqrt, Square Powers

Sigma Sum of component functions

ArrayFunction Defined by an input array

Sin, Cos, Tan, ASin, ACos, ATan Trig and inverse functions

Sinh, Cosh, Tanh, ASinh, ACosh, ATanh Hyperbolic Trig and inverse functions

Exp, Log, Gamma, LGamma, Erf exponential, log, gamma, and error functions
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Note, the sin functor is here given the same name as the sin function from the math
library, it shadows that function (i.e. makes it invisible). The function sin can still be
referenced as std::sin.

Another more compact way to write the same function is:

#include " QatGenericFunct ions / Sin . h "
{

.

..
Genfun::GENFUNCTION f=(1 + Genfun::Sin())/2;

}

How, you may ask, does one express a function like sin 3x? SinceQatGenericFunctions
allows function composition, you can express it like this:

#include " QatGenericFunct ions / Sin . h "
#include " QatGenericFunct ions / V a r i a b l e . h "
{

.

..
Genfun::Variable X;
Genfun::Sin sin;
Genfun::GENFUNCTION f=sin(3*X);

}

or more compactly as:

#include " QatGenericFunct ions / Sin . h "
#include " QatGenericFunct ions / V a r i a b l e . h "
{

.

..
Genfun::GENFUNCTION f=Genfun::Sin()(3*Genfun::Variable());

}

To define a function, you can either manufacture it out of more primitive functions
as illustrated above; or you can introduce your own extender functors–which we will
cover later since this is a little more difficult. Alternately, you can use the adapter class
F1D, which endows any function double f(double x) with algebraic properties,
in particular the operations (+,-,*, / ), as well as composition f (g(x)) and the derivative.
For example, here we turn the hyperbolic tangent, tanh, from the standard c++ library,
into a functor:

#include " QatGenericFunct ions /F1D. h "
Genfun::GENFUNCTION tanh=Genfun::F1D(std::tanh);



70 Function objects

With this, we can now carry out function-arithmetic in the same way that you are used
to carrying out floating point arithmetic. For example, the following expression

Genfun::GENFUNCTION f=1-tanh*tanh;

defines a functor that computes f (x) = sech2(x)–something that is impossible using raw
C/C++ function pointers.

There is one important difference between functors defined with the adapter class
F1D, and functors that are predefined in the QatGenericFunctions library: usually
the predefined functors return analytical derivatives, while the adapters return a deriva-
tive computed numerically. Thus the adapter is inferior to either predefined functors, or
properly implemented user-defined extender functors.

3.8.1 Example: root finding

An equation of one variable F(x) = 0 can have zero, one, or many solutions, commonly
called roots of the equation. Finding these in the most general case of a nonlinear equation
can be challenging. One of the commonly used algorithms can be traced back to Isaac
Newton and Joseph Raphson, and is now called the Newton-Raphson method. It is
an iterative method, in which one proceeds from an initial estimate which is then refined
until convergence is achieved. One takes the tangent to the curve at the starting point,
and intersects it with the x-axis. The intersection provides a refined estimate of the root.
This continues until the estimate is invariant under further refinement. Note that the
algorithm may not converge if a poor starting point is used, so good initial estimates are
essential. The Newton-Raphson method is therefore perhaps more accurately described
as an algorithm for refining estimates rather then obtaining them from scratch.

The line tangent to F(x) is obtained by taking the first derivative F ′(x), and the
intersection with the x-axis is given by x − F(x)/F ′(x). The whole algorithm can be
coded like this:

double newtonRaphson(double x, Genfun::GENFUNCTION P) {
double x1=x;
while (1) {

double deltaX=-P(x)/P.prime()(x);
x+=deltaX;
if (float(x1)==float(x)) break;
x1=x;

}
return x;

}

The algorithm iterate until convergence is achieved at float precision.
The case of multiple roots is more complicated, but after each root is found one can

simplify the discovery of the remaining roots. The method, called deflation, is to divide
the function fi(x) by (x − xi) after each root xi is found: fi(x) → fi+1(x) = fi(x)/(x − xi).
The updated function fi+1(x) is zero wherever fi(x) is zero, except at x = xi ; and one
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can locate the remaining roots by evaluating fi+1(x). To start the procedure one sets
f0(x) = F(x). The process, applied to a fifth order polynomial, is illustrated in Figure 3.1.
This example can be found in EXAMPLES/CH3/NRDEFLATE. The key elements of this
code are summarized in this excerpt::

using namespace Genfun;
Variable X;
GENFUNCTION F=(X-1)*(X-2)*(X-3)*(X-M_PI)*(X-4);
const AbsFunction * f=&F;
for (int i = 0; i<5; i++ ) {
double x = newtonRaphson(-1.0, *f);
GENFUNCTION F1 = (*f)/(X-x);
if (f!=&F) delete f;
f=F1.clone();

}

Note that at each iteration of the Newton-Raphson step, we have been careful to
step away from the root we have just found; that’s because evaluation of the deflated
function will yield a divide-by-zero error there. Exercise 15 gives some practice with this
algorithm, which is frequently required in other exercises throughout the book. A more
complete discussion of these methods can be found in Press (2007).

Eigenvalue methods

In Exercise 10 of Chapter 2, you are asked to diagonalize a matrix by solving a secular
equation. If you attempted this exercise, you will have noticed that the Eigen classes,
particularly EigenSolver<MatrixXd> provide a far simpler mechanism. So, you
may ask, rather than finding the roots of a polynomial as a means of diagonalizing a
matrix, can we diagonalize a matrix as a means of finding the roots of a polynomial? The
answer is yes.

A monic polynomial is a polynomial whose highest order monomial appears with
a coefficient of 1, for example x4 − 4x2 − 1

2 x − 1. Obviously any polynomial can be
expressed as a numerical factor times a monic polynomial. For purposes of root finding
we can ignore the factor, while expressing the monic polynomial as:

p(x) = xn +
n−1∑

i=0

cixi (3.29)

Now define the companion matrix for the polynomial

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
. . . 0 .
. . . 0 .
. . . 0 .
0 0 . . . 1 −cn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.30)
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The secular equation which arises in the diagonalization of the companion matrix is:

det (C − λI) = 0; (3.31)

but it can also be shown that:

det (C − λI) = p(λ) (3.32)

Now,

det (C − λI) = det (ADA−1 − λI)

= det (D − λI)

where both A and:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ0 0 . . . 0 0
0 λ1 . . . 0 0
0 0 . . 0 0
0 0 . 0 0
0 0 . 0 0
0 0 . λn−2 .
0 0 . . . 0 λn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.33)

arise from the diagonalization procedure, and the λi are the eigenvalues of the companion
matrix. So we have:

p(λ) = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ− λ0 0 . . . 0 0
0 λ− λ1 . . . 0 0
0 0 . . 0 0
0 0 . 0 0
0 0 . 0 0
0 0 . λ− λn−2 .
0 0 . . . 0 λ− λn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
n−1∏

i=0

(λ− λi) (3.34)

or:

p(λ) =
n−1∏

i=0

(λ− λi) (3.35)

and we see that the roots of the polynomial are the eigenvalues of the companion matrix. The
technique is fairly simple to use, handles the case of multiple roots, and even returns
complex roots. Example code can be found in EXAMPLES/CH3/COMPANION.

The familiar classical orthogonal polynomials are discussed in the Chapter 5. Closed
form expressions for the coefficients of these polynomials can be found, but are usually
cumbersome to work with. However, some very slick techniques are also available for
these cases. They will be discussed later, in Chapter 5.
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3.8.2 Parameter objects and parametrized functors

It will prove to be useful to be able control the shape of our function through one or
more adjustable parameters. Indeed, this capability is one of the prime motivations for
defining function-objects. Parameter objects from the QatGenericFunctions library
are complementary to function-objects and are used to parametrize them. The two can
appear together in mixed algebraic expressions. A primary use-case is in data modeling,
where the shape of a function is adjusted to give the best description to some input data.

Parameters are defined with a constructor that requires a name, value, lower limit, and
upper limit:

#include " QatGenericFunct ions / Parameter . h "
Genfun::Parameter alpha ( " a lpha ", 1/137.0, 1/139.0, 1/135.0);

The parameters also obey an algebra that includes +,-,*, and / operations. In our first
simple demonstration, we will use Genfun::Parameters to parametrize a margarita.
A standard margarita is a Mexican cocktail consisting of seven parts tequila, four parts
Cointreau, and three parts lemon juice. A more general margarita can be parametrized
by the fraction of two of the components (the other fraction will be determined). Using
Genfun::Parameters, we can write:

Genfun::Parameter pTequila ( " Tequi la ", 7/14.0, 0, 1.0);
Genfun::Parameter pCointreau ( " Cointreau ",4/7.0 , 0, 1.0);

Here, only the tequila is specified in terms of an absolute fraction; the Cointreau content
is specified as a fraction of the remainder and the lemon juice is equal to the remainder.
The values of pTequila and pCointreau are allowed to vary over the range [0 : 1].
The absolute fractions can be specified in terms of these parameters:

Genfun::GENPARAMETER fTequila =pTequila;
Genfun::GENPARAMETER fContreau=(1.0-pTequila)*pCointreau;
Genfun::GENPARAMETER fLemonJuice=(1.0-pTequila)*

(1-pCointreau);

Varying the parameters over their allowed range always gives a physical margarita with
all absolute fractions positive by construction and summing to unity. Now if we send a
message to the parameter pCointreau:

pCointreau->setValue(0.5)

the lemon juice fraction will be automatically updated.
Now suppose that instead of a margarita we mix up a radioactive cocktail of three

isotopes, 207Bi, 211Po, and 207Tl, with half-lives of 35 years, 0.52 seconds, and 4.77
minutes, respectively. All of these isotopes decay into 207Pb, which is stable. We would
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like to build a function representing the fraction of lead in our sample vs. time, but
parametrized by the original fractions of Bi, Po, and Tl. We proceed by defining the
fractions:

Genfun::Parameter pBi ( " Bi f r a c t i o n ", 7/14.0, 0, 1.0);
Genfun::Parameter pPo ( " Po f r a c t i o n ", 4/7.0 , 0, 1.0);

Next, we make some simple definitions of basic time units and convert half lives to mean
lives (dividing by ln(2)):

double second = 1.0; // define second as the
basic unit.

double year = 365*24*60*60; // define years in terms of
seconds;

double minute = 60; // define minutes in terms
of seconds;

double tHalfBi=35*years, tHalfPo=0.52*seconds,
tHalfTl=4.77*minutes;

double tMeanBi=tHalfBi/log(2);
double tMeanPo=tHalfPo/log(2);
double tMeanTl=tHalfTl/log(2);

Then, we make three normalized functions representing the decay probability for each
component.

#include " QatGenericFunct ions / Parameter . h "
#include " QatGenericFunct ions / V a r i a b l e . h "
#include " QatGenericFunct ions / Exp . h "
Genfun::Variable X;
Genfun::Exp exp;
Genfun::GENFUNCTION fBi=(1/tMeanBi)*exp(-X/tMeanBi)
Genfun::GENFUNCTION fPo=(1/tMeanPo)*exp(-X/tMeanPo)
Genfun::GENFUNCTION fTl=(1/tMeanTl)*exp(-X/tMeanTl)

Finally we can construct the parametrized function.

Genfun::GENFUNCTION fLeadVsTime= 1-(pBi*fBi+(1-pBi)*
(pPo*fPo+(1-pPo)*fTl));

And now, if we send a message to the parameter fractionBi:

pBi->setValue(0.5)

the function fLeadVsTime will assume a different shape.
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Some functions have “internal” parameters. A normal distribution, or Gaussian, is
characterized by a mean and a sigma, or width. We can access these parameters through
the interface of Genfun::NormalDistribution. The following are legal:

#include " QatGenericFunct ions / NormalDis t r ibut ion . h "
#include " QatGenericFunct ions / Parameter . h "
main () {
{

Genfun::NormalDistribution g;
g.sigma().setValue(2.0);

}
// Also this is legal:
{

Genfun::NormalDistribution g;
Genfun::Parameter sigma ( " sigma ", 2.0, 0.1, 10.0);
g.sigma().connectFrom(&sigma);

}
}

We will say more about these QatGenericFunctions as the need arises. For now we
focus attention on visualizing these functions.

3.9 Plotting

The graphical display of data is critical for all types of science. Unfortunately it drags
scientists, at least to some level, into topics, such as graphics, graphical user interfaces,
and windowing systems, which are quite removed from their problem domain. For
this text we provide a simple plotting system called Qat, consisting of the packages
QatPlotting and QatPlotWidgets, that is built on the industry-standard user
interface (UI) framework known as Qt(www.qt.io). The system allows you to
visualize mathematical functions without mastering the complex Qt system, which is
beyond the scope of our text. The Qt package comes with excellent documentation,
typically installed with Qt in

file:///usr/share/qt5/doc/html/index.html.

Blanchette (2008) is a good reference for those wishing to learn the Qt system, but this
is not necessary for the exercises in this text. In addition, the QAT reference manual is
available online through

http://www.oup.co.uk/companion/acp

Two working examples of code can be found in

EXAMPLES/CH3/FUNCTIONVIS1

www.qt.io
http://www.oup.co.uk/companion/acp
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Figure 3.2 Example plots obtained with the Qat system. On the left:FUNCTIONVIS1 example; on
the right, the FUNCTIONVIS2 example referred to in the text.

and

EXAMPLES/CH3/FUNCTIONVIS2

To build these examples, go to the src subdirectory of FUNCTIONVIS1 or
FUNCTIONVIS2, type qmake followed by make. The qmake command is part of
the Qt system; it makes makefiles across platforms. The first example plots the functions
sin x and cos x using function objects; the second plots the user-defined function
sin (4/(1 + 4x2)) using the previously discussed F1D adaptor. The plots one obtains
are shown in Figure 3.2.

3.10 Further remarks

The C++ language appeared in the early 1980s, and was first noticed by the scientific
community in the late 80s and early 90s. One of the main benefits of the language
was the potential for highly convenient, highly reusable software. This potential was
not immediately realized since the scientific community needed time to develop class
libraries adapted to its needs. The situation in the early 20th 21st century is very
much improved, since library development has flourished over the years and in many
cases the development has been standardized, sometimes—as with std::vector and
std::string—even to the point of being absorbed into the C++ standard library.

Other packages and programs worth mentioning in this context are listed here:

• The boost library, available at www.boost.org, is a source of portable, peer-
reviewed source libraries with a wide range of applications, both numerical and
non-numerical. The boost library serves as a de facto staging ground for the standard
library. Ten packages from boost have now been included in the latest C++11
standard.

www.boost.org
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• The ROOT system, a data analysis framework by Rene Bruno and Fons Rademack-
ers, available from root.cern.ch. The package contains a wide variety of tools
for plotting and statistical analysis and is heavily used in high energy physics. ROOT
is now in its sixth major version. Version 7 will comprise a major overhaul of this
software package and may be well worth waiting for.

• The GNU Scientific library (GSL), available from http://www.gnu.org/
software/gsl/. The package contains a variety of numerical algorithms. Their
implementation of special functions is particularly useful. The library consists
entirely of C functions which can either be invoked directly or wrapped in C++
objects.

Of course there is significant overlap in many of these libraries. The choice of which
library to use often involves issues of functionality, interface quality, modularity, and
interoperability. In the early 21st century, scientists and engineers have an enormous
choice of numerical algorithms and have only an occasional need to implement their own.

This brief tour of useful classes is designed to familiarize our readers not only with a
variety of available software but also with the typical “look and feel” of a high-quality,
object-oriented class library. Despite the proliferation of canned solutions to numerical
problems, it is inevitable that students will need to carry out their own customization
and perhaps even prepare their own specialized class libraries. This requires considerable
skill. A little experience in using class libraries is invaluable training for anyone who sets
out to build one. The exercises at the end of this chapter help to build that experience.
Later we will discuss in more detail some of the principals in writing classes and libraries
of classes.

3.11 Exercises

1. A certain crystal has the shape of a parallelepiped and is situated with one vertex
at the origin. Determine the volume of this crystal using the Eigen::Vector3D
class and check the result with the Eigen::Matrix3D class. Hint: use the triple
product and the determinant. The edges of the crystal run in the following ways:

a) from (0,0,0) to (3,0,0)

b) from (0,0,0) to (0.5, 2.0,0)

c) from (0,0,0) to (0.3, 0.2, 1.5).

2. An initially pure sample containing N0 atoms of 213
83 Bi atoms decays according to:

213
83 Bi → 209

81 Tl + α

with a half-life of 45.6 minutes. This is followed by the decay:

209
81 Tl → 209

82 Pb + β

http://www.gnu.org/
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with a half-life of 132 seconds, then

209
82 Pb → 209

83 Bi + β

with a half-life of 195 minutes. 209
83 Bi is so longlived (half-life of 1.9 x 1019 years)

that it can be considered stable. Letting xb, xt, and xp be the number of atoms of
213
83 Bi, 209

81 Tl, and 209
82 Pb, respectively, and the vector �x = {xb, xt,xp}, one can put the

equation of growth and decay in the form:

d �x
dt

= ��x

which has a solution is �x = exp(�t) · �x0.

a) obtain the 3x3 matrix �

b) In Eigen, a matrix is exponentiated in the following way:

#include " unsupported / Eigen / Matr ixFunct ions "
Matrix3d M;
Matrix3d expM = M.exp();

Use this method to determine the fraction of each species at t=50, 150, 200, 500,
1000 minutes.

3. Make a program to plot the following seven functions.

a) sin(x)

b) sin(5x)

c) sin(x2)

d) e−x sin(x)

e) The associated Legendre polynomial, P2
3(x)

f) Any function defined by you (using the F1D adapter)

g) The derivative of that function.

The program should take a command line argument from 1-7, which selects the
function to be plotted. Print out and save plots from the program.

4. Examine the header file QatGenericFunctions/Interpolating
Polynomial.h. This is the header file for a function that interpolates between
points using a function called Lagrange’s interpolating polynomial. Construct this
function using points from the table below, and make a plot of the function. Also, plot
the points themselves using the class declared in QatPlotting/PlotProfile.h.
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Point x y

0 −2.0 2.0

1 0 4.0

2 1.0 3.3

3 2.0 2.0

4 3.0 6.0

5. Plot the cubic spline function going through all of the points in the table of
the previous exercise, also using the class declared in QatGenericFunctions/
CubicSplinePolynomial.h.

6. Plot the probability density, |ψ(x)|2, for the rectangular barrier problem discussed
in Section 3.4. Use the function adapter Genfun::F1D.

7. Consider a wavefunction ψ(x) which satisfies the time-independent Schrödinger
equation for E > 0, impinging upon a potential barrier which has the piecewise-
continuous form:

V (x) = 0 x < −2a

V (x) = V0 − 2a < x < −a

V (x) = 2V0 − a < x < a

V (x) = V0 a < x < 2a

V (x) = 0 x > 2a (3.36)

Solve the Schrödinger equation numerically in all space and determine the reflection
and transmission for an interesting range of V0/E and ka.

8. Plot the solution of the previous problem for V/E = 1.5, using PlotView. The
value of ka be taken from the command line. Choose a few interesting values and
hand in the plots.

9. Imagine a quantum mechanical wavefunction (as in the previous problem) imping-
ing upon a Gaussian potential barrier:

V (x) = V0e−x2/(2a2) (3.37)

Break the region from −4a < x < 4a into 2N different bins of equal size, and
approximate the potential as piecewise-constant within those bins. Compute the
transmission coefficient as a function of the N and plot it in PlotView, over an
interesting range of the parameters V0 and ka.
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10. [T] Show that the eigenvalues of the problem discussed in Section 3.2, λi = ω2
i are

not only real, but also positive, so that ωi is real. This exercise is to be done without
a computer.

11. a) Compare the rate of convergence of two iterative methods for the calculation
of π : the iterative circumference method of example program threePi, in
EXAMPLES/CH2/THREEPI, and the iterative area method of the Exercise 6
from the previous chapter. Plot the error in the calculation as a function of the
number of sides on a log-log plot using PlotView and PlotProfile.

b) In the iterative circumference method, the arc length of a small wedge is
approximated by the length l of an inscribed triangle. Prove that a better
approximation to the arc length is 2z(1 + z2/6), where z ≡ l/2. Use this as
the basis for an improved iterative circumference method, and plot the error vs.
number of sides on the same set of axes as in part (a).

12. Make a function plotting command that reads in a set of points from one or more
files and connects them with an interpolating function. The program

a) has the syntax plot inputFile1 [inputFile2] -c ...

b) uses cubic spline interpolation if the -c option is given, otherwise polynomial
interpolation.

c) reads in each input file with points, having the formatx1 y1
x2 y2
x3 y3

d) plots the input points and the interpolation function.

13. Five metal balls slide along a frictionless wire which is threaded through holes drilled
through the center of each ball. From left to right, the masses of the balls are: m, 3m,
2m, m, and 2m. The five balls are, additionally, connected to each other by four
springs whose spring constants are: k, 2k, 2k, and k. The five balls are initially at
rest, but displaced from their equilibrium positions by −2 cm, 3 cm, 0 cm, −3 cm,
and 2 cm. Plot on the same set of axes the position of the five masses as a function
of time, where the time is given in units of the characteristic time

√
m/k. Also plot

the position of the center of mass of the system. To carry out this calculation, you
will find the function

Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd>,

which diagonalizes a symmetric matrix, to be useful.

14. Like the class Genfun::F1D, the class Genfun::F2D is an adapter from functions
of two variables to generic functions of two variables, which function in a similar
way2. The class PlotWave1D, in QatPlotting, provides a plotting interface for

2 The partial(unsigned int i)method should be used instead of the prime()method on functions
of two variables.
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functions of position and time, and requires a Genfun::GENFUNCTION of two
variables. Use these two classes to plot the real and imaginary part of �(x, t) =
e−iωtψ(x), together with the |ψ(x)|2 from the problem 7–8 or problem 9.

15. The Legendre polynomials Pl(x) for l = 0, 1, 2, 3, .. are polynomials of degree l that
are orthogonal under an inner product

〈f |g〉 =
∫ 1

−1
f (x)g(x)dx

The class LegendrePolynomial (in QatGenericFunctions, namespace
Genfun) implements these functions in the Qat library.

Use the Newton-Raphson method to find the zeros of these polynomials, from
l = 1 through l = 10.

• Your program should obtain the order l from the command line.

• It should plot the Legendre polynomial.

• It should mark the zeros on the plot.

• It should print out the zeros to std::cout.

If you need a good starting point for the roots, you can use the asymptotic expression

xl,m =
(

1 − 1
8l2

+ 1
8l3

)
cos

4m − 1
4l + 2

π + O(l−4)

where xl,m is the mth zero of Pl(x).

16. The Hermite polynomials Hn(x) for n = 0, 1, 2, 3 . . . are polynomials of degree n
that are orthogonal under an inner product

〈f |g〉 =
∫ ∞

−∞
f (x)g(x)e−x2

dx,

which arise in the study of the quantum harmonic oscillator. In the Qat
library, a class HermitePolynomial (in QatGenericFunctions, namespace
Genfun) implements these functions. Repeat the previous exercise to find the zeros
of the Hermite polynomials. Use the asymptotic expansion

Hn(x) ∼ exp (x2/2)
2n
√
π
�

(
n + 1

2

)
cos
(

x
√

2n − n
π

2

)

to obtain a good starting point.

17. Revisit exercise 10 of Chapter 2; but use the Newton-Raphson method to determine
the eigenvalues from the secular equation of the matrix.
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While interpolation and extrapolation may seem prosaic, the process of using limited
information to make predictions (in this case, the value of a function where it is not
known) is rather common in scientific computing. The idea of finding the “true function”
from a set of points is of course a fairy tale—there are an infinite number of functions,
well-behaved or otherwise, whose values coincide at a fixed number of points. Thus
function interpolation requires that we also build in some prior notion (a model) of what
the function should look like. In this way, the techniques that we describe arise from the
combination of two ingredients:

• a set of points through which the function must pass.

• a model for what the function does between and/or beyond the given points.

For many applications it seems reasonable and will be productive to use some sort
of smooth function as a model. In Section 4.1 we discuss an intuitive technique which
uses an Nth -order polynomial called Lagrange’s interpolating polynomial as the model
function. This generally works well for N � 4. Above that range, the technique suffers
from difficulties that we will illustrate. The cubic spline function, which is a series of
polynomials joined smoothly at the interpolation points, is often a better interpolating
function if a large number of points is to be used. We discuss it in Section 4.3. More
general models are presented in the exercises.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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The modeling of functions is key to interpolation, and also plays a role in integration
where a certain behavior between mesh points (e.g. trapezoids) is assumed. The subject
is also related to fitting techniques that model data points with measurement error. This
is the subject of Chapter 16.

4.1 Lagrange interpolating polynomial

The Lagrange interpolating polynomial (Szego, 1939; Davis and Rabinowitz, 1975;
Press, 2007) is a key ingredient in a number of numerical techniques that we will develop
in this book. The basic idea is that given N + 1 points in a plane having distinct values
of the abscissa {xi} for i = 0, 1..N , one can always find a polynomial of order N going
through all the points. With two points we obtain a straight line, with three points we
obtain a parabola, and so forth. We will develop this idea and apply it immediately to the
problem of interpolation and extrapolation.

Suppose we are given the coordinates (x0, y0) of a single point in a plane. The zeroth
order polynomial going through this point is y(x) = y0. For two points, (x0, y0) and
(x1, y1), one defines a parameter t(x) = x−x0

x1−x0
; this parameter takes the value t = 0 when

x = x0 and t = 1 when x = x1. Also, let t̄ = 1 − t. Then the equation of the line can be
written as:

y(x) = t̄y0 + ty1

= x − x1

x0 − x1
y0 + x − x0

x1 − x0
y1

Similarly, for three points one has:

y(x) = x − x2

x0 − x2

x − x1

x0 − x1
y0 + x − x0

x1 − x0

x − x2

x1 − x2
y1 + x − x0

x2 − x0

x − x1

x2 − x1
y2 .

One can easily verify that this expression is

• a second degree polynomial in x, and

• y(x0) = y0; y(x1) = y1; y(x2) = y(2).

Joseph Louis Lagrange in 1795 gave a formula for the general case, which was actually
first discovered by Edward Waring in 1779:

L(x) =
N∑

j=0

yjlj (4.1)

where

lj =
∏

0≤m≤N ;m�=j

x − xm

xj − xm
. (4.2)
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Figure 4.1 One, two, three, and four point Legendre interpolating functions drawn through various
points in the plane.

L(x) is called the Lagrange interpolating polynomial, while the lj(x)s are called the
fundamental polynomials for Lagrange interpolation. The plots in Figure 4.1 show a
typical 1-point, 2-point, 3-point, and 4-point interpolating polynomial.

A few remarks on the behavior of the polynomial are in order. Imagine that we are
using the polynomial to interpolate a function between a few known points. Naively one
would expect that the quality of the interpolation is improved as the number of points
is increased; i.e., as the order of the interpolating polynomial is increased. This is not
necessarily so, as we can see through a little experimentation.

Higher order polynomials can indeed follow the set of interpolation points exactly,
but they also often require wild oscillations and wide excursions up and down in
order to match these points. Adding new points to the set can cause large changes to
the shape of the polynomial. The behavior of the interpolating polynomial becomes
almost completely arbitrary as the number of points is increased, unless, of course you
happen to be fitting a higher order polynomial. Functions which are sharply peaked,
like Gaussian or Breit-Wigner functions, are poorly interpolated by polynomials of high
order. However, the behavior for N � 4 is often a reasonable approximation to slowly
varying functions.
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4.2 Evaluation of the interpolating polynomial

The recommended technique for evaluating the interpolating polynomial is called
Neville’s algorithm, which we describe in this section. We consider a set of n+1 points
{x0,x1, . . . , xn} interpolated by Ln(x), a Lagrange interpolating polynomial of order n. We
remove the jth point from the interpolation, so as to obtain an order n − 1 polynomial,
designated as Ln−1,j(x). Now take two such polynomials Ln−1,j(x) and Ln−1,k(x), where
j �= k, and consider the following expression:

Ln(x) =
(
x − xj

)
Ln−1,j(x)− (x − xk)Ln−1,k(x)

(xk − xj)

The equality can be established by noting that, on the right hand side, when x = xj ,
the first term is zero and the second term is yj ; when x = xk,the second term is zero
and the first term is yk, and for any other nodal point x = xi , i �= j and i �= k, the
sum of the two terms gives yi . The polynomial (of order n) interpolates all n points
in the set and is therefore equal to Ln(x), the Lagrange interpolating polynomial of
order n. This recurrence relation gives a practical scheme for evaluating the polynomial.
To anchor the procedure we evaluate the 0th order polynomials passing through each
of the n + 1 points. These polynomials are used to construct each of the n 1st order
polynomials which interpolate between the nearest neighbors. A class to carry this out
InterpolatingPolynomial (in the QatGenericFunctions library, namespace
Genfun) is excerpted below. The class declaration is:

namespace Genfun {

class InterpolatingPolynomial: public AbsFunction {

public:

// Constructor
InterpolatingPolynomial();

// Retrieve function value
virtual double operator ()(double argument) const;

// Add a new point:
void addPoint(double x, double y);

private:

std::vector<std::pair<double,double> > xPoints;
mutable std::vector<double> q;

};
}



88 Evaluation of the interpolating polynomial

The implementation of the function call operator is as follows.

// Function call operator

double InterpolatingPolynomial::operator() (double x) const {

if (xPoints.size()==0) throw std::runtime_error
( " I n t e r p o l a t i n g P o l y n o m i a l : no i n t e r p o l a t i o n p o i n t s ");

for (unsigned int i=0;i<xPoints.size();i++) q[i]=xPoints
[i].second;

for (unsigned int i=1;i<xPoints.size();i++) {
for (unsigned int j=xPoints.size()-1;j>=i;j--) {
q[j]=((x-xPoints[j].first)*q[j-1]-(x-xPoints[j-i].

first)*q[j]) /
(xPoints[j-i].first-xPoints[j].first);

}
}

return q.back();
}

Some classes appear in this implementation that were not previously discussed. The
template class std::pair is an easy way of agglomerating two variables, here the x
and y coordinate of a point. The keyword mutable indicates that the variable is used
as internal cache or workspace, not representing the state of the object, and so may be
changed in a method declared to be const. When a designer declares a method to be
const he/she makes a promise not to change the state, so that the method can be called
on an object which is const. The compiler then enforces that promise in an admirably
rigorous way, but mutable provides an often-needed loophole, which is useful when
member data represents cache rather than state.

If the difference between cache and state is confusing, consider a hypothetical matrix
object. The values of the matrix coefficients determine the state of the matrix; if they
are changed one would say the matrix has changed. The calculation of the determinant
is computationally expensive, and one would not want to repeat the calculation if it
has already been done. Therefore one could consider caching the result in a piece of
member data mutable double det. The keyword mutable allows the determinant
to be (over)written in a constant method e.g. getDeterminant(), which is good
design because the matrix does not “really” change when the determinant is cached.
The cache would be valid as long as the matrix did not change, and a careful designer
would have to consider invalidating it if the state (think: coefficients) of the matrix
changes. Possibly it could be done by another piece of member data, e.g. mutable
bool stale.
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4.2.1 Interpolation in higher dimensions

We distinguish two cases of interpolation in higher dimensions. In the first case, the
function which we interpolate may be a complex-valued, vector-valued, or matrix-valued
function of a real variable. This is almost a trivial variant of the previously discussed prob-
lem. Instead of a real-valued interpolant constructed from the fundamental polynomials
for Lagrange interpolation,

y(x) =
N∑

j=0

yj lj (4.3)

we have a vector-valued interpolant:

�y(x) =
N∑

j=0

�yj lj , (4.4)

or a matrix-valued interpolant, or something else, according to what we want to
interpolate. The fundamental polynomials can be evaluated explicitly if desired, or by
generalizing Neville’s algorithm. C++ templates (discussed later in this text) are useful
for this problem.

A function of two variables f (x, y) can be regarded as a function of y that varies as
a function of x. Applying the same logic as above, and designating the interpolating
function as z, we can interpolate over x like this:

z(x, y) =
∑

i

li(x)f (xi , y) (4.5)

But now suppose that f (xi , y) happens to be an interpolating function over y, which we
can write as

f (xi , y) =
∑

j

lj(y)f (xi , yj). (4.6)

When we substitute this into the previous expression, we obtain:

z(x, y) =
∑

i,j

li(x)lj(y)f (xi , yj). (4.7)

This expression interpolates over two dimensions, a second kind of higher-dimensional
interpolation. When linear (2-point) interpolation is used for both variables, we call it
bilinear interpolation (Press, 2007), but we can go to higher order if desired. Obvious
generalizations of this simple formula handle cases of interpolation over three or more
dimensions.
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4.3 Spline interpolation

Another approach to interpolation is to break up the full range into smaller intervals and
use lower-order polynomials within each interval to interpolate. In principle these can
be Lagrange interpolating polynomials, but these would normally have discontinuous
derivatives where they are joined. The interpolation can be made smooth by requiring
that the first derivative and higher derivatives are continuous over the full range of the
interpolation. (Note the similarity between this problem and the problem of piecewise-
constant potentials in the Schrödinger equation, e.g. Exercises 7-9, Chap 3.)

The simplest continuous spline connects N + 1 points, known as knots, with
straight lines. Clearly there are no free parameters in this approach and derivatives
are discontinuous at the knots. If smoothness of the interpolating function is not an
issue, linear splines should be considered: the chief computational effort is on mapping
the independent variable to the appropriate interval. If the grid is uniform this can be
achieved with a fixed function:

i = (int) N*(x-x0)/(xN-x0) // map [x0..xN) to [0..N-1] (note
that x=xN is mapped to N)

For an irregular grid one could implement a linear search, which is O(N/2), or a bubble
search, which is O(log2(N)).

4.3.1 The cubic spline

If a quadratic function is used between knots there are a total of 3N spline param-
eters which are fixed by 2N equations specifying function values at the knots and
an additional N − 1 equations that impose continuity of the first derivatives. Thus
quadratic splines form a one-parameter family of interpolating functions. Similarly,
cubic functions implement two-parameter interpolating functions called cubic splines
(Press, 2007). The ambiguity can be resolved by choosing a convention, such as setting
second derivatives to zero at the first and last knots. This choice is called a natural
cubic spline.

To show how this works, first take a single interval and assume that the values of some
function are given at its two endpoints x0 and x1, so that one is interpolating between the
points (x0, y0) and (x1, y1). Parameterize the position within this interval with parameter
t = (x − x0)/(x1 − x0), such that t = 0(t = 1) when x = x0(x = x1). Also define
t ≡ 1 − t = (x − x1)/(x0 − x1). Now construct an arbitrary third-order polynomial that
passes through the points. Start with the linear interpolant,

y(x) = t̄ · y0 + t · y1

which is another way of writing the Lagrange formula. But now we wish to add additional
higher-order terms to this which don’t disturb the value of the function at the endpoints.
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Figure 4.2 The interpolating cubic spline through three points.

The new expression is:

y(x) = t̄y0 + ty1 + tt̄(at + bt). (4.8)

It is evident that the new terms vanish at x = x0 and x = x1. Notice that y(x) is a
cubic function. If we specify additional boundary conditions, such as the first or second
derivatives at the endpoints, we will determine the constants a and b.

Figure 4.2 shows three points and their corresponding natural cubic spline. Notice
that the spline consists of straight lines outside of the interior region since the second
derivatives have been set to zero at the end points

The parameters of the cubic spline can be obtained as follows. Consider a single
interval bounded by the points (x0, y0) and (x1, y1). We adopt a convention in which
the curve is expressed in terms of q0 ≡ ∂y/∂x|x0 and q1 ≡ ∂y/∂x|x1 instead of a and b.
In this case

y(x) = t̄y0 + ty1 + tt̄�x
(
(m − q1)t + (q0 − m)t

)
(4.9)

where �x = x1 − x0, �y = y1 − y0, and m ≡ �y/�x.
The first derivative of y′ can be written as

y′(x) = m + 2tt̄ (2m − q0 − q1)+ t2(q1 − m)+ t̄2 (q0 − m) .

It is easily verified that this expression reduces to q0 and q1 at x0 and x1. The second
derivative is:

y′′(x) = dy′

dx
= ∂y′

∂t
∂t
∂x

+ ∂y′

∂ t̄
∂ t̄
∂x

= 1
�x

(
∂y′

∂t
− ∂y′

∂ t̄

)

= 1
�x

[
t (4q1 + 2q0 − 6m)+ t̄ (−2q1 − 4q0 + 6m)

]
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so at the endpoints:

y′′(x0) = 6m − 2q1 − 4q0

�x
(4.10)

and:

y′′(x1) = −6m + 2q0 + 4q1

�x
. (4.11)

We now generalize to the case of N +1 points, {(x0, y0) . . . (xN , yN )}, which divide the
range of interpolation into N intervals. A set of unknown slopes {q1,q2,q3, . . . qN−1} are
to be determined at points {x1,x2,x3...xN−1}. Setting �xi = xi − xi−1, �yi = yi − yi−1,
and mi = �yi/�xi gives:

y′′(xi−1) = 6mi − 2qi − 4qi−1

�xi
(4.12)

and:

y′′(xi) = −6mi + 2qi−1 + 4qi

�xi
. (4.13)

Shifting Eq. 4.12 by substituting i → i + 1 and setting the result equal to Eq. 4.13 gives
finally:

qi−1

�xi
+ 2qi

(
1

�xi
+ 1

�xi+1

)
+ qi+1

�xi+1
= 3

(
mi

�xi
+ mi+1

�xi+1

)
(4.14)

Eq. 4.14 is a linear equation in three unknowns. We get one such equation for each of the
intervals from i = 1 to N −1 for a total of N −1 equations. But we have N +1 unknown
slopes to determine. The two additional conditions are provided by the values of the
second derivative at the endpoints. For the natural cubic spline, they can be derived by
setting Eq. 4.12 equal to zero for i = 1 and by setting Eq. 4.13 equal to zero for i = N .
We obtain:

2q0 + q1

�x1
= 3m1

�x1
(4.15)

qN−1 + 2qN

�xN
= 3mN

�xN
. (4.16)

These N + 1 linear equations can be written in matrix form as:

A · V = X (4.17)
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where:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

2
�x1

1
�x1

........
1

�x1

2
�x1

+ 2
�x2

1
�x2

1
�x2

2
�x2

+ 2
�x3

1
�x3

........ ........ ........ ........ ........ ........ ........
........ 1

�xN−1

2
�xN−1

+ 2
�xN

1
�xN

........ 1
�xN

2
�xN

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

and:

V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q0
q1
..
..
..
..
..
..

qN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3m1
�x1

3( m1
�x1

+ m2
�x2

)

..

..

..

..

..
3( mN−1

�xn−1
+ mN

�xN
)

3mN
�xN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The matrix equation can be solved to obtain the N+ 1 values of the slopes qi at each
of the N +1 knots. With these in hand, Eq. 4.9 can be used to determine the value of the
spline at any point between xi and xi+1.

4.3.2 Coding the cubic spline

For efficiency one would like to code the interpolator with an initialization step (during
which the matrices A and X are constructed and the system of linear equations is solved
to determine V ), and an evaluation step during which the function is evaluated for a
particular value of x. In each step two new tasks arise. The first is how does one solve
the matrix equation Eq. 4.17? The second is, given some value x for which we want
to evaluate the interpolating spline, how do we quickly determine the index i such that
xi < x < xi+1? This is a problem of sorting and searching.

While our numerical programming skills are still under development, we can make
an obvious remark here: this is the digital age, and in the real world the lack of specific
knowledge about how a solution is obtained is generally no big problem since online
information and code libraries are readily available. If you had a real-life problem on
your hands, you’d surely find yourself asking questions like: What task do I need to solve?
What software product provides solutions to those tasks? Where can I get it? How can I
figure out if it actually works?

Sorting and searching are very generic computational tasks that are not particularly
numerical, although efficient algorithms need to be constructed carefully and logically.



94 Spline interpolation

These tasks are so important that many of them have become part of the standard C++
library itself. Ordering a list of data structures and searching the ordered list are among
the tasks that C++ now provides. (The standard library is still expanding and it is useful
to keep abreast of new developments in the library). We will discuss generic algorithms
for tasks like that later in the book. Because the solution of linear equations is important
to many scientists and engineers, we recommend using the high quality Eigen package,
discussed in Chapter 3.

For a tridiagonal system like that of Eq. 4.17 it is faster to find the solution directly
rather than to employ matrix inversion. This can be accomplished in the Eigen package
with the following:

Eigen::MatrixXd A(n+1,n+1);
Eigen::VectorXd V(n+1);
Eigen::VectorXd X=A.lu().solve(V);

These lines of code invoke the “LU” (lower/upper) matrix decomposition algorithm
that is fast and robust. A class (CubicSplinePolynomial, namespace Genfun)
implementing cubic spline interpolation is available in the QatGenericFunctions
library. The protocol of this class follows closely that of InterpolatingPolynomial.

4.3.3 Other splines

Although cubic splines are ubiquitous and powerful, it is a foolish researcher indeed
who assumes that they are adequate in all cases. As always, the primary numerical tool
is a thorough understanding of the problem at hand. A simple example of the types of
problems that can arise is given by attempts to spline a power law function. A ten knot
natural cubic spline to the function 1/x over the range [1, 100] is presented as the dotted
line in Figure 4.3. It is evident that the spline fares very poorly over much of the range,
and that it is simply wrong for x larger than 100.

The solution in a case like this is simple: spline the logarithm of the y values and then
exponentiate to obtain interpolations. Doing this yields the dashed line of Figure 4.3.
The improvement is evident, although the failure for large x remains.

Often a researcher will know the asymptotic behavior of functions she is splining. In
this case, for example, one may know that the function is proportional to x−b for some
fixed b. It is then expeditious to replace the natural cubic spline with one in which the
spline is matched smoothly to the asymptotic form at the last knot:

y(x) = yN

(xN

x

)b
,

and:

y′(xN ) = −b
yN

xN
,

y′′(xN ) = b(b − 1)
yN

x2
N

.



Interpolation and extrapolation 95

0.001

0.01

0.1

1

20 40 60 80 100 120 140 160 180 200

1/
x

x

Figure 4.3 Cubic splines for a power law function.

If xN is sufficiently large that the asymptotic form is accurate, the result will be an
interpolating function that is reliable over the range (x0,∞). This, of course, resolves
the issue for large x in Figure 4.3.

4.4 Extrapolation

Numerical work often requires extrapolation to physical limits (volumes to infinity,
discretization scales to zero, degrees of freedom to infinity, etc.). Extrapolation of this
sort is an art, with some methods performing better in some situations. Several of these
are described here. Note that everything said about extrapolation can be applied to series
summation, since one can always form a series of partial sums, SN =∑N

i ai .
Sometimes a sequence converges rapidly and it will be possible to estimate the limit

directly. One is rarely this lucky, and acceleration methods must be employed. This can
be achieved if additional assumptions about the asymptotic form of the sequence are
made. Thus, for example, if one knows that the volume dependence of an energy scales
as E + a/V then measuring two values of E(V ) will allow determination of E and a.

In a similar way, if a sequence behaves as SN = S + αqN where |q| < 1, then the
sequence will converge to S in the limit of large N . The limit can be obtained in an
elegant way with Shanks transformation (Bender, 1999):

S = SN+1SN−1 − S2
N

SN+1 + SN−1 − 2SN
(4.18)

as one can easily verify.
Of course, one can consider the transformed sequence to be a new sequence, which

we shall denote S′. For example, consider log(2) evaluated as log(1 + x) at x = 1. The
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Table 4.1 Shanks transformations for log(1 + 1). (Bender, 1999).

n Sn S′
n S′′

n S′′′
n

1 1.000 000 0

2 0.500 000 0 0.700 000 0

3 0.833 333 3 0.690 476 2 0.693 277 3

4 0.583 333 3 0.694 444 4 0.693 105 8 0.693 148 9

5 0.783 333 3 0.692 424 2 0.693 163 3 0.693 146 7

15 0.725 371 9 0.693 113 8 0.693 147 3 0.693 147 2

25 0.712 747 5 0.693 139 7 0.693 147 2 0.693 147 2

35 0.707 228 9 0.693 144 4 0.693 147 2 0.693 147 2

∞ 0.693 147 180 6

Taylor series is:

log(1 + 1) = 1 − 1
2
+ 1

3
− 1

4
+ . . . ,

which converges very slowly. However, a series of Shanks transformations improves
convergence dramatically (see Table 4.1).

The form of the denominator in Eq. 4.18 implies that the method is susceptible to
roundoff error, especially if the transformation is iterated. In general the method will
be affected by roundoff error at the single precision level if double precision arithmetic
is used.

Sometimes a Shanks transformation is insufficient to improve convergence. In this
case the more general Richardson extrapolation can be used. This method is based
on the assumption that a sequence behaves as:

SN = q0 + q1

N
+ q2

N2 + . . . .

Take M + 1 of these and solve to obtain:

q0 =
M∑

k=0

SN+k(N + k)M(−)M+k

k! (M − k)! (4.19)
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Table 4.2 Richardson extrapolants for
∑

1/n2. (Bender, 1999).

N M = 0 M = 1 M = 2 M = 4 M = 6

1 1.000 1.500 00 1.625 000 00 1.644 965 277 8 1.644 933 185 185

5 1.464 1.630 28 1.644 166 67 1.644 935 811 1 1.644 934 060 147

10 1.550 1.640 68 1.644 809 05 1.644 934 195 4 1.644 934 066 526

15 1.580 1.642 94 1.644 893 41 1.644 934 089 9 1.644 934 066 812

20 1.596 1.643 78 1.644 916 08 1.644 934 073 2 1.644 934 066 842

25 1.606 1.644 18 1.644 924 58 1.644 934 069 2 1.644 934 066 847

As an illustration, we apply this to the sequence:

SN =
N∑

n=1

1
n2 S∞ = π2

6

with the results of Table 4.2. Note that the function Li2(z) =∑ zn/n2 has a branch point
at z = 1, which causes the slow convergence evident in the M = 0 column.

Richardson extrapolation is useful in many contexts; we shall see it again in Chapter 5,
where it is applied to extrapolate results in the numerical evaluation of integrals.

4.5 Taylor series, continued fractions, and Padé
approximants

Representing functions is a central feature of numerical methods. Sometimes one
benefits from prior effort, and existing implementations exist. In the absence of such
benefit, one can resort to a variety of economical functional representations. For example,
it may be possible to write the function in question as an integral and then the methods
of Chapter 5 can be employed to implement a representation.

The familiar Taylor series provides another method for computing functions, however
the series can be very slow to converge in some cases, and will diverge in others. For
example the Taylor series for log(1 + z)/z converges only for |z| < 1. The flaw is due
to a branch cut singularity at z = −1 that cannot be represented by a polynomial of any
degree. This problem, however, can be averted by representing the logarithm as the ratio
of polynomials–an idea that was first exploited by French mathematician Henri Eugène
Padé (1863–1953). We therefore define the Padé approximant as the ratio

PNM(x) =
∑N

n=0 anxn

∑M
n=0 bnxn

. (4.20)
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Figure 4.4 PNN Padé approximants for exp(−x).

An algorithm to determine the coefficients will be given below. Notice that b0 can be set
to unity without loss of generality. Also, if PNM is to represent a power series then the
first 1 + M + N terms of the series representation of the approximant should agree with
the corresponding terms in the series.

We illustrate the utility of the Padé approximant by computing the relative error of the
[NN] approximant for exp(−x), shown in Figure 4.4. This double precision calculation
reaches an optimal accuracy of order 10−16 over an increasingly large range as the Padé
order is increased. Importantly, the Nth order approximant is always better than the
equivalent Taylor series for positive x.

A related method of representing functions is called the continued fraction, which
is a fraction of fractions that may or may not terminate. A famous continued fraction is
the representation of the golden ratio, � = (1 + √

5)/2:

� = 1 + 1

1 + 1
1+...

.

A standard trick permits one to prove this relationship (which we leave to the reader to
discern).

We define a general truncated continued fraction as:

a1

b1 + a2
b2+...+ an

bn

. (4.21)
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This can be re-written without loss of generality as:

c0

1 + c1x
1+c2x +...

(4.22)

where we have also taken the opportunity to introduce dependence on a variable, x.
Any finite continued fraction can be written as a ratio of numbers (or polynomials in

the representation of Eq. 4.22) by repeated reduction of the fraction; thus Eq. 4.21 (or
Eq. 4.22) can be written as

An

Bn
.

A simple recurrence relation permits evaluating the factors:

An+1 = bn+1An + an+1An−1, A0 = 0, A−1 = 1

Bn+1 = bn+1Bn + an+1Bn−1, B0 = 1, B−1 = 0. (4.23)

A similar formula holds in the case of Eq. 4.22. Of course the same formalism can be
used to relate a continued fraction function to a Padé approximant.

The conversion from a power series to a continued fraction (and thereafter to a Padé
approximant) can be achieved with the quotient-difference algorithm.

First we set

∞∑

n=0

an xn = a0

1 − q0
1x

1− e01x

1− q0
2x

1− e02x
...

. (4.24)

The continued fraction coefficients q0
n and e0

n are obtained from an iterative process
that either differences or divides earlier coefficients (hence the name):

en
0 = 0

qn
1 = an+1

an

en
m = qn+1

m − qn
m + en+1

m−1

qn
m+1 = en+1

m

en
m

qn+1
m . (4.25)
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Figure 4.5 Relationship of quotient-difference coefficients.

This represents a rather intricate relationship wherein starting values are iterated in a
triangular shape with the goal of obtaining the top row (the shaded region of Figure 4.5).
Code to achieve this is given below to spare the student from wading through too many
loop structures.

double f(const std::vector<double> & a, double x) {

// convert sum_{n=0}^2N a_n x^n to continued fraction
// coefficients cf_i, i=0 ... 2N-1

unsigned int N=(a.size()-1)/2;

// Allocate and zero the arrays:
std::vector<double> e(2*N+1,0.0);
std::vector<double> q(2*N,0.0);
std::vector<double> eold(2*N+1,0.0);
std::vector<double> qold(2*N+1,0.0);
std::vector<double> cf(2*N,0.0);

for (int j=0;j<=2*N-1;j++) {qold[j] = a[j+1]/a[j];}
cf[0] = a[0]; cf[1] = -qold[0];

// Evaluate the coefficients:
for (int ell=1;ell<N;ell++) {
for (int j=0;j<2*N-2*ell;j++) {e[j] = qold[j+1] -

qold[j] + eold[j+1];}
for (int j=0;j<2*N-2*ell-1;j++) {q[j] = e[j+1]/e[j]*

qold[j+1];}
for (int j=0;j<2*N-2*ell;j++) {eold[j] = e[j];}
for (int j=0;j<2*N-2*ell-1;j++) {qold[j] = q[j];}
cf[2*ell] = -e[0];
cf[2*ell+1] = -q[0];

}
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// Evaluate the continued fraction:
double di= 0;
for (int i=cf.size()-1;i>0;i--) {
double ai=cf[i]*x;
double bi=1;
di = ai/(bi+di);

}
return cf[0]/(1+di);

}

A useful illustration of the application of these techniques is provided by the problem
of diagonalizing a tridiagonal matrix. We shall make this explicit by using the notation of
Eq. 4.26:

⎛

⎜⎜
⎝

α1 β1
β1 α2 β2

β2 α3 β3
βN−1 αN

⎞

⎟⎟
⎠ �x = λ�x. (4.26)

The first of these equations is

α1x1 + β1x2 = λx1, (4.27)

with a similar equation for the last row. The remaining equations read:

βn−1xn−1 + αnxn + βnxn+1 = λxn. (4.28)

Eq. 4.28 is a linear three-term recurrence relation. Our strategy will be to convert this
to a continued fraction, convert that to a Padé approximant, and then solve the resulting
secular equation with bisection. The conversion to continued fraction can be achieved
with a trick: divide Eq. 4.28 by xn, solve for xn−1/xn, and invert. The result is:

xn

xn−1
= βn−1

λ− αn − βn
xn+1
xn

Set n = 2 and use the previous equation repeatedly:

x2

x1
= β1

λ− α2 − β2
x3
x2

= β1

λ− α2 − β2
2

λ−α3− β3
...

.
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Finally, equate this to Eq. 4.27 to obtain the eigenvalue equation:

λ = α1 + β2
1

λ− α2 − β2
2

λ−α3− β2
3
...

. (4.29)

This can be reduced to a polynomial equation in λ by employing Eqs. 4.23. It is wise to
cross multiply by B(λ) at this stage. Finally, eigenvalues can be obtained by determining
the roots of the resulting secular equation.

4.6 Exercises

1. [T] Show that the natural cubic spline connecting two points (x0, y0) and (x1, y1)
is a straight line.

2. The function y = √
1 − x2 for −1 < x < 1 is a semicircle in the upper half-plane.

The points x = cos θ , y = sin θ lie on this semicircle. Using x,y for θ = jπ/6, j =
{0, 1, 2, 3, 4, 5, 6} as interpolation points, plot the Lagrange interpolating polynomial
and the cubic spline polynomial which interpolate these points, together with the
original function.

3. The P1 bus in the city of Pittsburgh leaves the port authority in the city center every
half hour, and more frequently during rush hour. It serves Penn, Heron, Negley, East
Liberty, Homewood station, Wilkinsburg, Hamnet, Roslyn and Swissvale stations
along the Martin Luther King Jr. east busway.

a) The directory SKELETONS/INTERPOLATION/P1 contains the skeleton of a
program for you to fill out. The skeleton creates a PlotView and co-displays it
with a map of the P1 bus route. Check this package out, build it, and run it.

b) By trial and error, mark (using a PlotPoint object, in the QatPlotting
package) the position of each station in the above list in pixel units on the plot.

c) Interpolate the bus route between these stations. You must omit the last two from
the interpolation if you use Cartesian coordinates (why?). Plot the interpolated
trajectory in the PlotView of the skeleton program.

4. In the previous problem, you can extend the interpolation to include the last two
points by choosing a convenient point on the concave side of the bus route as
an origin and reformulating the problem in polar coordinates. After interpolating
the function in polar coordinates, the class PlotOrbit (in the QatPlotting
library) can be used. Carry out the analysis in this way and plot the trajectory in
the PlotView as before.

5. Chateau Lafitte Rothschild, one of the most renowned wines in the world, is a first
growth premier grand cru classé from the original classification in 1855. During the
early years of the 21st century its price increased spectacularly. In 2007, the average
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price of a bottle was $346; in 2008 it had risen to $654; in 2009, it was $724; in
2010, $873; and in 2011, $1410. Plot the price as a function of year. What is your
estimate of one bottle of Chateau Lafitte Rothshild today? How much money would
you make if you bought one bottle now, and resold it one year later?

6. Interpolation in Higher Dimensions.
In this exercise you will interpolate a color value over a surface. Color values have
four components (red, green,blue, and the transparency, alpha) which vary on the
range [0,1]. The surface is parameterized by x and y, also taking values on the
range [0,1]. The directory SKELETONS/CH4/INTENSITY contains a program to
display a colored blob and to interactively set the interpolation points on along a
two-dimensional grid. This program uses a class Interpolator, whose code (.h
and .cpp files) in the src directory. This class has one major defect:

RBGAlphaData Interpolator::interpolate(double x,double y);

contains only a nonworking implementation! Your task is to replace the bogus
implementation with a method which works. To do this: modify the code that you
will find in Interpolator.cpp and recompile. You need not touch any other
compilation unit in the directory.

7. Data on the dispersion of light in water is given in Table 4.3. Interpolate a smooth
function for these data. Plot the function together with the input data.

8. Figure 4.6 is a plot from an measurements of the response of the human retina
carried out in the last century (Bowmaker, 1980). There are four types of photore-
ceptors in the human retina, called rods, and three types of cones called red, green,
and blue cones. The rods have a response peaking at 498 nm, the red, green, and
blue cones have responses peaking at 564, 534, and 420 nm, respectively. Color
perception is carried out by the rods. Suppose that it is desired to import these
curves into a calculation.

a) Using any available computer program, measure the pixels coordinate of the
center of each dot and convert that to a wavelength and an absorbance.

b) Write functions which interpolate these data between 400–700 nm, for each type
of photoreceptor, and plot these functions together as in the figure.

9. Use the result of the previous exercise to compute the red/green/blue response to
monochromatic light of a given wavelength, and from there generate and plot a
continuous band of color from λ= 400 nm to λ= 700 nm. To do this you could use
the classes QImage and QLabel from the Qt library. The first of these classes allows
you to manipulate individual pixels, the second allows you to display the result.

10. Consider the Taylor series of:

f (x) = 1
(1 + x)(2 + x)

.

How many terms are needed in the sum to obtain f (0.99) to six decimal places?
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Table 4.3 Index of refraction of water vs.
wavelength. Source: Hale (1973).

Wavelength (nm) Index of refraction

200 1.396

250 1.362

300 1.349

350 1.343

400 1.339

450 1.337

500 1.335

550 1.333

600 1.332

650 1.331

700 1.331

750 1.330

800 1.329

850 1.329

900 1.328

950 1.327

1000 1.327

11. Verify that the Shanks transformation works exactly when summing
∑

i

(−x)i .

12. Evaluate

∞∑

n=0

(−1)n
√

n

to seven digits.

13. Evaluate the following continued fraction representation of π using PNN Padé
approximants. Plot the error vs. N up to N = 30. Comment on your plot. You
may use
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Figure 4.6 Response curves of photoreceptors in the human retina. From Bowmaker (1980) ©1980
The physiological society. Reprinted with permission.

π

4
= 1

1 + 12

3+ 22

5+ 32
7+...

14. The following eigenvalue problem arises in solving SU(2) lattice gauge theory (see
Chap. 24):

(x2 − 1)ψ ′′ + 3xψ ′ + β2(2 − 2x − aE
β

)ψ = 0

where a and β are constants and E is to be solved for. Obtain the lowest 8
eigenvalues by

(i) expanding ψ in Chebyshev polynomials of the second kind;

(ii) establishing a tri-diagonal form for the eigenvalue problem;

(iii) converting this to a continued fraction;

(iv) solving this using Padé approximants and bisection root finding.

Set a = β = 1.
You may find the following properties of Chebyshev polynomials useful:

Un+1(x) = 2xUn(x)− Un−1(x),
∫ 1

−1

√
1 − x2 UnUm dx = π

2
δnm,
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and

(1 − x2)U ′′
n − 3xU ′

n + n(n + 2)Un = 0.

15. Use the quotient-difference algorithm and Padé approximants to approximate
exp(−x). Plot the relative error vs. x for the 5th and 10th approximants.

16. Plot exp(−10) obtained from PNN (x) vs. N .

17. [T] Determine the coefficients of the continued fraction for

(i) exp(z).

(ii)
∫∞

0 dt exp(−t)
1+zt

(iii) log(1 + z)/z.

..........................................................................................
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Integrals fall into two categories: indefinite integrals and definite integrals. Both arise
frequently in physics, and quite often cannot be computed analytically, either because the
integrand is resistant to the host of specialized techniques that can be applied (change
of variable, integration by parts, etc); or even because the integrand itself is defined by
data and has no analytic form.

Numerical techniques exist to compute both indefinite and definite integrals. In either
case we are given some function of a single variable, expressed mathematically as f (x)
and in code as double f(double x), though functors (i.e. classes that behave like

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
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a function) may also be used. The goal of indefinite integration is to compute another
function F(x), called the antiderivative, such that

f (x) = dF(x)
dx

. (5.1)

This is the more common problem and arises particularly in the integration of classical
equations of motion. It is discussed later, in Chapter 11, which deals with the solution of
ordinary differential equations.

The goal of definite integration is to produce a single real number from f (x) given an
upper and lower bound a and b, namely the definite integral

I =
∫ b

a
f (x)dx , (5.2)

equal to the “area under the curve”.
Mathematically, the two concepts are related by the fundamental theorem of calculus,

which states that

I =
∫ b

a
f (x)dx = F(b)− F(a) . (5.3)

Conceptually, given the definite integral I , one could consider it as a function of the
upper limit b, such that I(b) defines a function, the antiderivative; and likewise given
an antiderivative F(x), one could evaluate Eq. 5.3 to determine I for given values
of a and b. Numerically, however, it is preferable (for performance reasons) to use
dedicated techniques in either case. In this chapter we will survey some problems in
physics requiring the numerical computation of definite integrals, known, alternatively,
as “quadrature”–an ancient term derived from the effort to express the area of a circle
in units of length squared. We will then develop the numerical techniques to address this
type of problem.

5.1 Some example problems

Applications of numerical quadrature are frequent in the practice of experimental and
theoretical physics. We choose a few examples from classical, quantum, and thermal
physics for their simplicity and because they are broadly familiar to students of physics.
Numerical solutions to some of these are the subject of the exercises at the end of the
chapter.

5.1.1 One-dimensional periodic motion

Consider a classical particle free to move in one dimension; its position at time t is given
by x(t). It is subject to a conservative force described by a potential V (x), and has a
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conserved energy E, a constant. The particle moves between two classical turning points
x = xmin and x = xmax, where V (x) = E. Let us start the particle at position xmin, at rest,
and ask ourselves, what is the period T of the motion? This is the time it takes for the
particle to move from xmin → xmax and then from xmax → xmin, or twice the time it takes
to move from xmin → xmax. Conservation of energy tells us that:

E = 1
2

mv2 + V (x) = constant (5.4)

so:

v = dx
dt

=
√

2(E − V (x))
m

(5.5)

The period is obtained by rearranging the equation,

dt =
√

m
2(E − V (x))

dx (5.6)

and integrating,

T = 2
∫ xmax

xmin

√
m

2(E − V (x))
dx , (5.7)

or alternatively,

T =
∮ √

m
2(E − V (x))

dx . (5.8)

For some simple cases, depending on the form of the potential V (x), the integral can be
performed analytically, but for the general case one must resort to numerical methods.

This simple treatment can be generalized to other one-dimensional periodic, conser-
vative systems governed by a classical Hamiltonian H = H(p, q) where p is a generalized
momentum and q is a generalized coordinate (Goldstein, 2001). In that case, the time
evolution of the generalized coordinate is given by:

q̇ = dq
dt

= ∂H
∂p

(5.9)

The trajectory through phase space is determined by this equation, and by two constants
of the motion, which can be taken as the initial time, t0, and the energy E. Integrating
Eq. 5.9 gives
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T =
∮

dq
(
∂H
∂p

)

The denominator will be a function of both p and q, but if the system is conservative,
then H = E, p can be eliminated,

(
∂H
∂p

)−1

= ∂p
∂E

(5.10)

and

T =
∮ (

∂p
∂E

)
dq (5.11)

where
(

∂p
∂E

)
is to be expressed as a function of q and the constant energy E. The reader

should check that this gives Eq. 5.8 when H = p2/2m + V (x).

5.1.2 Quantization of energy

Eq. 5.11 can be written as:

T = ∂

∂E

∮
pdq

The integral appearing in the equation,

J ≡
∮

pdq (5.12)

is called the action; it is a function that does not depend upon the time but only upon the
energy E. We can rewrite the equation as:

T = ∂J
∂E

. (5.13)

In the days of the “old quantum theory”, the action also played a prominent role in
the determining the quantized energy levels of a system. The original Bohr-Sommerfeld
quantization rule,

J = nh (5.14)
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where n = 1, 2, 3 . . . applies to rotational motion. Planck’s constant h was originally
known as the quantum of action. A similar quantization rule can be obtained from the
Schrödinger equation, using a method known as the WKB approximation (Gasiorowicz,
2003; Griffiths, 2005), a quasi-classical approximation in which a particle, moving in
a slowly-varying potential, is viewed as slowing down in regions of space where the
potential V (x) is high; because the kinetic energy depends upon position, so does the
momentum p = √

2m(E − V (x)) and the de Broglie wavelength λ = h/p. For vibrational
motion in one dimension, one can derive from the WKB approximation the quantization
condition:

J = (n + 1/2)h (5.15)

The action variable J is a definite integral taken over one complete cycle of motion
between two classical turning points–even though the wavefunction penetrates to some
extent into the classically forbidden region. This action J = J(E) therefore implicitly
determines energy quantization. For a particle in one dimension confined to a region
between two turning points xmin and xmax, the rule can be rewritten as

2
∫ xmax

xmin

√
2m(E − V (x))dx = (n + 1/2)h; (5.16)

(the factor of two on the left hand side arises because the integral is to be taken over one
complete cycle of the classical motion).

To find the quantized energy level for a particle of mass m in a potential V (x), one
first needs to determine the turning points from the condition that V (x) = E, which is
an exercise in root-finding. The quantity on the left hand side can then be determined
and solved for the variable n. By varying the energy until n takes on integer values 0, 1, 2,
one can determine the “WKB eigenenergies”, approximate solutions for the quantized
energy levels.

A plot of action J(E) vs. energy E is extremely powerful and informative. The slope
of this curve at any value of E determines the period of oscillation given E, for the
classical problem; and the intersection of the curve J(E) with fixed values (n + 1/2)h
determines the quantized energies in the quantum mechanical problem. In the simple
case of the harmonic oscillator, the relationship happens to be linear. The harmonic
oscillator therefore has an amplitude independent of the energy (in the classical problem)
and equally spaced energy levels (in the quantum mechanical problem).

5.1.3 Two body central force problems

In the previous two sections we’ve discussed the classical and quantum mechanical
motion of a particle in a one-dimensional potential. The methods are also applicable
to two-body central force problems. On one end of the distance scale, two mutually
gravitating massive stars furnish an example of a classical system; on the other end of
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the scale, a bottom quark and anti-bottom quark held together by the strong interaction
in a “bottomonium” system furnishes a quantum mechanical example.

The theoretical treatment of quantum and classical two-body central force problems
is mathematically different, but the “bottom line” is the same: the center-of-mass of the
system evolves independently as a free particle with mass M = m1 + m2, while the
coordinates describing the relative motion, r ≡ �r1 − �r2, evolves as in an equivalent one-
body problem. The equivalent one-body problem has the following features:

• The equivalent particle has a mass of μ ≡ m1m2
m1+m2

, called the reduced mass.

• The equivalent particle moves in a modified potential V ′(r) = V (r) + L2

2mr2 , the

original potential V (r) modified by an additional term L2

2mr2 called the centrifugal
barrier, where L is the angular momentum. The angular momentum is conserved
in the two-body central force problem. Classically, therefore, it is a constant of the
motion, while, in quantum mechanics it is quantized according to L2 = l(l + 1)h̄2,
for l = 0, 1, 2, . . ..

These observations allow us to include three-dimensional two-body central force prob-
lems along with one-dimensional classical and quantum mechanics problems in the set of
applications of numerical quadrature. In the context of the quantization rules previously
discussed, a detailed treatment of the WKB approximation (Quigg, 1979) leads to a
modification of the quantization rule, Eq. 5.16. For the two-body central force problem,
the rules are:

∫ xmax

0

√
2μ(E − V ′(x))dx = (n + 3/4)π h̄ xmin = 0,

∫ xmax

xmin

√
2μ(E − V ′(x))dx = (n + 1/2)π h̄ xmin > 0

where xmax and xmin are the classical turning points, and n = 0, 1, 2, . . .

5.1.4 Quantum mechanical tunneling

We have mentioned already the WKB approximation; for bound states it produces
a quantization rule that approximates (and sometimes, fortuitously, even gives exact
solutions) to the quantized energy levels; and in addition to that it can be used to compute
quantum mechanical transmission through potential barriers, giving us yet another use
case for numerical quadrature.

The quantity that appears in WKB approximations to solutions of transmission
problems is:

r ≡ exp
∫ xmax

xmin

κ dx (5.17)
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where κ =
√

2m(V (x)− E)/h̄2, and xmin < x < xmax defines the classically forbidden
region, or barrier; over this interval, V (x) > E and κ is therefore real. It can be shown
that the transmission coefficient through the barrier is:

T = 1
r2 (5.18)

and the reflection coefficient is R = 1 − T .

5.1.5 Moments of distributions

Distributions of mass, electric charge, electric current, and probability arise frequently
in physics. From these distributions one can extract moments, which are real numbers
characterizing important features of the shape of the distribution. Common examples
are the moment of inertia which abstracts important features of a mass distribution;
the electric or magnetic monopole1, dipole, and quadrupole moments describe charge
distributions and the important features of the field they create; quantities such as
the mean, variance, skewness and kurtosis are commonly used to describe features of
probability distributions.

Moments of probability distributions

A probability density function is a positive definite function ρ(x) normalized such that:

∫
ρ(x)dx = 1 (5.19)

where the integration is carried out over the entire domain of the random variable x, a
continuous random variable. The probability that the variable x takes a value between a
and b is given by:

P[xmin ≤ x ≤ xmax] =
∫ xmax

xmin

ρ(x)dx (5.20)

Moments of the distribution characterize its shape. The mean of the distribution is:

x̄ =
∫

ρ(x)xdx ; (5.21)

the variance is:

σ 2(x) =
∫

ρ(x)(x − x̄)2dx ; (5.22)

1 Magnetic monopoles have been sought but not found.
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the skewness is:

γ1(x) =
∫

ρ(x)
(
(x − x̄)

σ

)3

dx ; (5.23)

and the kurtosis is

β2(x) =
∫

ρ(x)
(
(x − x̄)

σ

)4

dx . (5.24)

Mass Distributions and The Inertia Tensor

The inertia tensor I is a 3×3 real, symmetric tensor characterizing the properties of a rigid
body under rotation about a point fixed with respect to the body. It relates the rotation
of the body to its angular momentum and kinetic energy. The rotation is described by
a vector �ω, whose magnitude is the rate of rotation, and whose direction is chosen to lie
along the axis of rotation. The angular momentum �L is given by:

�L = I · �ω (5.25)

while the kinetic energy K is:

K = 1
2
�ωT · I · �ω . (5.26)

A coordinate system is chosen so that the fixed point of rotation lies at the origin. The
nine components of the inertia tensor in this coordinate system are the integrals:

(I)ij =
∫

ρ(�r)(δij r2 − rirj)dV . (5.27)

where �r is the position of a mass point in the body, and ρ(�r) is the mass density at that
point.

If the axis of rotation is along the unit vector n̂ so that �ω = ωn̂, then we have:

K = ω2

2
(n̂T · I · n̂) , (5.28)

and the quantity in parenthesis

I = n̂T · I · n̂ (5.29)

is called the moment of inertia about n̂. Three definite volume integrals need to be done to
compute the moment of inertia about a specific axis of rotation. In many cases, an axis
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of symmetry can be found and happens to be the axis of rotation; in such circumstances
only one of the three quantities is nonzero.

Multipole moments of charge distributions

The multipole expansion (Jackson, 1998) is a systematic approach to describing the
electric field produced by a localized charge distribution ρ(�r). The scalar potential �
produced by such a potential is given by the integral:

�(�r) =
∫

ρ(�r′)dV ′

| �r′ − �r| . (5.30)

The numerator can be expanded as follows:

1

|�r′ − �r| = 4π
∞∑

l=0

l∑

m=−l

1
2l + 1

r′l

rl+1 Y m∗
l (θ ′,φ′)Y m

l (θ ,φ) (5.31)

where θ , φ and θ ′, φ′ are the polar and azimuthal angles of �r and �r′, respectively.
Substituting into Eq. 5.30 and interchanging the order of summation and integration,
we have

�(�r) = 4π
∞∑

l=0

l∑

m=−l

1
2l + 1

[∫
ρ(�r′)r′lY m∗

l (θ ′,φ′)dV ′
]

Y m
l (θ ,φ)

rl+1

=
∞∑

l=0

l∑

m=−l

qlm
4π

2l + 1

Y m
l (θ ,φ)

rl+1

where the coefficients

qlm ≡
∫

ρ(�r′)r′lY m∗
l (θ ′,φ′)dV ′ (5.32)

are called the multipole moment of the charge distribution. These coefficients form an
infinite set, but usually one is only interested in the first few, since the potential generated
by a multipole moment of order l falls off as rl+1. The first few multipole moments
are referred to as the monopole (l = 0), dipole (l = 1), quadrupole (l = 2), and
sextupole(l = 3). These and higher order multipole moments can be determined by
integrating the charge distribution, numerically if necessary.

5.1.6 Integrals of statistical mechanics

A quantum gas is a gas of identical particles at low temperature, high density, or both.
A volume containing the particles has a set of orbitals, which in the simplest case, in
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which interactions between the particles are absent or approximated away, are those of
a particle-in-a-box, i.e.

εn = n2π2h̄2

2mL2 . (5.33)

In quantum statistical mechanics, a sharp difference in macroscopic behavior results
from the spin quantum number of the particles within the gas, according to the spin-
statistics theorem. A system comprised of fermions, which are particles with half-integer
spin including protons, neutrons, and electrons, has a wave function that is antisymmetric
under the interchange of any two particles. A system comprised of bosons, such as He4

atoms, is symmetric. Fermions obey the Pauli exclusion principle.
Real systems are often approximated quite crudely as a noninteracting quantum gas.

Electrons in a metal, electrons in a white dwarf star, or neutrons in a neutron star can
be treated as a Fermi gas. Bose gases are rarer in nature; liquid He4 is a superfluid
below a critical temperature of 2.18 K, but is neither noninteracting nor a gas. Pairs
of conduction electrons in certain metals form a bosonic condensate of “Cooper pairs”
at low temperature, which gives rise to superconductivity. Atomic systems consisting of
up to a few hundred thousand atoms behave like a Bose gas, and in particular exhibit
the phenomenon of Bose-Einstein condensation, first observed in 1995 (Jin, 1996), and
which earned a Nobel prize for its discoverers, Carl Wieman, Eric Cornell, and Wolfgang
Ketterle.

The treatment of Fermi and Bose gases, which arises in elementary statistical mechan-
ics (Kittel, 1980), is a problem that leads to an integral which resists an analytic solution.
We model a quantum gas as a set of noninteracting fermions, or bosons in a box of length
L and volume V = L3. The mean number of particles in a given orbital, or occupancy, is
given by a distribution function,

n̄(εi) = 1
exp ((εi − μ)/τ)± 1

(5.34)

where the upper sign applies to a Bose gas and the lower sign applies to a
Fermi gas.

This distribution is governed by two parameters: τ = kBT is the temperature in energy
units, where T is in Kelvin and kB = 1.381 × 10−23 J/K is the Boltzmann constant, and
μ, which is the chemical potential. The chemical potential (unlike the temperature) is
not an external parameter that one can control: it is determined implicitly by the density
of the gas and the temperature. Our task is to find its value, which, once determined,
defines the distribution function.

We note that the total number of particles in the box is given by:

N =
∑

i

n̄(εi) =
∑

i

1
exp ((εi − μ)/τ)± 1

(5.35)
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The sum can be approximated by an integral, whose integrand consists of two factors,

• The number of orbitals with energy between ε and ε+dε. This factor is called D(ε),
the density of states.

• The mean number of particles in an orbital with energy ε.

The former is worked out in many elementary texts:

D(ε) = sV
(2m/h̄2)3/2

4π2 ε1/2 (5.36)

(where s is a constant spin-degeneracy factor) while the latter is given by Eq. 5.34.
Combining these two factors gives us

N =
∫ ∞

0
D(ε)n̄(ε)dε

= sV
(2m/h̄2)3/2

4π2

∫ ∞

0

ε1/2

exp ((ε − μ)/τ)± 1
dε .

This approximation is adequate for a Fermi gas, but for a Bose gas it fails because the
density-of-states rolls off to zero while the distribution function n̄(ε) is growing large.
This cannot happen in a Fermi gas because of the exclusion principle. In fact there is
one state with ε = 0 (s states if the spin states are s-fold degenerate)–the ground state, and
for Bose gases at low enough temperatures, where Bose-Einstein condensation occurs, it
can contain most of the particles.

We remedy this by counting the particles in the ground state N0 = 1/(exp (−μ/τ)−1)
explicitly and adding them back into the approximation:

N = s
exp−(μ/τ)− 1

+ sV
(2m/h̄2)3/2

4π2

∫ ∞

0

ε1/2

exp ((ε − μ)/τ)− 1
dε (Bose gas)

N = sV
(2m/h̄2)3/2

4π2

∫ ∞

0

ε1/2

exp ((ε − μ)/τ)+ 1
dε (Fermi gas). (5.37)

These expressions can be written in term of rescaled dimensionless variables x = ε/τ

and λ = exp (μ/τ):

N = s
λ−1 − 1

+ 2s
π1/2 sV

[
mτ

2π h̄2

]3/2 ∫ ∞

0

x1/2

λ−1ex − 1
dx (Bose gas)

N = 2s
π1/2 sV

[
mτ

2π h̄2

]3/2 ∫ ∞

0

x1/2

λ−1ex + 1
dx (Fermi gas). (5.38)
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The quantity Vq ≡
[

2π h̄2

mτ

]3/2
, which clearly depends upon temperature τ , is called the

quantum volume. In terms of the rescaled dimensionless variable v ≡ V/Vq,

N = s
λ−1 − 1

+ 2sv
π1/2

∫ ∞

0

x1/2

λ−1ex − 1
dx (Bose Gas)

N = 2sv
π1/2

∫ ∞

0

x1/2

λ−1ex + 1
dx (Fermi Gas). (5.39)

At fixed temperature, particle number, and volume, and known particle mass, Eq. 5.39
determines λ and therefore μ. However, since the integral cannot be performed ana-
lytically, no closed form expression can be obtained, and one has recourse to further
approximation, or to a numerical solution.

5.2 Quadrature formulae

Given a function f (x) and two points a and b along the x-axis, we want to compute,
numerically, the value of integral

∫ b
a f (x)dx. This is equivalent to finding the area under

the curve. A simple approach is to divide the interval [a, b] up into small subintervals and
then to approximate each subinterval with a shape of known area: a rectangle, a trapezoid,
or some other shape. Some of these are illustrated in Figure 5.1. Using n rectangles with
a base of equal size, and setting the height of the rectangle to the value of the function
at the midpoint of the interval, will give us an approximation called the midpoint rule,
Mn(f ). It is given by the Riemann sum:

Mn(f ) =
n∑

i=1

hf (xi)

where h = (b − a)/n, and xi = a + (i − 1/2)h is the abscissa of the midpoint of the ith

rectangle, as illustrated in Figure 5.1 (lower left). The true value of the integral is the
limit:

∫ b

a
f (x)dx = lim

n→∞ Mn(f )

The computer cannot take the limit, of course, but Mn(f ) can be taken as an approx-
imation, the quality of which depends upon n as well as the function being integrated.
The convergence of this approximation is quite slow for most functions, as we shall see.
Two other quadrature rules, the left-rectangular and right-rectangular rules, which come
from the diagrams in the top row of Figure 5.1, are even worse.
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We can view Mn(f ) in another way by writing it as:

Mn(f ) = (b − a)

[(
n∑

i=0

f (xi)

)

/n

]

≡ (b − a)f̄ (5.40)

where f̄ denotes the mean value. This emphasizes that the sum is the product of the
length of the interval [a, b] times an average value of the function over that interval.

To obtain another important approximation, we can use trapezoids within each
subinterval rather than rectangles, as in Figure 5.1 (lower right). Doing so defines the

x0=a x1 x2 x3 xn–1 xn=b xn–1 xn=b...

x0=a x1 x2 x3 xn–1 xn=b...

x0=a x1 x2 x3 ...

xn–1 xn=bx0=a x1 x2 x3 ...

Figure 5.1 Four plots illustrating quadrature rules. Left and right rectangle rules (top row) and the
midpoint rule (bottom left) are obtained by using a set of rectangles to approximate the area of the curve.
The trapezoid rule (bottom right) uses trapezoids.
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trapezoid rule, Tn(f ). The area of the first trapezoid is 1
2 [f (x0) + f (x1)](x1 − x0).

Assuming equally spaced points such that xi+1 − xi = h, the area under the curve is
approximated by

Tn(f ) = h
(

f0
2

+ f1 + f2 . . .+ fn
2

)

=
n∑

i=0

wi · f (xi)

where h = (b − a)/n, xi = a + ih, w0 = wn = (b−a)
2n , and wi = (b−a)

n for i �= 0, n. Since

n∑

i=0

wi = (b − a),

one can also express this as:

Tn(f ) =
n∑

i=0

wi · f (xi)

∑n
i=0 wi∑n
i=0 wi

= (b − a)

∑n
i=0 wifi∑n
i=0 wi

= (b − a)f̄ .

With the trapezoid rule the integral is the the product of the length of the interval [a, b]
times a weighted average value of the function.

Both approximations Mn(f ) and Tn(f ) are Riemann sums which can be put into the
form of:

In(f ) =
n∑

i=0

wi · f (xi) (5.41)

with:

n∑

i=0

wi = (b − a).

There are many more classical quadrature formulae like this. Only the abscissas (i.e.,
the points xi at which fi = f (xi) is evaluated) and the weights, differ. The pertinent
question is how the performance differs. One can easily imagine that the accuracy of the
approximation improves with the number of intervals n in the approximation, converging
to (actually, defining) the true value of the integral in the limit n → ∞. The rate of
convergence is an important distinguishing feature.
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x0=a x1 x2 x3 xn–1 xn=b...

Figure 5.2 Simpson’s rule uses shapes delimited by a three point Lagrange interpolating polynomial to
estimate the area under the curve.

Before comparing convergence rates, we extend the set of approximate integration
formulae, starting with an important formula called Simpson’s rule. In Simpson’s rule
the subinterval [x0, x2] is evaluated at three points, namely, the lower bound x0, the
midpoint x1 = (x2 − x0)/2, and the upper bound x2. The area of the subinterval is
approximated by a shape bounded at the top end by Lagrange’s three-point interpolating
polynomial, which is of order two, as illustrated in Figure 5.2. Simpson’s rule is a logical
next step if one regards a trapezoid as shape delimited by a first-order polynomial, and
a rectangle as a shape delimited by a zeroth-order polynomial.

We compute the area of the subinterval by situating it symmetrically about x = 0,
such that x0 = −h, x1 = 0, and x2 = h. The interpolating polynomial is:

y(x) = x(x − h)
2h2 f0 − x2 − h2

h2 f1 + x(x + h)
2h2 f2

and its integral is:

∫ h

−h
y(x)dx = h

(
f0
3

+ 4f1
3

+ f2
3

)
.

From this we can build the extended formula by adding up a series of subintervals:

Sn(f ) = h ·
(

f (x0)

3
+ 4f (x1)

3
+ 2f (x2)

3
+ 4f (x3)

3
+ . . . . + 4f (xn−1)

3
+ f (xn)

3

)
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with h = (b − a)/n and xi = a + ih. One identifies the weights as:

{wi} =
{
(b − a)

3n
,

4(b − a)
3n

,
2(b − a)

3n
. . .

4(b − a)
3n

,
(b − a)

3n

}
,

which again sum to (b − a).
To test an integration algorithm it is useful and instructive to apply it to a function that

can be integrated analytically; in such circumstances the error can actually be measured
as a function of the step size (alternately, the number of intervals into which the integral is
divided). Typically the algorithms converge as some power of the step size. The behavior
can be seen by plotting the error versus step size on a log-log plot, as in Figure 5.3.
Exercise 1 explores a few examples, and in a moment we attempt to explain the behavior
that can be seen in Figure 5.3 and in those examples.

There are a few classes from the QatGenericFunctions library that can be
used to integrate using a fixed-step-size classical integration formula. The class
SimpleIntegrator (in QatGenericFunctions, namespace Genfun) provides
a means of computing a definite integral using one of the classical quadrature
formulae.MidpointRule,TrapezoidRule, and SimpsonsRule, all inheriting from
QuadratureRule, can be used interchangeably with the SimpleIntegrator; these
classes all specify abscissas and weights. Figure 5.4 shows a class tree diagram. The
constructor to SimpleIntegrator,

1 10 100 1000

10–5

10–3

0.1

10

Number of Intervals

1+x+3x2

1+x+6x2

1+x+6x3

δ

Figure 5.3 The trapezoid rule is applied to three functions with nonvanishing second derivative.
Plotted is the error vs. the number of intervals used in the calculation. The graph describes a power law
with exponent −2 because the trapezoid rule is a second order quadrature rule.
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QuadratureRule MidpointRule

TrapezoidRule

SimpsonsRule

OpenTrapezoidRule

Figure 5.4 Class tree diagram for QuadratureRule and subclasses. The diagram indicates that
any of the subclasses may be used where a QuadratureRule is required.

SimpleIntegrator(double a,
double b,
const QuadratureRule &rule =

TrapezoidRule(),
unsigned int nIntervals=64);

requires a lower limit (a), an upper limit (b), a quadrature rule, and a number of intervals.
The function call operator,

virtual double operator () (GENFUNCTION function) const;

computes the estimate of the integral. An example of the usage is as follows:

#include " QatGenericFunct ions / Sqr t . h "
#include " QatGenericFunct ions / QuadratureRule . h "
#include " QatGenericFunct ions / S i m p l e I n t e g r a t o r . h "

.

.

.
{

using namespace Genfun;
GENFUNCTION f=Sqrt()
MidpointRule rule;
//
// Integrate from 0 to 1 with 128 intervals.
//
SimpleIntegrator integrator(0,1,rule, 128);
double integral = integrator(f);

}

The classes MidpointRule, TrapezoidRule, and SimpsonsRule are defined
in the QuadratureRule.h header file. Other classical quadrature rules can be imple-
mented as extensions to the base class QuadratureRule.
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5.2.1 Accuracy and convergence rate

Now we return to the issue of the accuracy of these formulae and the rate of convergence.
The first comment which is in order is that these properties depend as much on the
integrand as on the approximation method; in particular the degree of smoothness of
the integrand. A function with a continuous nth derivative on the interval [a, b] is said to
belong to Cn[a, b]. An analytic function on [a, b] has a convergent Taylor series expansion
on that interval, and is therefore infinitely differentiable. A polynomial of degree n
belongs to this class.

Any rule based on rectangles will integrate a zeroth order polynomial exactly. A rule
based on trapezoids will integrate a first-order polynomial exactly, and a rule based
upon a three point Lagrange interpolating function integrates a second order polynomial
exactly. These occur because of the way in which the elementary inscribed shapes are
chosen. The midpoint rule, however, is exact even for first-order polynomials, while
Simpson’s rule is exact even for third order polynomials. In both cases the extra order
comes from a fortuitous choice of the abscissa. We shall return later to this point.

For functions of higher order, or having a higher-order expansion, the accuracy
depends on the number of points and on the higher derivatives of the integrand.
Formulae for the error in the approximation can be obtained by first expanding the
function in a Taylor series and integrating term-by-term over a single subinterval.
Consider a function f (x) which is integrated between two points at x = −h and x = +h.
Expanding f (x) in a Taylor series and integrating term-by-term gives us:

f (x) = f (0)+ xf ′(0)+ x2

2
f ′′(x)+ x3

6
f ′′′(0)+ O(x4)

∫ h/2

−h/2
f (x)dx = hf (0)+ h3

24
f ′′(0)+ O(h5)

= h
(

f (0)+ h2

24
f ′′(0)+ O(h4)

)
. (5.42)

The latter expression gives the actual integral of the function within a single subinterval.
The integral

∫ b
a f (x)dx is the sum the contributions from each subinterval. There are

three pieces:

1.
∑n

i=0 hf (xi) = Mn(f ), which is the midpoint rule approximation.

2.
∑n

i=0
h3

24 f ′′(xi) which is the leading error in the midpoint rule approximation.

3. O(h4) which are the subleading errors.

The leading error is:

En(f ) ≡
n∑

i=1

h3

24
f ′′(xi) =

n∑

i=1

1
24

(
a − b

n
)3f ′′(xi)
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=
n∑

i=1

1
24

(a − b)3

n2

f ′′(xi)

n

= 1
24

(a − b)3

n2 f̄ ′′

where f̄ ′′ is an average value of the second derivative. It can be expressed as f ′′(ξ) where
a < ξ < b, so that the leading error estimate is

En( f ) = 1
24

(a − b)3

n2 f ′′(ξ) a < ξ < b. (5.43)

This error approaches zero as 1/n2, so the approximation is said to have an order of
convergence of two; more informally it is said to be a second-order quadrature formula.

A formula for the leading error in the trapezoid rule can be derived with the help of
two Taylor series expansions for the value of the function at x = ±h/2:

f
(
−h

2

)
= f (0)− h

2
f ′(0)+ h2

8
f ′′(0)− h3

48
f ′′′(0)+ O(h4)

f
(
+h

2

)
= f (0)+ h

2
f ′(0)+ h2

8
f ′′(0)+ h3

48
f ′′′(0)+ O(h4)

and their average:

1
2

(
f
(
+h

2

)
+ f
(
−h

2

))
= f (0)+ h2

8
f ′′(0)+ O(h4).

Using this in Eq. 5.42 we obtain:

∫ h/2

−h/2
f (x)dx = h

[
1
2

(
f
(
+h

2

)
+ f
(
−h

2

))
− h2

12
f ′′(0)+ O(h4)

]

and a set of steps paralleling those from Eq. 5.43 to Eq. 5.43 shows that:

En(f ) = − 1
12

(a − b)3

n2 f ′′(ξ) a < ξ < b. (5.44)

One can show in a similar way that Simpson’s rule is fourth order: the fractional error
converges to zero as 1/n4. Some of these results, which are taken from Davis (1975), are
tabulated in Table 5.1, for formulae with equally spaced abscissas.

Note, finally, an important loophole: the derivatives that appear in Table 5.1 and
the expressions above are required to exist over the full interval [a, b]. This means, for
example that Mn(f ) is second order if f ∈ C2[a, b]. The integral

∫ 1
0 x−1/2dx (which
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Table 5.1 Leading error terms in several quadrature formulae with equally space abscissas and
n subintervals. In this table, h = (b − a)/n.

Name Abscissas i ∈ Weights Error

Right Rect. Rn(f ) xi = a + ih 1..n wi = h − (b−a)
2n f ′(ξ)

Left Rect. R̄n(f ) xi = a + ih 0..n − 1 wi = h + (b−a)
2n f ′(ξ)

Midpoint Mn(f ) xi = a + (i − 1/2)h 1..n wi = h (b−a)3

24n2 f ′′(ξ)

Trapezoid Tn(f ) xi = a + ih 0..n h/2, h, h…

…h, h, h/2 − (b−a)3

12n2 f ′′(ξ)

Simpson Sn(f ) xi = a + ih 0..n h/3, 4h/3, 2h/3

..4h/3, 2h/3, 4/3..

..2h/3, 4h/3, h/3 − (b−a)5

2880n4 f ′′′′(ξ)

cannot be integrated by the trapezoid rule because of the singular point at x = 0) has an
integrand that does not belong to C2[0, 1], so convergence of the midpoint rule is worse
than second order. This type of situation is more frequent than one might expect.

5.3 Speedups and convergence tests

For the trapezoid rule, the error goes as the square of the mesh spacing h. By doubling
the number of intervals (one can add additional points midway between xi and xi+1 in
order to do this), the error decreases by a factor of 4, at leading order. The trapezoid
rule sum computed with 2n intervals S2n is thus better than the sum Sn computed with
n intervals, but in addition to that it establishes a trend. When plotting the sum versus
the square of the mesh spacing, as in Figure 5.5, one sees that successive refinements lie
close to a straight line, converging finally towards S∞.

The extrapolation to zero mesh spacing is simple:

3 (S2n − S∞) = (Sn − S2n)

or

S∞ = 4
3

S2n − 1
3

Sn

or

S∞ = 4h
3

(
f0
2

+ f1 + f2 . . .+ fn−1 + fn
2

)
− 2h

3

(
f0
2

+ f2 + f4 . . .+ fn−2 + fn
2

)
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h2/4 h2

S∞

S2n

Sn

(mesh spacing)2

su
m

Figure 5.5 A trapezoid rule sum is evaluated with n intervals, giving a result Sn, then the number of
intervals is double by bisecting again each interval, giving a new result S2n. The result is plotted vs. the
(mesh spacing) squared, because the error at leading order is proportional to this quantity, so that
continued reduction of the interval will give results lying along a straight line joining the two points.

which is:

Sn = h
(

f0
3

+ 4f1
3

+ 2f2
3

+ 4f3
3

. . .
4fn−1

3
+ fn

3

)
.

Which happens to be Simpson’s rule. We can continue this indefinitely until convergence
is reached. This is what is called Romberg’s method.

In Romberg’s method (Davis, 1975; Press, 2007), one starts with a single trapezoid
covering the entire interval. One subdivides, keeping track of S1 and S2, calling the
function to be integrated just for the new points. Polynomial extrapolation is called in
order to extrapolate the result to an infinitely small grid spacing–as we have seen this
is equivalent to Simpson’s rule at the first step in the algorithm. One further subdi-
vides, recalculates S4, and re-extrapolates, this time using a three-point extrapolating
polynomial. Each extrapolation is compared with the previous extrapolation. When the
difference is within a preset tolerance, the method can be considered to have converged.
In Romberg’s method one obtains higher and higher order quadrature formulae while
simultaneously reducing the mesh spacing, and the method converges surprisingly fast.
When integrating a polynomial of order two, it converges to the exact result after just
three function evaluations–an additional two are needed to detect convergence.

An implementation of Romberg’s integration is provided in the QatGeneric
Functions library by the class RombergIntegrator (in QatGenericFunctions,
namespace Genfun). One instantiates a Genfun::RombergIntegrator using a
constructor taking two arguments, the lower limit a and the upper limit b. The integral can
be taken by calling operator () giving the function to be integrated as an argument.
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In the following example the routine is used to compute 1
π

∫ π
0 sin2(x)dx, which evaluates

to 0.5. A default tolerance of 10−6 on the fractional error is taken in this calculation. It
can be overridden if desired.

#include " QatGenericFunct ions / Sin . h "
#include " QatGener icFunct ions / RombergIntegrator . h "
#include <iostream>
#include <cmath> // Defines M_PI
int main(int argc, char **argv) {
Genfun::Sin sin;
Genfun::RombergIntegrator Integrate(0, M_PI);
double integral=Integrate(sin*sin/M_PI);
std::cout << " I n t e g r a l=" << integral << std::endl;
std::cout << " F rac t i on d e v i a t i o n from t r u e va lue " <<

(integral-0.5)/0.5 << std::endl;
}

The program produces the following output:

Integral=0.5
Fraction deviation from true value -1.11022e-16

Indicating that the procedure has converged to machine precision.

5.4 Arbitrary abscissas

In the previous section we considered several approximations based upon Eq. 5.41, with
equally spaced abscissas. In this section we extend our treatment to include the general
case in which the xi are arbitrary points lying in the interval [a, b]. We shall see that the
additional freedom permits powerful extensions of the quadrature methods considered
above. Our guiding principle will be the exact integration of polynomials of order n or
lower, where n is the number of points. The resulting formulae can be applied either to
subintervals or to entire intervals.

Let us demand that an n-point quadrature rule exactly integrates all polynomials of
order n or less. This can be expressed as a condition on the weights:

n−1∑

i=0

wif (xi) =
∫ b

a
f (x)dx

for f (x) = xk; k = 0, 1, 2 . . .. There are n equations in all, and also n weights wi to
determine. The equations are linear, so we will generally be able to solve them using
matrix methods, e.g., using Eigen. For the relatively simple case of n = 3 they can
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be obtained by hand–we expect to recover Simpson’s rule. We place our three points at
x0 = a = −h, x1 = 0, and x2 = b = h. There are three equations to solve, one for
f (x) = 1, one for f (x) = x, and one for f (x) = x2. The first is:

2∑

i=0

wi = (b − a)

or w0 +w1 +w2 = (b− a) = 2h. This is the normalization equation, and it is always part
of any set of equations that are derived with this method. The full set of equations is:

w0 + w1 + w1 = 2h

−w0h + w2h = 0

w0h2 + w2h2 = 2
3

h3

which can be solved to obtain w0 = 1
3 , w1 = 4

3 , and w2 = 1
3 , which gives us Simpson’s

rule again (Gibbs, 2006).
A four-point quadrature formula for the interval [a, b] with any four abscissas can be

found from the equation:

⎛

⎜⎜⎜
⎝

1 1 1 1
x0 x1 x2 x3

x2
0 x2

1 x2
2 x2

3

x3
0 x3

1 x3
2 x3

3

⎞

⎟⎟⎟
⎠

·

⎛

⎜⎜
⎝

w0
w1
w2
w3

⎞

⎟⎟
⎠ =

⎛

⎜⎜⎜⎜
⎝

(b − a)
b2−a2

2
b3−a3

3
b4−a4

4

⎞

⎟⎟⎟⎟
⎠

(5.45)

The quantities a, b, x0, x1, x2, and x3 will generally be known. Once they are furnished
the solution to this equation is quite trivial. The matrix on the left hand side is known
as a Vandermonde matrix. The procedure is useful for computing weights when the
abscissas are specified in advance or fixed by some practical constraint. For example, the
values of f (x) could consist of measurements taken by some experimental apparatus at
n fixed values of x.

5.5 Optimal abscissas

On the other hand, if the abscissas are not fixed we are at liberty to choose them and
it is worth asking if the choice can be made in an optimal way. To simplify matters, we
can take b = −1 and a = 1. Any proper integral can be transformed to this interval by a
simple change of variable, so there is no loss of generality here.

The Legendre polynomials Pl(x) play an important role in this discussion. They are
defined on the interval [a, b] = [−1, 1]. The first four Legendre polynomials are shown
in Figure 5.6. Important properties of the Legendre polynomials are that Pn(x) has n
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Figure 5.6 The four lowest-order Legendre polynomials P0(x), P1(x), P2(x), and P3(x).

zeros in the range [−1, 1] and the set of Legendre polynomials of degree less than or
equal to n forms a basis for polynomials of degree less than or equal to n. Lastly, the
polynomials obey an orthogonality condition:

∫ 1

−1
Pl(x)Pl′(x)dx = 2

2l + 1
δll′ (5.46)

and a recurrence relation:

Pl+1(x) = 2l + 1
l + 1

xPl(x)− l
l + 1

Pl−1(x) . (5.47)

We continue to use the basic equation of approximate integration, Eq. 5.41, but we
now require that it exactly integrate all Legendre polynomials up to order n − 1; this is
completely equivalent to requiring that all monomials or polynomials up to order n − 1
be exactly integrated.

The integral of any function f (x) can be written as:

∫ 1

−1
f (x)dx =

∫ 1

−1
P0(x)f (x)dx (5.48)

(since P0(x) = 1) and so the error is:

En(f ) =
∫ 1

−1
P0(x)f (x)dx − In(f )

=
∫ 1

−1
P0(x)f (x)dx −

n−1∑

i=0

wif (xi).
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Substituting the functions Pl(x) for f (x) in this expression gives:

En(Pl(x)) =
∫ 1

−1
P0(x)Pl(x)dx −

n−1∑

i=0

wiPl(xi)

= 2δl0 −
n−1∑

i=0

wiPl(xi).

Requiring the error to be zero gives:

n−1∑

i=0

wiPl(xi) = 2δl0. (5.49)

This can be regarded as a matrix equation:

⎛

⎜⎜⎜⎜⎜⎜
⎝

P0(x0) P0(x1) P0(x2) P0(x3) . . .

P1(x0) P1(x1) P1(x2) P1(x3) . . .

P2(x0) P2(x1) P2(x2) P2(x3) . . .

P3(x0) P3(x1) P3(x2) P3(x3) . . .

..

..

⎞

⎟⎟⎟⎟⎟⎟
⎠

·

⎛

⎜⎜⎜⎜⎜⎜
⎝

w0
w1
w2
w3
.
.

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

2
0
0
0
.
0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (5.50)

which can be solved to obtain the weights wi once the abscissas xi are known. The
equation

n−1∑

i=0

wiPl(xi) = 0 (5.51)

holds for 0 < l < n and implies exact integration for all polynomials of order greater
than zero and less than n. Now we try choose the n abscissas xi so that the equation is
also satisfied for higher-order monomials as well. For l = n, it can be easily satisfied by
choosing the xi to be the zeros of Pn(x); the weights wi then follow from Eq. 5.50. The
condition 5.51 is then true for l = n. We now check Eq. 5.51 with l = n+1 by evaluating:

n−1∑

i=0

wiPn+1(xi) =
n−1∑

i=0

wi

(
2n + 1
n + 1

xiPn(xi)− n
n + 1

Pn−1(xi)

)
.

The first term vanishes because Pn(xi) = 0, and the second term vanishes (if n > 0)
because of condition 5.51, which was just shown to be valid for l < 0 < n + 1. So the
previous expression is zero and condition 5.51 is also valid for l = n + 1. Repeating for
l = n + 2, we have
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n−1∑

i=0

wiPn+2(xi) =
n−1∑

i=0

wi

(
2n + 3
n + 2

xiPn+1(xi)− n + 2
n + 3

Pn(xi)

)

=
n−1∑

i=0

wi
2n + 3
n + 2

xiPn+1(xi)

=
n−1∑

i=0

wi
2n + 3
n + 2

xi

(
2n + 1
n + 1

xiPn(xi)− n
n + 1

Pn−1(xi)

)

=
n−1∑

i=0

wi

(
2n + 3
n + 2

2n + 1
n + 1

x2
i Pn(xi)− 2n + 3

n + 2
n

n + 1
xiPn−1(xi)

)

=
n−1∑

i=0

wi

(
2n + 3
n + 2

2n + 1
n + 1

x2
i Pn(xi)

− 2n + 3
n + 2

n
n + 1

{
n

2n − 1
Pn(xi)+ n − 1

2n − 1
Pn−2(xi)

})

This will be zero, too, as long as the very last term in the expression has degree greater
than or equal to zero. One can see by iterating this formula further that polynomials
of decreasing degree appear in the final expression. When finally the minimum degree
is zero, the argument fails and the expression is nonzero. This occurs for l = 2n. We
conclude that condition 5.51 is valid for 0 < l < 2n, and that therefore all polynomials
of degree up to 2n − 1 are exactly integrated. This is quite an exploit! The technique
is called Gauss-Legendre integration. It makes the integration of functions even more
efficient.

One can ask, is it really sensible to expect, for example, fourth-order accuracy in an
integral by evaluating the integrand at only two points? The answer is “maybe”. The
foundation of this algorithm is that one can determine all that one needs to know about
the function from probing it at a few places. This assumption depends on how well the
actual function is described by a fourth-order polynomial. If the function is wildly different
from the model, the integral can be far from the calculated value.

5.6 Gaussian quadrature

Gauss-Legendre integration is only one example of a set of techniques called Gaussian
quadrature that provide very efficient approximations of definite integrals. To motivate
the developments which follow, consider an integral of the form:

∫ ∞

−∞
e−x2

f (x)dx
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where f (x) is a smooth function (e.g., a polynomial). This type of integral occurs
frequently in problems involving the harmonic oscillator, for example. In the study of
the quantum Coulomb problem, integrals having the form:

∫ ∞

0
xae−xf (x)dx

are common. These examples both have the form
∫

W (x)f (x)dx, where W (x) is a weight
function; the main restriction on the function is that it be positive-definite over the range
of integration.

We seek an n-point integration formula:

∫
W (x)f (x)dx ≈

n−1∑

i=0

wif (xi)

which we require to be exact when f (x) is a polynomial of degree n − 1 or less. We will
build such a formula using polynomials pn(x) of degree n, which are orthogonal under
the inner product:

〈f (x)|g(x)〉 ≡
∫

W (x)f (x)g(x)dx

where the integration is carried out over some specified range of x, which may be
bounded or unbounded. These functions, like the Legendre polynomials, form a basis
for their function space. Table 5.2 lists a few of them.

All of the polynomials in this table possess a recurence relation similar to that of
Eq. 5.47, which can be put in the following form:

pn+1(x) = (anx + bn)pn(x)− cnpn−1(x). (5.52)

Table 5.2 Common weight functions W(x) and their corresponding
orthogonal polynomials.

Weight function, W Interval Orthogonal polynomial

1 −1 < x < 1 Legendre Pl(x)

(1 − x2)−1/2 −1 < x < 1 Chebyshev Tj(x)

(1 − x2)1/2 −1 < x < 1 Chebyshev Uj(x)

xαe−x 0 < x < ∞ Associated Laguerre Lα
j (x)

e−x2 −∞ < x < ∞ Hermite Hj(x)
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The recurrence can be anchored by the definitions p0(x) = 1 and p1(x), which in fact
is the basis for most practical schemes for computing these functions. The functions
so defined are orthogonal but not normalized, instead the normalization is given by a
relation:

∫
W (x)(pn(x))2dx = N2

n , (5.53)

where Nn is a factor depending upon the type and order of the polynomial. The values of
constants in the recurrence formula and the normalizing factors are given in Table 5.3.
The polynomials p̃n(x) = pn(x)/Nn are therefore, by construction, orthonormal.

We proceed as in Section 5.5 by noting that we can write:

∫ 1

−1
f (x)W (x)dx =

∫ 1

−1
p0(x)f (x)W (x)dx ; (5.54)

the error in the approximate integral, evaluated for one of the polynomials in the
applicable set is:

En(pl(x)) =
∫

p0(x)pl(x)W (x)dx −
n−1∑

i=0

wipl(x)

= δl0 ·
∫

W (x)dx −
n−1∑

i=0

wipl(x).

Requiring the error to be zero gives:

n−1∑

i=0

wipl(x) = δl0 ·
∫

W (x)dx (5.55)

Table 5.3 Recurrence coefficients and normalizing factors for common
orthogonal polynomials. See Eq. 5.52.

an bn cn N2
n Orthogonal polynomial

2n+1
n+1 0 n

n+1
2

2n+1 Legendre Pn(x)

2 0 1 π/2 (n �= 0) Chebyshev Tn(x)

π (n = 0)

1 (n = 0) 0 1 π/2 Chebyshev Un(x)

2 (n �= 0)

−1
n+1

2n+α+1
n+1

n+α
n+1

�(n+α+1)
n! Associated Laguerre Lα

n (x)

2 0 2n
√
π2nn! Hermite Hn(x)
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which can be used to solve for the weights, given the abscissas. The abscissas, for
n-point Gaussian quadrature, are taken to be the zeros of pn(x), which must be
determined through some means. The recurrence formula, Eq. 5.52 guarantees that the
approximation integrates, exactly, all polynomials of degree less than 2n, as we saw in
the previous section.

The weights can then be determined, by solving the matrix equation:

⎛

⎜⎜⎜⎜⎜⎜
⎝

p0(x0) p0(x1) p0(x2) p0(x3) . . .

p1(x0) p1(x1) p1(x2) p1(x3) . . .

p2(x0) p2(x1) p2(x2) p2(x3) . . .

p3(x0) p3(x1) p3(x2) p3(x3) . . .

..

..

⎞

⎟⎟⎟⎟⎟⎟
⎠

·

⎛

⎜⎜⎜⎜⎜⎜
⎝

w0
w1
w2
w3
.
.

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

∫
W (x)dx

0
0
0
.
0

⎞

⎟⎟⎟⎟⎟⎟
⎠

(5.56)

Alternately, it can be shown (Szego, 1939) that

wi = −λn+1

λn

1
p̃n+1(xi)p̃′

n(xi)
(5.57)

where λn is the coefficient of the leading term in p̃n. This can be written in several ways,
including

wi = −an
Nn

Nn+1

1
p̃n+1(xi)p̃′

n(xi)
(5.58)

with an and Nn as shown in Table 5.3 The roots and weights can be computed up-front,
once and for all, or obtained from a table, i.e. most of the actual computation is in the
initialization of the abscissas and weights; once these are known the actual integration
involves only a simple weighted average, as with the classical formulae.

For the scheme to be effective, the function f should be smooth; which means generally
that weighting function W (x) should absorb most of the variation in the integrand. The
technique has an added advantage when considering integrals with infinite upper or lower
limits, which can be computed without introducing any arbitrary cutoffs.

5.7 Obtaining the abscissas

Gaussian integration resolves many problems in integration in an elegant way, but it
leaves us with an unsolved problem: how to determine the abscissas (roots of the appro-
priate orthogonal polynomial), and how to determine the weights. A little experience with
the Newton-Raphson method will discourage you from using this, as the dependence
upon the initial guess makes the method too unreliable. The following simple method
due to Golub and Welsh (1969) is based upon the three-term recurrence formula,
Eq. 5.52.
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Divide both sides of Eq. 5.52 by the coefficient an:

1
an

pn+1(x) =
(

x + bn

an

)
pn(x)− cn

an
pn−1(x) (5.59)

Szego (1939, p. 42) shows that:

cn

an
= 1

an−1
(5.60)

so we define:

αn ≡ 1
an

βn ≡ − bn

an
. (5.61)

Rewrite Eq. 5.59 as:

αnpn+1(x) = (x − βn)pn(x)− αn−1pn−1(x) (5.62)

and rearrange:

αn−1pn−1(x)+ βnpn(x)+ αnpn+1(x) = xpn(x). (5.63)

To find the zeros of the orthogonal polynomial PN (x), we have to consider this set of
equations for the polynomials pn(x) for n = 0, 1, 2..N − 1. This is a set of equations that
can be expressed as a single matrix equation,

J · p = xp + αN−1q (5.64)

where:

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β0 α0 0 0 . 0 0
α0 β1 α1 0 . 0 0
0 α1 β2 α2 . 0 0
0 0 α2 β2 . 0 0
. . . . . . 0
0 0 0 0 αN−3 βN−2 αN−2
0 0 0 0 0 αN−2 βN−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.65)
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p =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p0
p1
..
..
..
..

pN−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
..
..
..
..

pN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.66)

When x is a zero of PN (x), Eq. 5.64 simplifies to the eigenvalue equation

J · p = xp (5.67)

which may be solved to determine values of x. Having done that, we can use Eq. 5.56,
5.57, or 5.58 to determine the weights.

5.7.1 Implementation notes

Two classes called GaussIntegrator and GaussQuadratureRule (namespace
Genfun) implement Gaussian quadrature. There are several kinds of Gauss-
QuadratureRule. We introduce here the concept of a class tree diagram. Figure 5.7
is a class tree diagram for classes related to GaussQuadratureRule.

Four classes,

• GaussLegendreRule

• GaussHermiteRule

• GaussLaguerreRule

• GaussTchebyshevRule

are called subclasses of the class GaussQuadratureRule, which is called the super-
class. The subclasses can be substituted for the superclass when needed. This pattern is
known as polymorphism and will be covered in detail in a later chapter. To apply Gaus-
sian integration you need to create a GaussIntegrator; the GaussIntegrator then
requires a GaussQuadratureRule. You will find, if you try, that you cannot create
a GaussQuadratureRule per se, but you can create one of the four specific types.

GaussQuadratureRule GaussLegendreRule

GaussHermiteRule

GaussLaguerreRule

GaussTchebyshevRule

Figure 5.7 Class tree diagram illustrating the relationship between the various kinds of
GaussQuadratureRules.



138 Obtaining the abscissas

(A more precise vocabulary for defining this state of affairs will be introduced later).
Here is an example of a program that applies four point Gauss-Legendre integration
to compute 1

(2π)1/2

∫ 1
−1 exp (−x2/2)dx (this function is called a normal distribution, or a

Gaussian distribution, after the prolific Mr. Gauss):

#include " QatGenericFunct ions / NormalDis t r ibut ion . h "
#include " QatGenericFunct ions / GaussQuadratureRule . h "
#include " QatGenericFunct ions / Gauss In t eg ra to r . h "
//
// Use 4pt Gauss Legendre Quadrature to compute the integral
// of a normal distribution from [-1,1].
//
int main() {

using namespace Genfun;
NormalDistribution f;

GaussLegendreRule rule(4);
GaussIntegrator integrator(rule);

std::cout << integrator(f) << std::endl;

return 0;
}

The computation gives a result (0.68268) which differs from the accepted value
(0.68269) only in the fifth decimal place, after only four evaluations of the function.

We mention now two issues. First, imagine that we are to compute the integral∫
f (x)w(x)dx. In some cases one may find it convenient to provide the entire integrand

f (x)w(x) to the integral, in others it may be desired to provide only f (x). A switch is
provided so that the user can choose:

GaussLegendreRule rule(4);

// Default: the function to be integrated is the entire
integrand f(x)w(x):

GaussIntegrator integrator1(rule,GaussIntegrator::
INTEGRATE_DX);

// Optional: w(x) is implied, and only f(x) need be given
to the integrator.

GaussIntegrator integrator2(rule,GaussIntegrator::
INTEGRATE_WX_DX);
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A second point concerns the limits of integration. These are fixed in our implementation,
and users therefore requiring integration over another range are first required to change
variable in order to apply these methods. While it is common to carry out the change of
variable automatically, in our implementation we have not taken these steps.

5.8 Infinite range integrals

While the GaussIntegrator class largely automates the evaluation of finite range
integrals, some care is required when considering integrals over infinite ranges. As
discussed, the preferred method for integrals of the form:

∫ ∞

0
xαe−xf (x) dx

is Gauss-Laguerre quadrature and for integrals of the form:

∫ ∞

−∞
e−x2

f (x) dx

is Gauss-Hermite quadrature. It is important to remember that “of the form” means that
the function f is smooth with respect to the weight functions.

Another simple-minded approach is to cut off the integral at some large value, �,
and consider the double limit h → 0 and � → ∞ using the extrapolation methods of
Chapter 4. Implementing this method without care is not recommended. The issue is the
shape and location of the support of the integrand. For example, the integrand may be
smooth and small except between x = 1023 and x = 1024; numerical exploration of the
integral would completely miss this feature if inappropriate cut offs were employed.

One can also consider transforming the interval [0,∞) to a finite range; for example
x → x′ = x/(1+ x) brings the half plane to [0, 1). This can either be done in the integral
itself, or the abscissas and weights can be adjusted in the quadrature formula:

// generate Gauss-Legendre weights in [0,1)
...
// and remap to [0,infinity)
for (int i=0;i<nGL;i++) {
xprime[i] = x[i]/(1.0-x[i]);
wprime[i] = w[i]/((1.0-x[i])*(1.0-x[i]));

}

This method has the benefit of only requiring extrapolation in one variable (the number
of Gaussian grid points); however, care must still be exercised since the mapped Gauss-
Legendre abscissas will cluster near x = 1 and will only weakly sample the integrand for
large or small x. This is shown in the left panel of Figure 5.8. The squares are mapped
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Figure 5.8 Infinite range functions (left). Infinite range functions mapped to [0:1] (right).

Gauss-Legendre grid points (N = 50). It is evident that the dashed function (with
support near unity) will be sampled, while the solid and dotted functions will need an
alternative method. The right panel displays the same functions mapped to the interval
[0, 1) with the commensurate Gauss-Legendre abscissas. In this case the dashed and
dotted functions may be accurately sampled, while the solid function requires further
attention.

5.9 Singular integrands

It is not unusual for integrands to feature singularities somewhere in the region of
integration. Integrable power law singularities at end points can be handled by a judicious
change of variables. For example, if a function has a square root singularity at a:

f (x) → 1√
x − a

as x → a

then one can use the identity

∫ b

a
f (x) dx =

∫ √
b−a

0
2u f (a + u2) du

to numerically evaluate the integral. For more information on this situation, see the
discussion in Chapter 4 of Press (2007).

An integrable singularity such as:

∫ 2

0

1
1 − x

dx
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presents no problems numerically as long as quadrature abscissas and weights that are
symmetric in the region [0, 2] are used. Sometimes this is difficult to arrange; in this case
we recommend subtracting zero as follows:

∫
f (x)

x − x0
dx =

∫
f (x)− f (x0)

x − x0
dx (5.68)

which follows for any region of integration symmetric about x0 (typically (−∞,∞)).
The result is a regulated integral that can be evaluated with impunity by a number of
methods.

In a similar fashion:
∫ ∞

0

f (x)

x2 − x2
0

dx =
∫ ∞

0

f (x)− f (x0)

x2 − x2
0

dx (5.69)

and:

∫ ∞

0

f (x)
√

x2 + A2 −
√

x2
0 + A2

dx =
∫ ∞

0

⎛

⎝ f (x)
√

x2 + A2 −
√

x2
0 + A2

−
2
√

x2
0 + A2 f (x0)

x2 − x2
0

⎞

⎠dx.

(5.70)

(Consult the exercises for proofs of these relationships.) A working example of this sort of
tricks is presented in Section 21.4.2 where the quantum mechanical scattering amplitude
is discussed.

Finally, we remark that not being clever sometimes pays off. For example:

lim
ε→0+

∫ ∞

0

1
x2 − 1 − iε

dx = i
π

2
.

Directly evaluating the integral with mapped naive quadrature gives π/2 to five digits
accuracy when ε is set to 0.01 and 3,000 grid points are used. The real part of the
integral goes to zero linearly in ε while the error in the imaginary part goes as ε2. Thus
there is no need for tricks if precise answers are not required.

5.10 Multidimensional integrals

Multidimensional integrals are a formidable and common foe faced by the typical
numericist. Simply specifying the boundary is often a daunting task. For low dimensional
integrals we recommend iterating one-dimensional techniques.

Dimensions between three and eight are perhaps best handled with a Monte Carlo
program called vegas (Lepage, 1978). This program uses Monte Carlo methods (the
subject of Chapter 7), which stochastically sample the integrand. The chief problem
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with this approach is that finite regions can get lost in spaces of large dimension. This
will be familiar to students of statistical mechanics, who learn that the surface of a large-
dimensional space completely dominates its volume. The vegas algorithm deals with
this problem by adaptively exploring regions of large weight and concentrating function
evaluations in these regions.

Problems with a large number of dimensions typically require Monte Carlo methods
that are specifically tailored for those problems. Several chapters of this text deal with
precisely this situation: the central task when computing with classical spin systems is
evaluating high-dimensional sums in partition functions (Chapter 20); the same issue
applies to quantum spin systems (Chapter 22); finally evaluating the path integrals that
arise in quantum field theory require extrapolating to the limit of infinite dimensions
(Chapter 24).

5.11 A note on nondimensionalization

Equations arising in physics depend on quantities like mass and charge as well as
fundamental constants like h̄ and c. Often, however, a problem can be reformulated
in terms of reduced quantities that are dimensionless variables representing ratios
of length, energy, frequency, etc. to characteristic quantities specific to the problem.
Nondimensionalization is the process by which the appropriate scales are identified
and used to reformulate the problem in simpler terms. If, for example, a characteristic
distance x0 happens to arise in the problem, then one eliminates x in favor of ξ = x/x0.

The first step is the identification of scales arising from the system under study. This
is often important in its own right—it allows, for example in the case of the hydrogen
atom, to identify the angstrom (10−10m) as a relevant distance scale and the electron
volt (eV) as the relevant energy scale. The subsequent analysis is then simpler and less
error prone since some or all of the physical constants have been removed. In addition,
the interpretation of the solution and the identification of its limiting behavior is also
simpler, since words like “large” and “small” can only be given meaning when the scales
have been identified. A benefit of nondimensionalization is that entire classes of problems
that correspond to a given set of parameter ratios can be solved at a stroke. This seemingly
trivial observation can lead to deep insight, as we shall demonstrate in Section 8.3.

In fairness, we are compelled to mention that there is a downside to nondimension-
alization; namely, the powerful method of error checking via dimensional analysis is no
longer available.

We illustrate the methods of nondimensionalization with three examples.

5.11.1 Compton scattering

A photon interacts with an electron at rest in a process called Compton scatter-
ing. The photon has an wavelength λ, the scattered photon has a wavelength λ′.
The relation between the wavelengths of the incident and scattered photon is λ′ =

h
mec

(1 − cos θ) + λ. One can see that a natural distance scale arises from the problem
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λc = h
mec

= 2.43 × 10−12m, called the Compton wavelength; this distance scale is present
even though the electron it is a pointlike particle, having no finite spatial extent. The
problem can be reformulated, without reference to the three quantities h, me, and c, as
λ′ = λc(1 − cos θ) + λ. Letting x = λ/λc and x′ = λ′/λc, this is equivalent to measuring
all distances in terms of the Compton wavelength, and we can write:

x′ = (1 − cos θ)+ x

This equation is now completely devoid of physical constants.
The Compton wavelength is a natural length scale which can be used to nondimen-

sionalize the Schrödinger equation. In one dimension:

− h̄2

2m
∂2

∂x2ψ(x)+ V (x)ψ(x) = Eψ(x)

We denote the reduced Compton wavelength λ̄ = h̄
mc of the particle in the potential. Let

ξ = x/λ̄, and substitute x = λ̄ξ into the Schrödinger equation:

−1
2

mc2 ∂2

∂ξ2 ψ(ξ)+ V (ξ)ψ(ξ) = Eψ(ξ)

The term mc2 will be recognized as the rest energy of the particle which moves in the
potential. Now rescale the energies such that v(ξ) = V (ξ)/(mc2) and ε = E/(mc2) and
we have:

−1
2

∂2

∂ξ2 ψ(ξ)+ v(ξ)ψ(ξ) = εψ(ξ)

In this form, the Compton wavelength of the particle is used as the length scale, and the
rest mass of the particle is the energy scale. Other length scales may also arise, depending
upon v(ξ), so it may be advantageous, as in the following examples, to revisit the choice
of scale.

5.11.2 Particle in a finite one-dimensional well

A particle is confined a one dimensional box of length a and depth V0. We take a to be
the characteristic length and write the Schrödinger equation as:

− h̄2

2ma2

∂2

∂ξ2 ψ(ξ)+ V (ξ)ψ(ξ) = Eψ(ξ)

where ξ = x/a and V (ξ) = −V0 for 0 < ξ < 1 and V (ξ) = 0 otherwise. The equation
can be further reduced by noticing that h̄2

ma2 = E0 has the dimensions of energy, and
write the equation as:
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− ∂2

2∂ξ2 ψ(ξ)+ v(ξ)ψ(x) = εψ(x) (5.71)

where v(ξ) = V (ξ)/E0 and ε = E/E0. The equation has been simplified and the
relevant energy and length scales have been identified. The equation can now be solved
analytically or numerically. One point of interest is how many bound state solutions exist
for this equation, and one can see that it is determined solely by the quantity v0 = V0/E0.
One can anticipate that the distance scale a typifies wavelengths of the solutions, even
without finding them, and E0 typifies the bound state energies.

5.11.3 Schrödinger equation for the hydrogen atom

For an attractive Coulomb force, the potential is V (r) = − e2

4πe0r and the time-dependent
Schrödinger equation is:

− 1
2m

∇2ψ(x)− e2

4πe0r
ψ(x) = Eψ(x). (5.72)

If we begin as in Eq. 5.71 by taking the Compton wavelength as the characteristic length,
we have:

−∇2
ξ ψ(ξ)+ v(ξ)ψ(ξ) = εψ(ξ)

where �ξ = �r
λ̄

and

v(ξ) = 1
ξ

(
e2

4πε0h̄c

)
.

Since v(ξ)and ξ have been made dimensionless, the quantity in parenthesis is dimen-
sionless and is denoted as α, the fine structure constant:

α =
(

e2

4πε0h̄c

)
≈ 1

137
.

The Schrödinger equation is:

−∇2
ξ ψ(ξ)− α

ξ
ψ(ξ) = εψ(ξ).

Another rescaling is useful in eliminating α from the formulation. If we let �η = α�ξ and
substitute we obtain:

− ∇2
ηψ(η)− 2

η
ψ(η) = εψ(η) (5.73)
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where ε = ε
α2 = E

1
2α

2mc2 is the energy measured in units of the characteristic energy

E0 = α2

2 mc2 = 13.6 eV, which happens to be the well-known ionization energy for
hydrogen. As for the dimensionless quantity

η = αξ = e2

4πε0h̄c
· mcr

h̄
=
(

me2

4πε0h̄2

)
r,

it can be regarded as the position r divided by the characteristic distance:

a0 = 4πε0h̄2

me2 = 0.529Å,

which is known as the Bohr radius. The important distance scales and energy have been
extracted already, without solving the Schrödinger equation, merely by nondimensional-
izing it. The details can be sought in a solution to Eq. 5.73, which is a purely mathematical
problem since physical constants are no longer present in the equation.

5.12 Exercises

1. Compute the integral
∫ 1

0 tanh (x)dx analytically and also using the rectangle rule, the
trapezoid rule, and Simpson’s rule. For each quadrature rule, perform the calculation
in two, four, six, eight, intervals and so forth and plot the difference between the
approximate result and the true result on a logarithmic scale vs. the mesh spacing
1/n. Then, do the same for the integral

∫ 1
0

√
coth (x)dx. Label the plot axes.

2. A simple pendulum consisting of a pointlike mass at the end of a massless string
of length l has a period which can be expressed as T(θmax) where θmax is the

amplitude of the motion. For small amplitudes T0 ≈ 2π
√

l
g . For larger amplitudes

one can write T = T0f (θmax), where f (θmax) is a slowly varying function. Integrate
the equations of motion of the pendulum, in order to obtain f (θmax) at the points
θmax = π

12 , π
6 , π

3 , π
2 , 2π

3 , 5π
6 , 11π

12 . Plot those functions on a graph, making sure to
label both axes.

3. Compute the WKB eigenenergies for a particle of mass m in a potential 1
2 kx2. This

is the quantum harmonic oscillator problem, whose exact solution is well known.
The energies obtained from approximation 5.15 can also be computed analytically
and are known to coincide with the exact solution. In this exercise you are going to
compute them numerically.

a) Write the Schrödinger equation for the system, and nondimensionalize it.
Identify your characteristic length scale and energy scale.

b) Using Eq. 5.15, compute the energy levels of the system for n = 0 . . . 10

c) Plot E/E0 vs. n for your solutions.
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4. A particle of mass m moves in a one-dimensional potential given by V (x) =
−V0e−x2/(2a2) where V0 is the depth of the potential well and a is its width. The
system has a finite number of bound states, having negative energies. This number
is determined by some parameter which is a combination of the constants V0, m,
and a.

a) Find an expression for the aforementioned parameter in terms of the aforemen-
tioned constants, possibly involving other fundamental constants of nature. Also,
determine an energy scale E0 for the problem.

b) Then, calculate numerically the number of bound states vs. this parameter and
plot it over an interesting range.

5. A particle of energy E is incident upon a potential barrier V (x) = V0e−x2/(2a2)

Nondimensionalize the problem as in the previous exercise; compute and graph the
transmission coefficient T as a function of V0/E0. Use the quasiclassical techniques
of Section 5.1.4.

6. The functions:

φn(x) ≡ π−1/4
√

2nn! exp (−x2/2)Hn(x) (5.74)

arise as solutions to the harmonic oscillator problem with nondimensionalized
Hamiltonian:

H = −1
2

d2

dx2 + 1
2

x2 (5.75)

These are not polynomials, but they are orthonormal functions under an inner
product:

〈f |g〉 =
∫ ∞

−∞
f (x)g(x)dx (5.76)

Check this orthonormality numerically by computing and printing out the matrix
A where (A)ij ≡ 〈i|j〉 = 〈φi(x)|φj(x)〉, using Gauss-Hermite integration. Do
this for i, j = 0, 1 . . . 5. What is the minimum number of points needed for this
computation?

7. The functions φi identified in the previous problem constitute a basis for a vector
space of functions in the interval [−∞,∞]. An operator is an object that takes a
function, “grinds on it for a while (Richard Feynman)”, and spits out another
function. In quantum mechanics all observables are represented by operators
(though not vice-versa). Examples of operators are x̂ (the position operator), x̂2, and
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D̂≡ d
dx . Finally, the Hamiltonian itself is an operator, HSHO ≡− 1

2 D̂2 + 1
2 x̂2. It can

be extremely useful in quantum mechanics, as you may already know, to represent
these operators as matrices. The actual matrices are infinite dimensional but, with a
basis, we can compute finite dimensional submatrices whose elements are:

(A)ij ≡ 〈i|A|j〉 ≡ 〈i|Aj〉 (5.77)

a) Compute and print out the lowest 5x5 submatrices starting at row 0 and column
0 for operator x̂, in the basis of the previous problem.

b) Repeat for the operator x̂2; also compare the matrix you obtain with the square
of the matrix found in part (a) and explain any discrepancies you observe.

c) Repeat parts (a) and (b) for the operator D̂.

d) Compute and print out the 5 × 5 submatrix, starting at row 0 and column 0, of
the Hamiltonian operator Ĥ . Do the elements of this matrix make sense to you?

Use Gauss-Hermite integration to compute the matrix elements and use care when
determining the number of points required for accurate values.

8. A deuteron is a bound system of neutron (mass 939.6 MeV/c2) and proton (mass
938.3 MeV/c2). The orbital angular momentum � is known empirically to be zero.
The potential between proton and neutron has been parametrized as:

V (r) = −(635 MeV · fm)
e−(1.55 fm−1) r

r
+ (1458 MeV · fm)

e−(3.11 fm−1) r

r
.

• Make a plot of this potential.

• Look for solutions to Eq. 5.15 in the range of 0-5 MeV. How many solutions can
you find? Give their WKB eigenenergies (put it directly into the plot).

• Draw (as a constant line on your plot) the energies and indicate the corresponding
classical turning points with two points.

Consider the proton and neutron to be spinless particles for the purposes of this
exercise.

9. The charmonium system is a bound state of charm quark (c) and its antiquark (c̄);
as in the previous exercise, consider the two quarks to be spinless. Take the mass of
each constituent to be mc = 1370 MeV/c2 and let the potential be

V (r) = −α
4h̄c
3r

+ r
h̄ca2 (5.78)

where α = 0.38 is a dimensionless constant and a = 2.43 × 10−3 MeV−1.
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a) Use the appropriate semiclassical quantization rule to determine the energies of
the cc̄ system for the S states (� = 0). Do this for the ground state and the first
two excited states.

b) Now do the same for the P-wave states (� = 1).

c) You should find that these energies are significant in comparison to the mass of
the c and c̄. Each state (ground state and excited state) has a mass equal to the
rest energy of the two quarks plus the excitation energy. Calculate this for the
six states you determined in the previous two parts to this question and plot an
energy level diagram.

10. A sphere of radius a has a total charge of Q spread on its surface in a nonuniform
way. The charge distribution is azimuthally (or φ-) symmetric and varies with polar
angle according to

σ(cos θ) ∝ (cos θ)1/2(1 − cos θ)3/2 (5.79)

a) Determine a normalizing factor such that the charge distribution integrates to
Q over the full surface of the sphere. Note, this does not need to be done
numerically.

b) Determine the monopole, dipole, quadrupole, sextupole, and octupole moments
of the charge distribution.

11. [P] Diatomic Molecule.
In diatomic molecules the Morse potential,given by V (x) = De(1−e−β(r−re))2 is used
to describe the interaction between the two atoms in the molecule. For the ground
state diatomic nitrogen, for example the dissociation energy is De = 9.904 eV
and the width parameter is β = 2.85

(
Å−1

)
. The equilibrium bond distance re is

1.080 Å.

• Expand the Morse potential as a Taylor series in powers of ρ = r − re, and retain
the terms up to O(ρ2).

• Choose a length scale and an energy scale to nondimensionalize Schrödinger
equation for the approximation obtained in the previous part, such that the
rescaled problem has the same form as the Hamiltonian of Problem 7. What are
the characteristic length ρ0 (in Å) and the characteristic energy E0 (in eV)? Give
both algebraic and numerical answers.

• Re-express the original Morse potential in units of the characteristic energy, and
in terms of the characteristic length, and plot it on a graph.

• Using the orthogonal functions of Problem 6 as a basis, compute the matrix
elements 〈i|Ĥ |j〉, where Ĥ includes the full Morse potential. Print out the 5 × 5
submatrix starting from row 0, column 0.
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• Determine the eigenvalues of this Hamiltonian, and express them in units of the
characteristic energy.

12. [P] Radioactive Decay.
A radioactive source contains N atoms of an unstable isotope with a mean life of τ .
The radioactive substance decays isotropically. It is embedded a distance z into the
flat surface of an infinitely thick, dense substance with a photon attenuation length
of λ; i.e., the probability density for a gamma ray to be absorbed at distance x from
emission in such a substance is:

P(x) = 1
λ

exp (−x/λ)

a) Show that the number of gamma rays escaping to the surface of the substance is
a function F(z/λ). Compute and graph this function.

b) Instead, assume that the substance itself is uniformly contaminated by the
radioactive species, and compute the flux of gamma rays from the surface,
as a function of the mean lifetime τ and number density n of the radioactive
contaminant and the attenuation length λ of the substance.

c) Granite, with a density of 2.7 g/cm3 contains about 4% potassium oxide (K2O)
by weight. Some of the potassium is the radioactive isotope K40, with a natural
abundance of 0.012% and a half life of 1.2 billion years, but only about 11% of
the decays give a 1.46 MeV gamma ray. The attenuation length of the gamma
ray is 7.5 cm. How many gamma rays are emitted per cm2 from the surface of
an infinitely thick slab of granite?

13. [P] van der Waals Gas.
A van der Waals gas obeys the equation of state

(P + 3/V 2)(3V − 1) = 8T (5.80)

where the variables P, T , and V are pressure, temperature, and volume of the gas
expressed in terms of critical values for these quantities. In this exercise you will
carry out the Maxwell construction which is used to determine the vapor pressure of
the gas at different values of the temperature, in the context of the van der Waals
model. A good discussion of this model and of the physics of phase transformations
in fluids can be found in Kittel and Kroemer (1980).

a) Solve the equation of state for P, and plot P vs. V on the same set of axes for
T = 0.8, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10.

b) For T < 1, the function P(V ) has two extrema at V = V0 and V = V1. For
T = 0.8, 0.85, 0.90, 0.95, determine these values numerically together with
the corresponding pressures P0 and P1. (The average of these two pressures,



150 Exercises

Pave = (P0 + P1)/2, constitutes a decent starting point for the determination of
the vapor pressure, PV , of the fluid at temperature T). You may wish to check
your computation by plotting the calculated extrema on the same set of axes as
in part (a).

c) For T < 1, and P0 < PV < P1 the equation P(V ) = PV has three solutions
ordered by volume: V = Vmin, V = Vmid , and V = Vmax. Compute these points
and also compute

I(PV ) =
∫ Vmax

Vmin

(P(V )− PV ) dV (5.81)

setting PV = Pave. Note that the integral of the previous step depends on PV
both through the integrand and through the limits of integration.

d) Now vary PV until the value of the integral I(PV ) is exactly zero. This condition
determines the vapor pressure.

e) Plot the vapor pressure thus determined vs. the temperature for T =0.8, 0.85,
0.90, 0.95.

14. [T] Regulated Integrals.
Establish Eqs 5.69 and 5.70 by considering the behavior of the denominators near
their zeros.

..........................................................................................
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You may consider this chapter, How to Write a Class, as long-delayed since we have been
dealing with classes from the very beginning of the book and because classes are central
to C++. Why did we wait so long?

In the first instance, the main motivation is to develop some level of intuition about
what a class should be and how it should behave from the perspective of clients of the
class. Now that this is accomplished we are ready to go further and describe what goes
into making a class, in particular the syntax of class declaration and definition. Once
you begin to get the basic idea, we encourage you to consult the references, particularly
Meyers (2005a and 2005b), which go much further into the topic of “how to write a
class” than we do here, and can contribute significantly to the development of a powerful
programming style.

In some cases (like std::complex) it may be possible to think of a class in isolation,
without needing to think about other classes that have to exist to make the entire system

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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work. In other cases, it may seem meaningless to define a single class and no others.
A rotation, for example does not have much meaning without something to rotate, like a
vector. In practical work it is not uncommon to design entire categories of interoperating
classes. This requires considerable thought and practice, and leads inevitably to the
concept of object oriented analysis and design (Booch, 2007). While OOAD is important
for software engineering (particularly for professionals) we largely ignore the topic in this
book. Instead, this chapter is devoted to the first steps arising in the implementation of
“typical” classes.

6.1 Some example problems

Two example problems will be discussed. The first involves one single class, Stack,
which implements a stack of integers. A Stack is a collection class (like std::vector)
but with different storage and access mechanisms. The second example involves two
interoperating classes, JonesVector and JonesMatrix, which together implement a
calculational tool for simulating the effect of optical elements on the polarization of light
(Hecht, 2001).

6.1.1 A stack of integers

A stack is a collection class that is designed to collect integers. To add an item to the
stack you “push” it onto the stack, and to access it you “pop” it off the stack. A “stack”
of books (actual books, not “book objects”) is an appropriate mental model, assuming
that books are added only to the top of the stack and can only be removed from the top.
“Popping” has two functions: it fetches the item which is at the top of the stack and it
removes the object from the stack at the same time.

We want to implement an abstract datatype (call it Stack) representing a stack of
integers. In addition to the two functions (push and pop) mentioned above, the Stack
should support copy and assignment. For convenience we expect to print out the Stack.
This specifies our interface, which must, however, be formalized in a class declaration.
In this chapter we will describe a possible implementation of the class Stack. The
companion website:

http://www.oup.co.uk/companion/acp

contains a directory SKELETONS/CH6/STACK under which you will find the files
STACK/Stack.h and src/Stack.cpp; these are mere skeletons and it will be for
you to fill them with “implementation”.

6.1.2 The Jones calculus

The second problem we take up is the polarization of light, a problem that is mathemat-
ically equivalent to many aspects of a quantum mechanical two-state system. The basis

http://www.oup.co.uk/companion/acp
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states will be |H〉, which designates horizontal polarization, and |V 〉, which designates
vertical polarization. In a vectorial representation these can be written as:

|H〉 =
(

1
0

)
|V 〉 =

(
0
1

)
.

This is not the only type of polarization that is possible; for example “diagonal” light is
linearly polarized at +45◦ from the x-axis:

|D〉 = 1√
2

(
1
1

)
,

and “antidiagonal” light is polarized at −45◦ from the x-axis:

|A〉 = 1√
2

(
1
−1

)
.

Right handed circularly polarized light is like diagonal light except the vertical compo-
nent lags the horizontal component by 90◦:

|R〉 = 1√
2

(
1
i

)
,

while left-handed circularly polarized light has the vertical component leading the
horizontal component by 90◦:

|L〉 = 1√
2

(
1
−i

)
.

Optical filters of various sorts can be used to transform one type of polarized light into
another. Because of the superposition principle, filters act linearly on the polarization
vectors and their action can be represented by matrices. These matrices transform the
polarization vector, changing both the square magnitude of the vector (which represents
the relative intensity of light, or alternatively, the survival probability of a photon) and
the direction. The most common are polarizing filters with a polarization axis along the

horizontal axis
(

1 0
0 0

)
; along the vertical axis

(
0 0
0 1

)
, and along an arbitrary axis

making an angle θ with respect to the x-axis:

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
.

These filters are physically realized in plastics that contain long, resistive polymer chains,
all oriented in the same direction. Another useful optical element is a birefringent
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material, which has a “slow” transmission axis and a “fast” transmission axis due to
the material’s crystal structure. By selecting the right material thickness one can produce
a phase shift in the y-component of the electric field (relative to the x-component). A slab
of material having the right thickness to shift the phase by 90◦ (one-quarter wavelength)
is called a quarter-wave plate. A quarter-wave plate with the fast axis along the vertical

axis is represented by the matrix:
(

1 0
0 −i

)
, while a quarter-wave plate with the fast

axis along the horizontal axis is represented by the matrix
(

1 0
0 i

)
. Circular polarizers

are represented by the matrices 1
2

(
1 i
−i 1

)
, which produces right-handed circularly

polarized light, and 1
2

(
1 −i
i 1

)
, which produces left-handed circularly polarized light.

One can verify that the former matrix annihilates left-handed circularly polarized light
while transmitting right-hand circularly polarized light–and vice versa for the latter
matrix.

Light passing through an optical system consisting of multiple elements undergoes
successive transformations by the matrices representing the appropriate element, thus
the cumulative effect of a series of elements is the matrix product

T = Tn . . .T3T2T1,

where T is the matrix of the full optical system while Ti is the matrix for the ith optical
element. For example, we can build a right circular polarizer by a combination of three
elements, the first being a quarter-wave plate with the fast axis along the vertical direction,
the second being a linear polarizer with a polarizing axis at +45◦, and the third being a
quarter-wave plate with the fast axis along the horizontal direction. This follows from

(
1 0
0 i

)
· 1

2

(
1 1
1 1

)
·
(

1 0
0 −i

)
= 1

2

(
1 −i
i 1

)
.

We want to build a small routine to keep track of the state of polarized light as it
passes through a series of filters. To keep track of the intensity of the light, we shall need
to compute the magnitude of a Jones vector; to compute the polarization we will need
an inner product. The composition of Jones matrices needs to be defined, as well as
their action on Jones vectors. However addition, subtraction, trace, and determinant are
unimportant for the task and should not be part of the interface.

6.1.3 Implementing stack

A Stack class, and an example program that uses the Stack class, has been placed in
the directory

SKELETONS/CH6/STACK.
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The first thing you should do is to load that directory and build the skeleton and example.
This is not working code! The example will not work until you have implemented
the skeleton. The set of commands below builds the Stack class, creates a library
called libStack.a containing the partially implemented Stack class, compiles the
example client and links it against the Stack class, and installs it within the directory
SKELETONS/CH6/STACK/local/bin.

cd SKELETONS/CH6/STACK/src
make

First, have a look at the client code, in client.cpp, a listing of which is shown below.

// This is a program to test the stack. It will work as soon
as you have

// finished implementing the stack class, which means filling
in all of the

// function definitions in Stack.cpp
#include <iostream>
#include "STACK/ Stack . h "
int main (int argc, char **argv) {

// Create a new Stack called a;
Stack a;

// Fill it with the powers of 2, through 128
a.push(1); a.push(2); a.push(4); a.push(8);
a.push(16); a.push(32); a.push(64); a.push(128);

// OK now how big is it?
std::cout << " S i ze of s t a c k " << a.size() << std::endl;

// Print the stack out:
a.print();
// Now pop two element from the stack:
std::cout << " Popping " << a.pop() << " from the s t a c k "

<< std::endl;
std::cout << " Popping " << a.pop() << " from the s t a c k "

<< std::endl;

// See what it looks like now:
a.print();

// Create another stack:
Stack b;
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while (!a.isEmpty()) b.push(a.pop());

// Now a is empty...
a.print();

// And b contains a, in reverse order, right?
b.print();

// But now let’s assign the stack b to a:
a=b;

// and finally we end up with identical stacks:
a.print();

return 0;
}

From a quick read of this code, you get the idea of what the Stack class is supposed to
do. In general, you should have a pretty good idea of what the class ought to do before
you set about writing it!1

The next step is to make a list of all of the functions that your class should fulfill and
write the class declaration. The declaration will live in a header file–we have put ours in
STACK/STACK/Stack.h, which is shown here:

#ifndef _Stack_h_
#define _Stack_h_
#define STACK_MAX 1024
class Stack {
public:

// Constructor:
Stack();

// Push:
void push(int i);

// Pop:
int pop();

// How big is the stack?
unsigned int size() const;

1 You will learn as you go along how much effort can actually be involved with such preliminaries as this.
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// Print (to std::cout)
void print() const;

// Test if the stack is empty
bool isEmpty() const;

private:

unsigned int _count; // Actual length of
stack.

int _data[STACK_MAX]; // An array to store
data.

};

#endif

There are two parts of the class, data and functions, which are called member data
and member functions to distinguish them from ordinary functions, which are called
free subroutines. These members are bound to a particular object (call it a), and they
are accessed or invoked with a statement like a.data or a.function(). For member
data, this is equivalent to accessing the members in a struct. Apart from their object
binding, member functions are to a large extent like any other functions in C++; they
have arguments (with default values if desired); they have return types, and they can
be overloaded (i.e., they can exist in different versions that take different arguments).
When we invoke a bound function, e.g. a.print(), we say that we are “sending a
message to an object.” Besides the constructor, other member functions (push, pop,
print, size, and isEmpty) are defined in the Stack class.

Member data and member functions have two different types of access, public
and private2, with keywords public and private that act like switches in the class
definition. They switch the access to the following data or functions on (public) or off
(private). Public access means that any client can access the data or call the function.
Private access means that access to the data or function is only granted to the code that
implements the class itself. The default access is private. The two access mechanisms
should be used judiciously to achieve a reasonable level of encapsulation.

The implementation of the class is the definition of the six member functions, and this
implementation is in the file src/Stack.cpp. The version of this file you will check
out of the repository contains empty hooks for each of these functions. It is now your

2 A third kind of access, protected, is also possible but should be used in special circumstances and sparingly,
so we do not describe that here.
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job to go in and fill in each of these hooks in order to obtain a working Stack class
(Exercise 1).

The subject of the following sections is the syntax of classes in C++ using the Stack
class as an example. Note that the Stack class is fairly limited, because it cannot grow
past a fixed size. A proper Stack class will dynamically allocate the memory that it needs
in order to solve that problem. The std::vector class from the C++ standard library
already does this kind of thing, so the only size limitation you have to worry about is
the physical memory of your machine. One conceptually difficult part of designing C++
classes has to do with avoiding the pitfalls arising from dynamic memory allocation,
so we will discuss a fixed-size Stack class first, then introduce the operators new and
delete, used for dynamic memory allocation and deallocation, before finally discussing
the implications of memory allocation for C++ class design.

Here is the empty implementation of the class Stack, in the file Stack.cpp, which
we shall now discuss:

#include "STACK/ Stack . h "

// The constructor is called every time an object is created.
// This ensures that the object starts from a well defined

state
// ... without requiring further initialization from the

client.

// unimplemented!
Stack::Stack() {
// ==> Insert code here:

}

// The push function increases the length of the stack by one
element

// add the value to the end of the stack.

// unimplemented!
void Stack::push(int i) {
// ==> insert code here

}

// The pop function decreases the length of the stack by one
element,

// and returns the value that is popped off

// unimplemented!
int Stack::pop(){
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// ==> Change the following line to something sensible...
return 0;

}

// The size function returns the size of the stack. The stack
does

// not change so this function is "const".

// unimplemented!
unsigned int Stack::size() const {

// ==> Change the following line to something sensible...
return 0;

}

// The print function dumps the entire stack to std::cout,
in a

// human-readable format. The stack does not change, so this
function

// is "const"

// unimplemented!
void Stack::print() const {

// ==> insert code here
}

// The isEmpty() query function returns true or false,
depending on

// whether the stack is empty (length 0). The stack does not
change,

// so this function is "const"

// unimplemented!
bool Stack::isEmpty() const {

// Change the following line to something sensible
return 0;

}

These definitions start with the scope operator,Stack::, which means that the function
being implemented is a member function of the class Stack. Within the definition,
the member functions and member data of the bound object can be accessed without
putting an additional scope operator, i.e. simply as _count, or _data. The scope of
all variables within member functions is the same as for ordinary functions: arguments
to the function have local scope, as well as any variables declared within the function,
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and global variables—generally frowned upon—can be accessed from anywhere. There
is also a third kind of scope besides local and global, called class scope. Member data
has class scope, which means that it is visible within the functions implementing the class.

6.2 Constructors

Looking first at the client code (client.cpp), one sees the following declaration:

Stack a;

This is a declaration that creates a single Stack. Stack is said to be the class; a is
the object. The object a is said to be of class Stack; one can also say that a is an
instance of the class Stack, and the creation of an instance of a class is also called
instantiation. Unlike the creation of an instance of a built-in datatype like int, a function
call occurs during the instantiation of a Stack. The function is called the constructor.
The declaration of the constructor can be seen in the file Stack.h and the definition in
Stack.cpp.

There are different ways to write a constructor, and indeed a single class can have
several forms of the constructor. Constructors are functions which:

• have the same name as the class (eg. Stack).

• do not have any return type (not even void).

• have no parameters, one parameter, or multiple parameters.

The purpose of a constructor is object initialization, such that all objects are born in
a well-defined state. One might imagine having a function called init() which the
client would call to initialize an object, but the constructor is a better solution because
it’s automatic.

What should we do to make sure our Stack comes up in a proper state? Well, one
should certainly set the stack counter equal to zero, indicating that nothing is initially
in the Stack. Note that if no constructor is defined in the class, then the compiler
generates one by default. This may not be the constructor you want. For example, a
compiler-generated default constructor would not properly initialize the stack counter.
Constructors, like other functions, can be overloaded and they can have default values
for their arguments.

Consider a class that represents rational numbers, which we call Rational. This
class, let us say, has three constructors, and excerpts for its header file might look like:

class Rational {
public:
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// Default constructor, constructs 0/1
Rational();

// Construct a rational number from a real number:
Rational (double x);

// Construct with numerator and denominator
Rational (int num, int den);

private:

double _num, _den;
};

There are therefore three ways to construct a Rational:

Rational c;
Rational c=4.0; // or Rational c(4.0)
Rational c(4.0,2.0);

Alternatively, the designer of the class Rational could have enabled all three of the
preceeding declarations by definining a single constructor having default arguments, like
this:

class Rational {
.
.
.
// Constructor:
Rational(double num=0.0, double den=1.0);
.
.
.

}

If more than one constructor is defined, the compiler tries to locate the correct one at
compile time. It will complain if it cannot resolve a constructor from the arguments, or
if an ambiguity is detected. A line like:

Rational c=4;

may appear to have the syntax of assignment, wherein first a default constructor is called
and then an assignment is made; however this is actually initialization and is treated by
the compiler in the same way as
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Rational c(4);

or, for that matter

Rational c=Rational(4);

The implementation of a constructor should try to initialize its member data where
possible rather than assign them. In case the member data is const, there is no choice,
since const data can never be altered! The initialization of member data has a special
syntax in C++. Here is an example from class Rational:

Rational::Rational(double num, double den):
_num(num),_den(den) {}

This constructor initializes the two data members _num and _den before entering
the function body. In the function, nothing more is done. The initialization is carried out
in the order that the data is declared in the header file, not in the order that it appears to be
initialized within the function definition. So it is best to make these two correspond. If they
do not, a compiler warning will be generated.

Note that the compiler-generated default constructor is not generated if any other
constructor is defined in the class. This includes the copy constructor which is dis-
cussed next.

6.3 Assignment operators and copy constructors

It is possible to initialize a Stack object with the state of another Stack; the code for
doing this would look like this:

Stack a;
.
.
.
Stack b=a;

On the other hand, it is also possible to assign an existing Stack so that it gets the value
of another Stack:

Stack a;
.
.
.
Stack b;
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// Now let’s assign the stack b to a:

a=b;

For user-defined datatypes the distinction between initialization and assignment is
important because functions are invoked in each case, and they are different functions.
For initialization the function is the so-called copy constructor, for assignment it’s the
assignment operator. These two functions are automatically generated by the compiler,
but in certain cases, particularly when using dynamic memory allocation, the compiler-
generated function simply will not do and you have to write your own. You need to know
the syntax of these functions so that you can write your own (and thereby turn off their
automatic generation). Here are the signatures for these two functions for the Stack
class:

class Stack {
.
.
.

// Copy constructor
Stack (const Stack & stack);

// Assignment operator:
Stack & operator= (const Stack & stack);

.

.

.
};

The assignment operator has a syntax that might strike one as unusual because it returns
a value. The purpose for this is to permit expressions like:

Stack a,b,c,d;
a=b=c=d;

which are allowed for built-in datatypes and which (usually) also make syntactical sense
for user-defined datatypes.

The copy constructor is invoked automatically in certain circumstances and it is
important to know about that in order to understand the programs you write, particularly
with regard to performance. The first circumstance is when an object is passed-by-
value to a function; and the second circumstance is when an object is returned from
a function. Consider the following code, which generates a sawtooth pattern within a
stack of integers:



164 Assignment operators and copy constructors

Stack sawtooth (Stack s)
{
int nTeeth=5;
nStep=10;
for (int iTooth=0;iTooth<nTeeth;iTooth++) {

for (int iStep=0;iStep<nStep;iStep++) {
s.push(iStep);

}
}
return s;

}

In this example, since the argument s to the function sawtooth is passed by value,
a copy constructor is invoked. Furthermore, since the function sawtooth returns a
Stack, a copy constructor is also invoked at the end of the function. In C++ we generally
prefer to copy pointers rather than data, so a better way to implement sawtooth is like
this:

void sawtooth (Stack & s)
{
int nTeeth=5;
nStep=10;
for (int iTooth=0;iTooth<nTeeth;iTooth++) {

for (int iStep=0;iStep<nStep;iStep++) {
s.push(iStep);

}
}

}

Here we have written a void function that takes a reference to a Stack. The function can
then modify the Stack variable in the calling routine, rather than return a copy.

In a little while we’ll implement a function

Stack operator+ (const Stack & a, const Stack & b);

that will return the sum of two Stacks. A copy constructor is called when the function
returns. The compiler then allows statements such as:

Stack a,b,c,d;
Stack e=a+b+c+d;

You should be aware of what is happening when adding four Stacks. First, the compiler
adds c+d, creates a temporary to hold the result, and calls a copy constructor to initialize
the temporary. Then this temporary is added to b, creating a second temporary and
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initializing it with a call to the copy constructor. The Stack a is then added to the second
temporary, and again a copy constructor is called to initialize the temporary. Depending
then on the optimization level and the compiler, a fourth call to the copy constructor can
occur while copying this temporary to the Stack e. Sometimes, the so-called return
value optimization does away with this call. Exercise 2 explores some of the behavior of
constructors, assignment operators, and destructors, which is our next topic.

The creation and destruction of temporaries can be a serious source of inefficiency;
it particularly affects vector and matrix operations. Some program libraries, and in par-
ticular the highly recommended Eigen, eliminate this by using an advanced technique
called expression templates, described in Vandevoorde (2015).

6.4 Destructors

When objects go out of scope (at the end of a control loop or function definition, for
example) the object is destroyed and its memory is reclaimed. At this point; however, it
is sometimes necessary to take certain additional actions to clean up. For example, the
class std::ofstream represents an output file stream. It can be constructed from a
file name and used very much like std::cout, except that the output is directed to the
file rather than the terminal. Here is how you can use it:

#include <fstream>
{

std::ofstream stream( " o u t f i l e . t x t ");
stream << "HELLO from Trout F i sh ing in America "

<< std::endl;
}

The client initializes the stream and writes something to it. The stream goes out of scope
at the second curly bracket at which point the memory for the class is released. But
something else happens there too: the output file is closed.

A special hook is provided in C++ for taking actions like this when a class is destroyed;
that hook is called a destructor. The most common use of a destructor is to clean up
memory that has been previously allocated at some point during the lifetime of the object.
But whatever the reason, one can override the default compiler-generated destructor by
declaring and defining his or her own destructor. The syntax for that is:

class Stack {
.
.
.

//Destructor
~Stack();

};
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and in the implementation,

Stack::~Stack() {
. . .
}

One does not generally “call” a destructor, at least not explicitly, rather the destructor is
called automatically when a variable goes out of scope.

6.5 const member data and const member functions

Consider the declaration of a const int in C++, which looks like:

const int i=5;

This integer constant can be read, but not written. Since it cannot be written, obviously
it must be initialized where declared. One can also define an analogous user-defined
datatype (e.g. Stack) to be const:

Stack a;
.
.
.
Stack b=a;
const Stack c=a;

Having declared the object c to be const, certain member functions (those that are
declared const) can be invoked on the object. In the Stack class, one such example is
size(), declared as follows:

unsigned int size() const;

Such functions are not supposed to change the state of the object. In the following we
present some rules governing const member functions.

If a member function is declared const, it can be invoked on a const object;
otherwise the compiler will disallow the operation. For the Stack class, for example,
the operations push() and pop() are not const, they cannot be invoked upon the
object c above, which is const. That is reasonable, since push() and pop() change
the state of the object c, either growing it or shrinking it by one element. The size()
method, on the other hand, does not change the state of the Stack but merely retrieves
its size; therefore it is declared to be const, and can be invoked upon the const object
c. The functions isEmpty() and print() also do not change the state of the Stack,
and are declared const.



How to write a class 167

Functions that change the state of an object are called mutating; those that do not
are called non-mutating. By declaring the latter const, you are 1) promising not to
change the state of the bound object within the function and as a result 2) allowing the
use of the function when the bound object is const. Note that the compiler will not allow
you to violate your promise! A member function that changes any of the member data
cannot be declared as const and neither can a function that calls non-const member
functions.

Only if a function does not change the member data directly or through function
calls can it be declared const; and only if it is declared const can it be called for
const objects. Remember this rule: use const whenever you can (Meyers, 2005a).
A class lacking const-correctness has a negative knock-on effect throughout the code;
and unfortunately many novices do not take the time to understand this important aspect
of C++. The reader is referred to (Meyers, 2005a and 2005b) or (Press, 2007) for more
information.

6.6 Mutable member data

There is, in certain circumstances, a good motivation to relax the restriction that const
methods do not modify member data. That is when the member data is conceptually
divided into variables which represent the state of the object, and those which represent
a cache of quantities that can be returned upon demand. For example, a member
function could compute the determinant of a matrix–likely an expensive operation. If the
determinant were previously computed, it could simply be stored in an object’s cache,
avoiding a duplicate calculation at the expense of a little extra memory.

The keyword mutable can be combined with the declaration of any member data,
i.e. : mutable int, mutable double, mutable std::complex<double>.
Suppose the cache of some matrix object contained the member data, mutable
double _determinant, and that a method called determinant() computed
the determinant and stored it in the cache together, possibly, with another variable
indicating whether the cache was stale or not. The mutable qualifier indicates that
the _determinant is cache and is allowed to be altered in a const operation. The
compiler then allows the declaration

double determinant() const;

6.7 Operator overloading

Practically any operator that is available in C or C++ can be overloaded to work on
classes. These include the binary operators of Table 6.1, the shortcuts of Table 6.2, the
relational operators of Table 6.3, the increment and decrement operators of Table 6.4,
the unary operators of Table 6.5, and the logical operators of Table 6.6.
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Table 6.1 Binary operators.

Symbol Name

+ addition

– subtraction

* multiplication

/ division

% modulus

^ bitwise exclusive OR

& bitwise AND

| bitwise OR

<< left shift

>> right shift

Table 6.2 Shortcuts.

Symbol Name

+= increase

–= decrease

*= multiply

/= divide

%= remainder

^= exclusive OR into

&= AND into

| = OR into

All of these functions can be implemented as member functions. For the binary
operators, the first operand is the bound object, and the second operand is the one and
only argument to the function, like this:

class Stack {
.
.
.
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Table 6.3 Relational operators.

Symbol Name

== Equality

!= Inequality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Table 6.4 Increment and decrement.

Symbol Name

++i preincrement

i++ postincrement

--i predecrement

i-- postdecrement

Table 6.5 Unary operators.

Symbol Name

+ positive (no-op)

– negative

* dereference

& reference (address-of )

~ ones complement

// Addition of two stacks:
Stack operator+ (const Stack & op2) const;
.
.
.

};



170 Friends

Table 6.6 Logical operators.

Symbol Name

|| OR

&& AND

! NOT

[] Index

() Function Call

There are two ways of invoking this operator, either

Stack a, b;
Stack c = a.operator+(b);

which is unnatural looking, or

Stack a,b;
Stack c=a+b;

which is fully equivalent- the compiler, in fact, makes no distinction between the two.
The operator can also, however, be implemented as a free subroutine, which looks like
this:

Stack operator+(const Stack & opA, const Stack & opB);

and now the second form looks identical and the first form is written as

Stack a,b;
Stack c=operator+(a,b);

The specific implementation depends largely on how much access is required to
implement the operation. With our Stack class, the only access to the stack contents
that we have provided through the public interface is through the pop() method,
which makes it very difficult to splice two Stacks together in the right order in a free
subroutine. However member functions have access to public and private member data,
so in the case of our Stack class we are most likely to write the overloaded operator as
a member function.

6.8 Friends

It is possible to relax the access restriction imposed by the keyword private if desired.
For each class you are allowed to make a list of other classes, other functions, and other
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member functions that can have full access to all of the private member functions and
member data of the class. These are called friend classes and friend functions. One
simply provides a list of the authorized classes and functions in the class definition:

class Stack {
.
.
.
friend class classA;
friend void classA::print();
friend Stack operator+(const Stack &, const Stack &);
.
.

};

Friend declarations should be used sparingly or not at all, since too much friendliness
breaks encapsulation. If you are adding more than an occasional friend to the list, it might
be a sign that your classes are poorly designed. Experienced programmers do not use the
friend keyword frequently, if at all.

6.9 Type conversion via constructors and cast operators

Built-in datatypes have built-in conversion rules. For example it is legitimate to assign an
integer to a floating point number–the integer is then promoted to a higher datatype. It is
also legitimate to assign a floating point number to an integer–the floating point number
is truncated in the operation.

User-defined datatypes can also have user-defined conversion rules. The conversion
rule can be defined using two mechanisms:

• through a constructor taking a single argument

• through an explicit cast operator.

To illustrate this, we define a class called Rational, meant to store exact rational
numbers. Internally the class is represented by an integer numerator and an integer
denominator. The directory EXAMPLES/CH6/RATIONAL contains a minimal interface
for the class, some example client code, and a Makefile. The header file is:

#ifndef _RATIONAL_H_
#define _RATIONAL_H_
#include <cmath>
#include <limits>
class Rational {
//
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// Here is an incomplete class representing rational
// numbers. It can be constructed from numerator and
// denominator or with a double precision number.
//

public:

// Construct from numerator and denominator;
Rational(int num, int den):_num(num),_den(den){}

// Construct from a double:
Rational(double d):_num(1),_den(1){

static int digits=std::numeric_limits<double>::digits;
_num=(d*=(1<<(digits-1)));
_den*=(1<<(digits-1));

}

// accessors:
long int num() const { return _num;}
long int den() const { return _den;}

// compute the value as a double precision number:
double value() const { return double(_num)/double(_den);}

private:

long int _num; // store the numerator
long int _den; // store the denominator

};
#endif

The client code is in fact a small test program called client.cpp located in the same
directory. This code constructs three rational numbers and prints them out, using a
routine called print:

#include " Ra t i on a l . h "
#include <iostream>
double print(Rational r) {
std::cout <<

" Numerator : " <<
r.num() <<
" denominator " <<
r.den() <<
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" va lue " <<
r.value() <<
std::endl;

}

int main() {
Rational r=3.14159;
Rational a(1,2);
Rational b(1,6);
print(r);
print(a);
print(b);
return 1;

}

This code produces the following output:

Numerator :3294195 denominator 1048576 value 3.14159
Numerator :1 denominator 2 value 0.5
Numerator :1 denominator 6 value 0.166667

You can check this code out, compile it, and experiment with it a bit. The first
experiment to perform is to replace print(r) with print(3.14159). You may be
surprised to see that the program works the same way. Why?

The explanation is the second form of the constructor Rational(double d). Any
constructor taking a single argument can and will be used to effect a type conversion.
The print routine requires a Rational argument. The client code provides a double
precision number. The compiler looks for a conversion, and finds one: the constructor.
The constructor is called, the conversion is applied, and the resulting Rational is
passed to the print routine. This illustrates one type of conversion.

Incidentally, if you don’t want automatic type conversion you can turn it off with the
explicit keyword, like this:

explicit Rational (double d);

Here is the next experiment: add the following lines to the client code (after the
instantiation of a and b):

print(a+b);

This will not compile as is; the error will look something like:

error: no match for operator+ (operand types are Rational and
Rational) print(a+b);
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However, you can add the following lines to the interface of Rational; they define the
so-called cast operator (to double):

operator double() const {
return _value();

}

And your compilation problems are solved. Moreover, the program also functions as
expected, i.e., the output now has the extra line:

Numerator :699050 denominator 1048576 value 0.666666

the correct value for the variable c. How has this happened?
The cast operator is commonly used in a C-style cast, allowing you to explicitly

convert one type of variable to another. For example:

Rational a(3,2);
double v=(double) a;

However, the cast operator is also employed at compile time to automatically convert
one type of variable to another. A class can therefore convert in both directions, from a
specified source and to a specified target. If we look at our example, we see that addition is
defined on two doubles but not on Rationals, however the cast operator is invoked
automatically to convert the Rationals to doubles for addition, then the result of
the operation (a double) is converted again to a Rational and passed to the print
routine. This type of behavior can be programmed into the interface of the class, or
omitted–the decision is up to the designer.

6.10 Dynamic memory allocation

Now we come to a critical tool that we will use (Exercise 3) to turn our Stack class
from an amateur job using a fixed array size to a more professional stack class that can
grow to an arbitrary size, up to the available memory of the machine, taking up only as
much memory at any time as it actually needs. The mechanism for allocating memory
in C++ is operator new. Memory can be freed later with operator delete. The
requisite syntax is shown here:

int *i = new int; // makes a single int and returns
a pointer

double *d = new double; // makes a new double and returns
a pointer

Stack *s = new Stack; // makes a new stack and returns
a pointer;
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Rational *c = new Rational; // makes a new Rational and
returns a pointer;

Rational *x = new Rational(1.0,2.0); // makes a new Rational
1/2

operator new allocates space for a particular data type, allocating the needed space
and, for user-defined datatypes, calling the specified constructor. The operator returns a
pointer to the newly created object. You can play with the new object for as long as you
like, and when you no longer need it you call delete on it:

delete i;
delete d;
delete s;
delete c;
delete x;

Deletion calls the destructor for the doomed object.
A pointer is often set to NULL (=0) to indicate that no object is allocated. When the

time comes to allocate the object, the object is new’d and the pointer is set to the address
of the new object. The pointer is then tested to see whether or not any object exists. Upon
deletion, the object is reset to NULL. Since it does no harm to delete zero, delete can be
called as a matter of course. The pattern looks something like this:

Stack *stack=NULL;
if (someCondition) {

stack=new Stack;
}

if (stack) {
stack->push(0);
stack->pop();
stack->print();

// and whatever else you’d like to do...
}

delete stack;
stack=NULL;

The keywords new and delete can also be used to allocate entire arrays of either
built-in data types like int or double, or user-defined data types like Stack or
Rational. For the latter to work, the class should have a default constructor, which
is called for each element of the new array. Here are a few examples:
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int N=100;

int *i = new int[N]; // array of int and returns a
pointer

double *d = new double[N]; // array of double and
returns a pointer

Stack *s = new Stack[N]; // array of stack and returns
a pointer;

Rational *c = new Rational[N]; // array of Rational and
returns a pointer;

If you have allocated an array, you must delete it using a form of delete that is special
for arrays: delete [] pointer. Failure to do this will delete only one element of the
array. Here are a few examples of the proper syntax for deletion of an array:

delete [] i;
delete [] d;
delete [] s;
delete [] c;

One must be aware of two dangers associated with dynamic memory allocation. The
first is called memory leak and the second is called memory overwrite. A memory
leak (Figure 6.1) occurs when a piece of memory that is allocated is not released when its
job is done. If the allocation is performed within a loop, this can occur repeatedly. The
usual punishment is that the size of the program increases in memory, exhausting the
pool of available free memory, and causing the program to crash. A memory overwrite
(Figure 6.2) occurs when a piece of memory that is still in use is accidentally deleted.
In this case this piece of memory becomes available for re-assignment when another
request for memory occurs somewhere in the program. The re-assigned memory is then
overwritten. These two problems can be extremely difficult to track down. Sophisticated
tools called purify and valgrind are sometimes used to identify and locate memory
problems.

6.10.1 The “big four”

Obviously the task of class design becomes more complicated when memory is dynam-
ically allocated. A rule of thumb that is easy to remember is that whenever you have
dynamic memory allocation you can no longer get by with the compiler generated ver-
sions of the “big four” member functions, namely the constructor, the copy constructor,
the destructor, and the assignment operator.

We will now adapt the Stack class to dynamically allocate its memory rather than
using a fixed-size array (Exercise 3). The first thing we do is to comment out the fixed
size array and implement a pointer instead:
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Figure 6.1 In a memory leak memory that is allocated is not released.
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Figure 6.2 Memory overwrites can occur when a piece of memory that is still in use is
accidentally deleted.
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class Stack {
.
.
.
// Old definition:
// int _data[STACK_MAX];

// New definition:
int *_data;
.
.
.

}

When the Stack is born, the pointer _data should be initialized to zero, and whenever
a new int is pushed onto the Stack we check the allocation, and if it is insufficient,
we allocate more memory, then we copy the data from the old array to the new array,
delete the old array, and set the _data pointer to point to the new array. This is an
expensive operation, so we should generally allocate enough memory for a few more
push() operations. One good strategy is to double the existing allocation each time
more memory is needed. The initialization of the _data pointer requires us to write our
own default constructor.

When the Stack goes out of scope we have to clean up any memory that has been
allocated, by calling delete [] on the pointer _data; we use the array form of delete
because we will be allocating arrays of ints. If the Stack has never been used the _data
pointer is zero (most people use the macro NULL from the header file cstddef for
pointers, which is defined to be zero), but it does no harm to delete the NULL pointer
anyway. Thus we are required to write a constructor and a destructor. For reasons we are
about to explain, we also need to write a copy constructor and an assignment operator.

When a statement like

Stack A=B;

is executed the compiler-generated copy constructor leaves the two objects in a state
illustrated by Figure 6.3. The member-to-member copy of data has copied the pointer
to the allocated memory but it has not cloned the memory. Thus both objects point to
the same dynamically allocated memory. Now, if an int is added to A, B’s memory is
modified and may even be relocated. Worse, when A goes out of scope, B’s memory is
destroyed. To avoid these problems, a proper user-defined copy constructor clones any
dynamically allocated objects owned by the source object, setting its own pointers to
the address of cloned objects. The state of the two objects following this sequence of
operations is shown in Figure 6.4.
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Figure 6.3 An illustration of what the compiler-generated copy constructor does to a class with
dynamically allocated memory. After the copy, both objects share the same memory.
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Figure 6.4 A user-defined copy constructor should clone the memory of the source, by allocating its
own space and then copying the contents of the dynamically allocated memory within the source object
to its space.

A compiler-generated assignment operation also wreaks havoc in a class with dynam-
ically allocated memory. Consider the statement

Stack A, B;

B=A;

Prior to this set of operations, the two objects are in a state illustrated by Figure 6.5.
The default assignment operator sets B’s pointer to point to A’s memory and loses the
pointer to memory previously owned by B. This sets us up for, first, a memory leak, and
second, a memory overwrite. You have to write your own assignment operator to avoid
this disaster. The assignment operator has the signature:

Stack & operator= (const Stack & stack);
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Piece O’ Memory

BA

Piece O’ Memory

copy

Figure 6.5 Two objects before the assignment of A to B. The default assignment operator sets B’s pointer
to point to A’s memory and loses the pointer to memory previously owned by B.

Piece O’ Memory

Piece O’ Memory Piece O’ Memory

BA

copy

delete

clone

Figure 6.6 The correct sequence of events in an assignment operator is, first, check for assignment to self;
second, delete any existing dynamically allocated objects; third, clone the memory of the source; fourth,
switch the pointer to point to this memory. Here,A is assigned to B;A is the source, and B is the target.

which indicates that the operator has two functions; it must, first, carry out the assignment
and, second, return the object to which it is bound. In the implementation:

Stack & Stack::operator= (const Stack & stack) {
}

you might well be puzzled by what to return. The answer is provided by a special pointer
to bound objects called this in C++. You should dereference this pointer and return
the result:

return *this;

As to the actual assignment the correct sequence of operations is illustrated in Figure 6.6.
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There is one subtlety with assignment operators: what if an object is assigned to itself,
i.e.,A=A? This may seem crazy, but it is easily possible whenever objects are manipulated
through pointers or references since these may obscure the true identify of the object.
A check for assignment-to-self should be carried out and the actual assignment should
be skipped if the condition is detected. It can be done using the this pointer, as follows:

if (&stack != this) {
// then do assignment

}
return *this

In Exercise 3 you will get a chance to try implementing dynamic memory allocation in
the Stack class as well as the “big four” member functions.

6.11 A worked example: implementing the Jones calculus

In this section we are going to write two classes that implement the Jones calculus,
described earlier. These will use std::complex internally. For pedagogical pur-
poses we will implement all the functions in-line. This involves defining a complex
two-dimensional vector called a JonesVector and a complex 2x2 matrix called a
JonesMatrix. The code we show below is also available in the EXAMPLES/CH6/
JONESCALC area of the companion site, http://www.oup.co.uk/companion/acp.

The project contains the following files:

JONESCALC/JonesMatrix.h
JONESCALC/JonesMatrix.icc
JONESCALC/JonesVector.h
JONESCALC/JonesVector.icc
src/polarization.cpp

The two classes (JonesVector, JonesMatrix) are declared in the *.h files and
defined in the *.icc files. This is a typical structure for classes which include only
inline functions; inline functions are not actually “called” but rather expanded in the
body of the calling routine, which can increase performance; but note that this behavior
is switched on or off by compiler flags, particularly the optimization level (-On). The file
JonesVector.h looks like this:

#ifndef _JONESVECTOR_H_
#define _JONESVECTOR_H_
#include <complex>
#include <iostream>
typedef std::complex<double> Complex;
class JonesVector {

http://www.oup.co.uk/companion/acp
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public:

enum Type {Horizontal,Vertical,Diagonal,Antidiagonal,Right,
Left};

// Construct a zero vector:
inline JonesVector();

// Construct a type from a predefined type
inline JonesVector(Type type);

// Construct on two complex numbers:
inline JonesVector (const Complex &x0, const Complex & x1);

// Compute the magnitude square (=intensity) :
inline double magsq() const;

// Access to individual elements:
inline Complex & operator () (unsigned int i);
inline const Complex & operator () (unsigned int i) const;

private:
Complex x0,x1;

};
inline std::ostream & operator << (std::ostream & o, const

JonesVector & v);
inline JonesVector operator* (const JonesVector & v, const

Complex &c);
inline JonesVector operator* (const Complex & c, const

JonesVector & v);
#include "JONESCALC/ JonesVec tor . i c c "
#endif

In C++, a class should be declared once and only once, or else a compiler error will
occur. It’s possible–almost inevitable, particularly in a large project–that the include file
containing the class definitions are included both directly by some compilation unit, or
indirectly via another header file. To prevent the compiler from seeing two definitions,
the entire header file is enclosed in what is called a guard macro:

#ifndef _JONESVECTOR_H_
#define _JONESVECTOR_H_
...
#endif
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Directives starting with the pound sign (#) are interpreted by a preprocessor, which can
define macros (here, _JONESVECTOR_H_) and, using #ifndef and #define, switch
in or out various sections of the code. The preprocessor is run as part of the compiler
step, using a command called cpp–you can, if you are interested, find more information
about that by typing “man cpp” at the command line.

Include statements like

#include <iostream>
#include <complex>
...

are also processed by the C preprocessor cpp. The class above defines a nested enumer-
ated type JonesVector::Type, which is like an integer but it can only take a limited
set of values, namely JonesVector::Horizontal,JonesVector::Vertical etc.
It also defines three overloaded constructors, which means that it permits three ways for
the JonesVector to be initialized, namely, one of the following syntaxes:

JonesVector v0; // constructs a
NULL vector

JonesVector v1(JonesVector::Horizontal); // constructs a
vector with

// horizontal
polarization

JonesVector v2(1,Complex(0,1)); // constructs a
vector (1,i)

In addition, another way is implied (the compiler generates what is called a copy
constructor to do this):

JonesVector v3(v2); // Is completely equivalent to:
JonesVector v3=v2;

We are completely satisfied with the compiler-generated version of the copy constructor,
as with the compiler-generated assignment operator. The method magsq() returns the
square magnitude of the vector. The method has the const qualifier, which as we
have previously discussed, means that when this method is called, the object does not
change state (i.e., the member data do not change). The declaration guarantees that the
implementation cannot change the state of the class, and the guarantee allows the method
to be called even on objects that are const JonesVectors.

Here we are using the function call operator, operator()(int i) for accessing
an element of the vector. Generally speaking, any method that gives access to the data
members is called an accessor function. The two forms of this accessor we have
declared above have two differences: the second form is a const method while the first



184 A worked example: implementing the Jones calculus

form isn’t; and the second form gives only const (readonly) access while the second form
gives read/write access. So when you type something like:

Complex u=myVector(0);

which method is called? Well, this depends on how the class myVector is defined, and
there are two possibilities:

JonesVector myVector;

or

const JonesVector myVector;

With the second form, you cannot ever change the object myVector. The method which
is declared to be const is the one which is invoked on a const JonesVector. Now,
the first form of the accessor returns a non-const reference, and that allows us to carry
out the following operation:

myVector(0)=Complex(0,1);

Should this be also allowed for a const object? No, because it changes the value of
the object. But the second form of the accessor returns a const reference, and explicitly
forbids this kind of access. We have here an example of overloading on const. Several
discussions in the literature go more deeply into this subject: see for example (Meyers,
2005a) and (Press, 2007, Section 1.5.2).

While we are discussing the accessor we just wrote, note that we are also allowed to
write:

myVector(0)=1.0;

even though the type of myVector(0) is Complex. This line of code is permitted and
properly interpreted by virtue of automatic type conversion, discussed in Section 6.9.

Two Complex member data are part of the class, and they are hidden, encapsulated
by placing them in the private part of the code. Several operators are defined on the
JonesVector class, but they are not part of the class; rather they are free subroutines.
The functions can print the JonesVector to the terminal (operator <<), or multiply
the JonesVector by a scalar. We wrote two forms of this so that either u=v*3.0 or
u=3.0*v will work (for another example see Section 18.3.1). The header file includes
the file JonesVector.icc, as is common practice when inline functions are declared.
One can also declare the functions in the .h file at the same place they are declared, but
we generally prefer to avoid this. The reason is that a header file can serve as pretty good
documentation for the class, and the less cluttered the file is with implementation code,
the better it is for documentation purposes.
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We now examine the file JonesVector.icc.

#include <stdexcept>

inline JonesVector::JonesVector():x0(0.0),x1(0.0) {}

inline JonesVector::JonesVector(type) {
const static Complex I(0,1);
const static double s2=sqrt(2.0);
if (type==Horizontal) {x0=1.0; x1=0.0;}
else if (type==Vertical) {x0=0.0; x1=1.0;}
else if (type==Diagonal) {x0=1/s2; x1=1/s2;}
else if (type==Antidiagonal) {x0=1/s2; x1=-1/s2;}
else if (type==Right) {x0=1/s2; x1=I/s2;}
else if (type==Left) {x0=1/s2; x1=-I/s2;}

}
inline JonesVector::JonesVector(const Complex & x0, const

Complex & x1):x0(x0),x1(x1) {}

inline double JonesVector::magsq() const {
return norm(x0)+norm(x1);

}

inline Complex & JonesVector::operator () (unsigned int i) {
if (!((i==0) || (i==1))) throw std::range_error

( " Index out of range ");
return i==0 ? x0 : x1;

}

inline const Complex & JonesVector::operator () (unsigned
int i) const{

if (!((i==0) || (i==1))) throw std::range_error( " Index out
of range ");

return i==0 ? x0 : x1;
}

inline std::ostream & operator << (std::ostream & o, const
JonesVector & v) {

return o << " [ " << v(0) << " , " << v(1) << " ] ";
}

inline JonesVector operator * (const JonesVector & v, const
Complex & c) {
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return JonesVector(v(0)*c, v(1)*c);
}

inline JonesVector operator * (const Complex & c, const
JonesVector & v) {

return JonesVector(v(0)*c, v(1)*c);
}

The header file <stdexcept> is included because an exception is thrown on lines
22 and 27 when an index is out of range. Exceptions are an important part of a built-in
mechanism for error handling in C++, called exception handling. For now we will
remark that the header file stdexcept, which is part of the C++ runtime library,
contains a set of predefined exceptions. These fall into two categories, logic_error
and runtime_error. Logic errors are used to signal conditions that should never
happen. Example: a programmer has taken great pains to ensure that two arrays,
double x[] and double y[], have the same length, but checks anyway, and if it
is found that the two lengths do differ then a logic error is thrown. Logic errors include
domain_error, invalid_argument, length_error, and out_of_range. The
other category is called runtime_error, and includes range_error (used above),
underflow_error and overflow_error. A class tree diagram is shown in Figure 6.7.
All of the member functions in the class JonesVector use the scope operator :: in
their definitions to indicate, by prepending JonesVector:: to each function that it is
a member function of the JonesVector class. The default constructor uses a peculiar
syntax for initialization. To initialize member functions in a constructor, a colon separates
a list of initialization statements. Our default constructor makes a null vector. The third

runtime_error range_error

overflow_error

underflow_error

system_error

logic_error domain_error

invalid_argument

length_error

out_of_range

future_error

exception

Figure 6.7 Class tree diagram illustrating the relationship between the various kinds of exceptions.
These classes require the inclusion of the header file stdexcept. They are declared within the
namespace std.
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constructor is even more peculiar because the arguments to the constructor have the
same name as the member data. The member data are said to shadow (take precedence
over) the constructor arguments, but during the initialization the member data do not
yet exist! So the syntax is permitted.

Finally, note that the three free subroutines that we define are not scoped within the
JonesVector class since they do not belong to that class.

For completeness we also include the header files JonesMatrix.h:

#ifndef _JONESMATRIX_H_
#define _JONESMATRIX_H_
#include <complex>

typedef std::complex<double> Complex;

class JonesMatrix {
public:
enum Type { Horizontal,Vertical,Diagonal,

Antidiagonal,Right,Left,
Identity, FastHorizontal, FastVertical};

// Construct the identity matrix:
inline JonesMatrix();

// Construct a type from a predefined type
inline JonesMatrix(Type type);

// Construct on two complex numbers:
inline JonesMatrix (const Complex &a00, const Complex &

a01,
const Complex &a10, const Complex &

a11);

// Access to individual elements:
inline Complex & operator () (unsigned int i,

unsigned int j);
inline const Complex & operator () (unsigned int i,

unsigned int j) const;

private:

Complex a00,a01,a10,a11;
};
inline std::ostream & operator << (std::ostream & o, const

JonesMatrix & v);
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inline JonesMatrix operator* (const JonesMatrix & m1, const
JonesMatrix & m2);

inline JonesVector operator* (const JonesMatrix & m, const
JonesVector & v);

#include "JONESCALC/ JonesMatr ix . i c c "
#endif

and JonesMatrix.icc:

#include <stdexcept>
inline JonesMatrix::JonesMatrix():a00(1.0),a01(0.0),a10(0.0),

a11(1.1) {}

inline JonesMatrix::JonesMatrix(JonesMatrix::Type type) {
const static Complex I(0,1);
if (type==Horizontal) {a00=1.0 ;a01=0.0; a10=0.0;

a11=0.0;}
else if (type==Vertical) {a00=0.0 ;a01=0.0; a10=0.0;

a11=1.0;}
else if (type==Diagonal) {a00=0.5 ;a01=0.5; a10=0.5;

a11=0.5;}
else if (type==Antidiagonal) {a00=0.5 ;a01=-0.5;

a10=-0.5; a11=0.5;}
else if (type==Right) {a00=0.5 ;a01=0.5*I;

a10=-0.5*I; a11=0.5;}
else if (type==Left) {a00=0.5 ;a01=-0.5*I;

a10=0.5*I; a11=0.5;}
else if (type==Identity) {JonesMatrix();}
else if (type==FastHorizontal) {a00=1.0 ;a01=0.0; a10=0.0;

a11=I;}
else if (type==FastVertical) {a00=1.0 ;a01=0.0; a10=0.0;

a11=-I;}
}

inline JonesMatrix::JonesMatrix(const Complex & a00,
const Complex & a01,
const Complex & a10,
const Complex & a11):

a00(a00),a01(a01),a10(a10),a11(a11 ) {}

inline Complex & JonesMatrix::operator () (unsigned int i,
unsigned int j) {

if (!((i==0) || (i==1))) throw std::range_error( " Index out
of range ");
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if (!((j==0) || (j==1))) throw std::range_error( " Index out
of range ");

return i==0 ? (j==0 ? a00: a01) : ( j==0 ? a10: a11);
}

inline const Complex & JonesMatrix::operator () (unsigned
int i, unsigned int j) const {

if (!((i==0) || (i==1))) throw std::range_error( " Index out
of range ");

if (!((j==0) || (j==1))) throw std::range_error( " Index out
of range ");

return i==0 ? (j==0 ? a00: a01) : ( j==0 ? a10: a11);
}

inline std::ostream & operator << (std::ostream & o,
const JonesMatrix & m) {

return o << " [ " << m(0,0) << " " << m(0,1) << std::
endl

<< " " << m(1,0) << " " << m(1,1) << " ] ";
}

inline JonesMatrix operator* (const JonesMatrix & m1,
const JonesMatrix & m2) {

Complex a00= m1(0,0)*m2(0,0) + m1(0,1)*m2(1,0);
Complex a01= m1(0,0)*m2(0,1) + m1(0,1)*m2(1,1);
Complex a10= m1(1,0)*m2(0,0) + m1(1,1)*m2(1,0);
Complex a11= m1(1,0)*m2(0,1) + m1(1,1)*m2(1,1);
return JonesMatrix(a00,a01,a10,a11);

}

inline JonesVector operator* (const JonesMatrix & m,
const JonesVector & v) {

Complex v0= m(0,0)*v(0) + m(0,1)*v(1);
Complex v1= m(1,0)*v(0) + m(1,1)*v(1);
return JonesVector(v0,v1);

}

Operations that take JonesVectors and JonesMatrixs pass those objects by refer-
ence rather than by value. Operations which return JonesVectors or JonesMatrixs
will be slowed down by the fact that many constructor calls—including the constructor
of the Complex class and constructors of the JonesVector (or JonesMatrix class);
moreover those routines pass-by-value, which means memory-to-memory copies are
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carried out. In practice one may need to avoid this type of routine if it becomes a
bottleneck in a CPU-bound program. Alternatives can sometimes be found: the addition
increment operator for example, operator +=, avoids the memory-to-memory copy.
Inlining function calls can avoid the overhead of a subroutine call.

Finally we come to a small test program. The program below creates a JonesVector
representing horizontally polarized light, and passes it through a set of three filters that
together make a right circular polarizer. The intensity of the light going through the
filters (relative to the input intensity) is computed, as is the polarization vector of the
emerging light.

#include "JONESCALC/ JonesVec tor . h "
#include "JONESCALC/ JonesMatr ix . h "
#include <iostream>
#include <string> int main (int argc, char ** argv) {

JonesVector v0(JonesVector::Horizontal);
JonesMatrix PH(JonesMatrix::FastHorizontal);
JonesMatrix DG(JonesMatrix::Diagonal);
JonesMatrix PV(JonesMatrix::FastVertical);

// Make a circular polarizer:
JonesMatrix CP=PH*DG*PV;
JonesVector v1=CP*v0;

std::cout << " I n i t i a l = " << v0 << std::endl;
std::cout << " F i l t e r = " << std::endl;
std::cout << CP << std::endl;
std::cout << " F i n a l i n t e n s i t y = " << v1.magsq()

<< std::endl;
std::cout << " F i n a l p o l a r i z a t i o n= " << v1*(1/sqrt(v1.

magsq())) << std::endl;
return 1;

}

This is a lot of work to compute something as simple as the effect of some polarizers on
a beam of polarized light. The virtue, however, clearly lies in reusability of the classes in
the context of related problems.

6.12 Conclusion

In this chapter we have given a very quick introduction to the basic syntax of class
declaration and definition. We have also discussed dynamic memory allocation and how
it can be hidden behind the interface of a class like Stack. Now you are ready to write
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simple classes as your programs call for them. While it may seem complicated, with a
little practice you will master issues like those discussed here, but only to find yourself
thinking about bigger problems like how to design whole categories of classes to operate
together. There is still one aspect of C++ that needs to be discussed before you can
do that, which is the feature that allows whole categories of objects of different class to
be handled identically. This is called polymorphism; a cornerstone of object-oriented
programming. We shall return to this topic later; in the next chapter we will instead turn
to a few applications in the physical sciences.

6.13 Exercises

1. Finish the class Stack by implementing the six functions. Check, whenever you
push a new integer onto the Stack, that you do not exceed the fixed size of the
Stack, and if you do, throw an exception. When you are done, create a subdirectory
of your own area called STACK. If you are using a source code management system
such as SVN, commit your work.

2. Edit the program client.cpp, adding a statement which initializes a third Stack
and prints it out:

Stack c=b;
c.print();

In the class Stack, make your own copy constructor by replacing the compiler-
generated constructor. Make sure that it works! Check by printing the Stack!
Do the same for the assignment operator. Also, add an empty destructor. Then,
add short messages “HELLO from the copy constructor,” “HELLO from the
default constructor,” “ASSIGN from the assignment operator,” and “GOOD-
BYE from the destructor” to the copy constructor, default constructor, assign-
ment operator, and destructor in order to track the invocation of these functions.
Recompile client.cpp and watch what happens. Create another directory called
STACKTRACK and place the modified code there. If you are using a source code
management system such as SVN, commit your code.

3. Rewrite the Stack class so that it uses dynamic memory allocation rather than
a fixed array size. Do not forget to implement a constructor, copy constructor,
destructor, and assignment operator. Create another subdirectory called STACK-
DYNAMIC, place the modified code there, and if you are using a source code
management system such as SVN, commit your work.

4. The Jones calculus is applicable to problems involving polarized light, but cannot
handle situations involving partially polarized light. For these situations the polariza-
tion state is described by a four dimensional Stoke’s vector and the action of optical
elements is described by 4×4 Mueller matrices. Hecht (2001) gives a complete
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description. Design and implement two classes implementing the Mueller calculus,
together with a small test program, as we have done for the Jones calculus.

5. Tensor Product Spaces.
The tensor product of two vectors, denoted as �v1 ⊗ �v2, defines a vector space called
the tensor product space; if dim �v1 = M and dim �v1 = N , then dim �v1 ⊗ �v2 = MN .
Define a class (call it StateVector) that supports the operation of the tensor
product, as well as the more common operations: addition, subtraction and dot
product. These operations should throw std::runtime_error when applied to
incompatible operands. The class should be defined over a complex number field.

6. Tensor Product Operators.
Write a class called Operator which acts linearly upon a StateVector to return
a StateVector having the dimension of the original S. Operators should also
support the tensor product operation, defined to act in the following way upon
StateVectors:

(M1 ⊗ M2) · (�v1 ⊗ �v2) ≡ (M1 · �v1)⊗ (M2 · �v2)

and on themselves according to:

(M1 ⊗ M2) · (A1 ⊗ A2) ≡ (M1 · A1)⊗ (M2 · A2)

Implement this class defining the operations of addition, subtraction, scalar multi-
plication, composition, and action on Operators. These operations should throw
std::runtime_error when applied to incompatible operands. It should be
implemented over a complex number field.

7. Simultaneous Diagonalization of Commuting Operators.
The commutator theorem states that two Hermitian operators A and B can be
simultaneously diagonalized if their commutator [A, B] ≡ AB − BA = 0. Enhance
the fledgling class library of the previous two problems to include a commutator
operation, and a method for the simultaneous diagonalization of two Hermitian
operators. The latter should be robust enough to diagonalize the operators when
one or both operators are singular.

8. [P] Addition of Angular Momentum.
In this problem we use the notation |χ〉 to denote a vector in a complex two-
dimensional vector space (also called a spinor). Choose, as basis for this space, the
vectors denoted as

| ↑〉 ≡
(

1
0

)
, | ↓〉 ≡

(
0
1

)
,

and as a basis for the tensor product space the vectors:

| ↑↑〉 ≡ | ↑〉⊗ | ↑〉, | ↓↓〉 ≡ | ↓〉⊗ | ↓〉, | ↑↓〉 ≡ | ↑〉⊗ | ↓〉, | ↓↑〉 ≡ | ↓〉⊗ | ↑〉
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We use the Pauli spin matrices,

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

Use the classes you wrote in the previous exercises to build the spin operators Si ≡
1
2σi (i = {x, y, z}) in a complex two-dimensional space as well as the following tensor
product operators:

a) �x ≡ Sx ⊗ I + I ⊗ Sx

b) �y ≡ Sy ⊗ I + I ⊗ Sy

c) �z ≡ Sz ⊗ I + I ⊗ Sz

d) �2
z = �x ·�x +�y ·�y +�z ·�z.

Determine the commutation relations between the operators �i and �j , (i, j =
{x, y, z}) and between �i and �2. For each pair of commuting operators, determine
the common eigenvectors in the basis stated above. (Note, the components of these
vectors are the famous Clebsch-Gordan coefficients).

9. [P] Three Spin-1/2 Particles.
Instead of adding two spin-1/2 particles as in the previous exercise, add three spin-
1/2 particles. To do this generalize the � operators of the previous problem in the
following way:

a) �x ≡ Sx ⊗ I ⊗ I + I ⊗ Sx ⊗ I + I ⊗ I ⊗ Sx

b) �y ≡ Sy ⊗ I ⊗ I + I ⊗ Sy ⊗ I + I ⊗ I ⊗ Sy

c) �z ≡ Sz ⊗ I ⊗ I + I ⊗ Sz ⊗ I + I ⊗ I ⊗ Sz

with, as before, �2
z = �x · �x + �y · �y + �z · �z. Determine the eigenvalues and

common eigenvectors of the operators �z and �2; and express the eigenvalues in
terms of the basis given by | ↑↑↑〉, | ↑↑↓〉, | ↑↓↑〉, etc.

10. Systems with one unit of angular momentum can be represented by a set of three
basis vectors:

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠ ,

while the angular momentum operators are defined as:

Jx ≡ 1√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ , Jy ≡ 1√
2

⎛

⎝
0 −i 0
i 0 −i
0 i 0

⎞

⎠ Jz ≡ 1√
2

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ .
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Repeat the previous problem, but this time taking the tensor product of a) two
angular-momentum 1 matrices, and b) an angular-momentum 1/2 matrix and
an angular-momentum 1/2 operator. Determine, as in the previous problem, the
simultaneous eigenvectors of �z and �2, defined as in the previous problem.

11. [P] Clebsch-Gordan Coefficients: the general case.
In quantum mechanics, for a particle with spin quantum number j, the operator Sz
has eigenvalues m = j, j − 1, j − 2 . . . − j + 2, −j + 1, −j. Integer or half-integer
values of the j are allowed in nature. For a given value of j, the angular momentum
operators Jx and Jy can be expressed as:

Jx = 1
2
( J+ + J−)

Jy = − i
2
( J+ − J−)

where J± has matrix elements 〈m|J±|m′〉 = √
( j ∓ m′)( j ± m′ + 1)δm,m′±1 When the

basis is ordered such that (1, 0, 0, . . .)T represents m = j, (0, 1, 0 . . . .) represents
m = j − 1, and so forth, the matrix representing J± is upper (lower) triangular with
nonzero entries only immediately above (below) the main diagonal.

a) From this prescription rederive the matrices Jx, Jy and Jz for spin 1/2 and spin 1.

b) Write a generic routine based on the classes StateVector and Operator
which constructs the operators Jx, Jy and Jz for arbitrary total angular
momentum.

c) By taking the tensor products as before, and performing a simultaneous diago-
nalization, perform the Clebsch-Gordan decomposition of the sum of any two
angular momenta.

12. [P] SU(2) Group Elements.
SU(2) is the group represented by 2 × 2 unitary matrices of unit determinant. An
element of SU(2) can be represented by a unit four-vector. Thus if a ∈ SU(2), then:

a = 11 a0 + i �a · �σ ,

where σ is a Pauli matrix and:

a2 ≡ a2
0 + �a · �a = 1.

Write a class to realize this group. Your code should implement:

a) overloaded constructors

b) a function returning the inverse of an element
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c) a function returning the trace of a group element

d) group multiplication

e) multiplication of a group a element by a scalar s. Pay attention to s ∗ a and a ∗ s.

See Chapter 24 if you need help.

..........................................................................................
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Monte Carlo, the capital city of the Principality of Monaco, is Europe’s premiere
gambling destination. Monte Carlo methods were given their name because they are
implemented by throwing computer-generated random numbers, similar to “virtual
dice”. These methods are useful in two areas. First, they are used in the simulation of
stochastic processes, including quantum mechanical processes, which reflect the inherent
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randomness of nature, and thermodynamic processes which result from the randomness
with which nature organizes staggeringly large systems of particles. Second, they are
used to compute the numerical value of integrals. Both of these topics are quite generic,
for example, ‘simulation’ may mean something as prosaic as following the path of an
electron through a gas or as abstract as the path of a quantum system through Hilbert
space. Similarly, ‘integration’ can range from evaluating the volume of a complex region
to computing a field-theoretic Feynman path integral. In this chapter we discuss the
building blocks of the Monte Carlo method and applications to integration. A more wide-
reaching discussion of simulation is given in Chapter 15.

7.1 Multidimensional integrals

In Chapter 5 we discussed a variety of techniques for integrating one-dimensional
functions. We did not have an extensive discussion of multidimensional integrals. Nesting
integrals provides an obvious technique for the computation of approximate multidi-
mensional integrals, but one should be aware that the rate of convergence decreases with
dimensionality. To see this, suppose we seek to estimate the D-dimensional integral

I =
∫

dx1

∫
dx2

∫
dx3 . . .

∫
dxDf ( �x)

by repeatedly using a classical quadrature formula for the each integral. The integral I is
estimated as:

I ∼
n∑

i1=1

n∑

i2=1

n∑

i3=1

..
n∑

iD=1

wi1wi2wi3 ..wiDf (xi1 , xi2 , xi3 . . . xiD)

where xij are the weights of the ith point in the jth dimension and the wij are the
corresponding weights. These are determined by the classical quadrature formula which
we wish to apply, as discussed in Chapter 5. The total number of points at which the
function is evaluated is N = nD. If the order of convergence of the classical quadrature
formula is p, then the error decreases as (1/n)p = N−p/D. Thus a fourth-order method,
such as Simpson’s method, becomes a first-order method when applied to a four-
dimensional integral.

In Monte Carlo integration, fixed abscissas are replaced with abscissas chosen at
random; for multidimensional integrals the abscissas are points chosen at random
throughout the multidimensional domain of integration. An estimate of the integral
is derived from the value of the function evaluated at the randomly chosen points.
Independent estimates evaluated with different random sequences of points will yield
different estimates. The error in the estimate is statistical in nature, and like all statistical
errors, it falls as the square root of the number of points used in the evaluation. While this
may strike you as a slow convergence rate, it is independent of the number of dimensions,



198 Generation of random variates

and superior to other methods in large dimensional spaces. In addition, Monte Carlo
integration is usually very simple to code.

Monte Carlo integration will be the first application we discuss, and we will see how
to set up the integrals, estimate their statistical errors, and understand how to optimize
the calculation for CPU efficiency. The first task is to establish a method to draw random
numbers according to a chosen probability distribution.

7.2 Generation of random variates

Random variables can be discrete or continuous. Discrete variables are characterized
by a probability distribution, P(xi), where xi ranges over all of possible values of x.
Continuous variables are characterized by a probability density function (PDF), ρ(x),
defined such that ρ(x)dx represents the probability of obtaining a value between x and
x + dx. We take this to be normalized such that:

∫
ρ(x)dx = 1 ,

with the integral taken over the range of possible outcomes.
A variate is a random number drawn from a probability distribution or a probability

density function. Both simulation and integration require a source of random variates,
which is the first computational challenge to be addressed in this chapter. This task is also
referred to as sampling the distribution, or generating a realization of the distribution.
In some cases we may know the analytic form of the PDF, and in other cases we may
lack knowledge about the analytic form, but instead we have a clear idea of the steps
which produce the PDF. This is particularly true when the PDF arises by following a
stochastic or deterministic/stochastic system–like a gamma ray penetrating a slab of lead,
where it can suffer one or more Compton scattering events, photoelectric absorption, or
electron-positron pair production.

7.2.1 Random numbers in C++11

Since the advent of the new C++ standard, C++11, adopted by the International
Organization for Standards (ISO) in August 2011, the situation with random num-
ber generation has changed substantially. The new standard library includes random
number engines plus uniform and nonuniform variate generators of many types. The
original source of this code was the Boost project (www.boost.org). Because these
developments are very recent, the new standard may not be fully implemented by your
compiler, or the implementation may be “experimental”. In recent versions of the g++
compiler (4.8 and greater) the additional compiler flag -std=c++11 is required. All
the class declarations and definitions for random number generation are defined in the
header file <random>. The best documentation we have found for this is online at:

www.cplusplus.com/reference

www.boost.org
www.cplusplus.com/reference
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In most implementations, including that of the C++ standard library, the generation of
random variables is separated into two steps. In the first step, a random sequence of bits
is generated by an engine. In the second step, these bits are turned into boolean, integer,
or floating point variates following a specified probability distribution or PDF.

7.2.2 Random engines

The output of an engine is a completely deterministic series of bits that depends on the
internal state of the engine; the state may consist of a single integer or an array of integers.
The initial values of the integer(s) are called the seed(s). Once the seed is given, the
random engine will produce the same “random” pattern of bits each time the program
is executed. Because the behavior is entirely deterministic, these generators are referred
to as pseudorandom number generators. In some cases, this reproducibility is desired.
In other cases, like when statistically independent random numbers are required from
the same program, it is not what you want. To get a statistically independent sample, you
need to change the seed(s) used to initialize the random engine at the beginning of each
independent run. Alternately, you can use a genuine source of random numbers.

We will not discuss the many different algorithms used to generate random bits. The
subject is vast, often touching on number theory, and the research is quite active since
cryptography relies critically on good generators. For a basic discussion we refer the
interested reader to (Press, 2007, Chapter 7). The most widely used random number
generator in the world is the Mersenne twister engine (Matsumoto, 1998). Its standard
library implementation is the class std::mt19937, which we will use in our examples.
The following code instantiates a Mersenne twister engine and prints out the random
bits from that engine:

#include <iostream>
#include <random>
typedef std::mt19937 EngineType;
int main() {

// A way of generating random bits:
EngineType e;
for (int i=0;i<10;i++) std::cout << e() << std::endl;

}

Note that we have first defined the EngineType to be std::mt19937 which can be
easily changed to any other engine, e.g.std::ranlux24 or std::knuth_b. All of the
these generators are pseudorandom number generators: run the program again and you
will see that the same set of random bits is produced.

After a very long time, the random numbers start to repeat the same sequence. The
number of numbers that can be drawn from the generator before repetition occurs is
called the cycle length, and for a good random number generator this is very long. For
std::mt19937 the cycle length is 219937 − 1.
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The seed is a long unsigned int and it can be specified in the constructor to the
engine, like this:

EngineType e(seed)

As an exercise, try this, and verify that the sequence of random numbers varies with the
value of the seed.

If you need a source of truly random and always independent numbers, you can use
the std::random_device engine. It functions like any other random engine in the
library but it provides genuine random numbers instead of pseudorandom numbers,
taking these numbers from occurrences that are detected on the host computer. You can
switch to this engine with the declaration:

typedef std::random_device EngineType;

Unlike seeded pseudorandom number generators, this generator will provide a different
stream of random bits every time the program is run. It can also be used to generate
a single truly random number which one then uses to seed a pseudorandom number
generator.

7.2.3 Uniform and nonuniform variates

Once the random bits are generated, they are easily transformed to a uniform variate by
letting N bits represent an unsigned integer, then dividing this integer by 2N − 1 (which
is the largest integer representable by N bits). The standard library provides a (template)
class for this,

std::uniform_real_distribution

which has an interface similar to that of other distributions available in the library.
The following example produces and prints ten uniform variates between 0 and 1:

#include <cstdlib>
#include <iostream>
#include <string>
#include <random>
typedef std::mt19937 EngineType;
int main (int argc, char **argv) {

EngineType e(100);
std::uniform_real_distribution<double> u;

for (int i=0;i<10;i++) {
std::cout << u(e) << std::endl;
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}
return 1;

}

You can change the range of the uniform variate in the constructor call, for example the
following line

std::uniform_real_distribution<double> u(-1,1);

will instantiate a uniform distribution on the interval [-1,1]. The distribution u produces
a new result each time the function call operator u(e) is invoked. The default interval is
[0,1]. Generating nonuniform variates is a common task. The techniques we discuss later
use the uniform variate as a key component in the generation of nonuniform variates.

A variety of nonuniform variable generators are available in the C++ standard library.
A complete description can be found at www.cplusplus.com/reference. These
are called “distributions”, which are classes that generate a random variate using a
random engine. They include:

• uniform_real_distribution and uniform_int_distribution, gener-
ating floating point or integer variates spread uniformly over an interval [a,b].
(Parameters like a and b are generally specified in the constructor call, here and
throughout this list.)

• The bernoulli_distribution, generating the boolean result of a single “yes”
or “no” experiment that is parametrized by the probability p of succeeding.

• The binomial_distribution, generating the integer number N of successes
in an ensemble of M experiments parametrized by the probability p of succeeding.
The corresponding probability distribution is:

P(N |M, p) = M!
N !(M − N)!p

N (1 − p)(M−N)

• The poisson_distribution, generating the integer number of events falling
within a fixed interval of time, space, or some other variable, parametrized by the
mean expected number of events μ. The probability distribution is:

P(N |μ) = μN

N ! e−μ

• The exponential_distribution, generating a floating point variate accord-
ing to an exponentially falling probability density, parametrized by the decay
constant λ. The probability density is:

ρ(x|λ) = λe−λx .

www.cplusplus.com/reference


202 Generation of random variates

• The normal_distribution, generating a floating point variate according to
a normal (or Gaussian) distribution, parametrized by the mean x0 and standard
deviation σ , and described by the probability density function:

ρ(x|x0, σ) = 1√
2πσ

e−(x−x0)
2/2σ 2

.

• The gamma_distribution, generating a floating point variate according to a
gamma distribution, which can be expressed as:

ρ(x|α,β) = 1
�(α)βα

xα−1e−x/β

This has some of the same features as the normal distribution, but does not extend
to negative values.

• The chi_squared_distribution, generating a floating point variate accord-
ing to the χ2 distribution:

ρ(x|N) = 1
�(N/2)2N/2 xN/2−1e−x/2

which arises frequently in statistical applications and in data analysis.

• The Cauchy_distribution, generating a floating point variate according to:

ρ(x|γ , x0) = 1

πγ

(
1 +

(
(x−x0

γ

)2
)

is called a Cauchy distribution, also known to atomic physicists as a Lorentzian
distribution and to particle and nuclear physicists as a Breit-Wigner.

This list is not exhaustive. We can very often find the distribution we need in the standard
library. When that is not possible, we will need to roll our own. Before we do that we need
a tool to visualize sequences of random variables, whether they are coming from off the
shelf software or whether we have generated them by some other means.

7.2.4 Histograms

Visualizing probability distributions (and other things) can be very helpful (for example,
when debugging). The proper way to do this is to create a histogram and plot it. In the
QAT library, this can be done by creating a histogram (class Hist1D), creating a plot
from it (class PlotHist1D), and adding it to the PlotView. Here is a code excerpt
with the relevant parts; the whole program can be found in EXAMPLES/CH7/HIST.



Monte Carlo methods 203

#include " QatDataAnalys is / Hist1D . h "
#include " Q a t P l o t t i n g / PlotHist1D . h "
#include <random>
...
typedef std::mt19937 EngineType;
...
int main (int argc, char * * argv) {

...

EngineType e;
Hist1D histogram ( "Random", 1000, -10.0, 10.0);

std::uniform_real_distribution<double> u;
for (int i=0;i<100000;i++) {
double x=u(e);
histogram.accumulate(x);

}

PlotHist1D pH=histogram;
PlotView view(pH.rectHint());
view.add(&pH);
...

}

The plot generated by this simple example is shown in Figure 7.1 (left). Now that
we have a way of visualizing the data we produce, we can experiment with the random
number library, changing, for example the distribution according to which random
numbers are generated. The modifications required to generate according to the normal
distribution are quite trivial:

std::normal_distribution<double> n(3.0, 0.5);
for (int i=0;i<100000;i++) {
double x = n(e);
histogram.accumulate(x);

}

Arguments to the constructor are the mean x0 = 3.0 and the width σ = 0.5. Figure 7.1
(middle) shows the plot we obtain with those modifications. Figure 7.1 (right) shows an
example of a gamma distribution generated using α = 3, β = 1. The constructor call is:

gamma_distribution<double> g(3.0);
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Figure 7.1 A plot of the binned data produced by the example code, with the aid of the classes,
Hist1D and PlotHist1D. On the left is a uniform distribution. In the middle, a normal distribution
obtained with minor modifications described in the text. On the right is a gamma distribution, obtained
again with minor modifications.

7.2.5 Numerical methods for nonuniform variate generation

When you cannot find the distribution you need in the standard library, you’ll need to
generate your own. There are two widely applicable methods for sampling a distribution.
The rejection method is simple and robust and works with either univariate PDFs or
multivariate PDFs, but it is inefficient (extremely so in some cases). The transforma-
tion method is elegant and fast and generally preferred when applicable for univariate
PDFs. If neither of these methods work then you find yourself in the domain of other
tricks tailored to specific distributions; in this case we refer you to (Devroye, 1986), which
is an extensive treatise on the subject.

7.2.6 The rejection method

The rejection method is also called “random throwaway” or von Neumann rejection.
Suppose that one seeks to generate a random variable x according to the distribution
ρ(x) = 3

4

(
1 − x2

)
for −1 < x < 1. The method requires that one determine ρmax, the

maximum value that the PDF takes over its full range. Here ρmax = 3/4. Next we throw a
uniform variate x over the full range (from -1 to 1). Finally, we decide whether to keep the
variable that was just generated. For that purpose, we throw a second random variable y
generated uniformly from 0 to ρmax. Keep the first variable x only if the second variable y
satisfies y < ρ(x), otherwise throw it away. In other words, we generate points uniformly
over a rectangular region in a two-dimensional space, retaining only those points that fall
beneath the desired PDF (in y) and then ignoring their y coordinate.

That this procedure samples ρ(x) can easily be seen by plotting the two variables in
the xy plane, applying the condition y < ρ(x), and then projecting out the conditional
probability onto the x-axis.

The code looks something like this:

EngineType e(100);
std::uniform_real_distribution<double> rx(-1, 1),ry

(0,0.75);
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Hist1D hx( "X", 100, -2.0, 2.0);
Genfun::Variable X;
Genfun::GENFUNCTION f=3/4.0*(1-X*X);
for (int i=0;i<1000000;i++) {

double x = rx(e);
double y = ry(e);
if (y<f(x)) {
hx.accumulate(x);

}
}

The full program can be found in EXAMPLES/CH7/THROWAWAY1. Note that it is
important that f (x) never exceeds the maximum allowable value of the random variable
y, in this case 3/4. On the other hand, if the maximum value of y is chosen to be too
large, the distribution will be correct, but inefficient. Note also that while we have used a
normalized probability density in this example, in general the method does not require
that the probability density be normalized.

The technique can be trivially extended to generate joint probability distributions as
well. As an example we take the probability distribution:

σ ∼ 1
2 − x

+ (2 − x)− 2(1 − x2) cos2 φ

which occurs in the Compton scattering of polarized light, as we shall see in Chapter 15.
The code now requires three random variables to be generated per attempt (x̂, φ̂, and
the rejection variate). It is illustrated in the following code, excerpted from the complete
program in EXAMPLES/CH7/THROWAWAY2. The corresponding output is shown in
Figure 7.2. The code also illustrates the use of the Hist2D and PlotHist2D classes
from the QAT library for making and displaying two dimensional histograms.

–2 –1 –0.6 –0.2 0.2 0.6 1–1.2 –0.4 0.4 1.2 2
0

4000

8000

12000

16000

20000

24000

x

ρ(
x)

1
0

1.2

2.4

3.6

4.8

6

x=cos(θ)

φ

Figure 7.2 Two plots illustrating the rejection technique. On the left is the technique applied to sample
a simple 1d PDF, x = 3/4(1 − x2). On the right, a plot of the Compton scattering cross section vs. the
two variables x = cos θ and φ, for annihilation radiation with Eγ = 511 keV. The code for the two
examples is in EXAMPLES/CH7/THROWAWAY1 and EXAMPLES/CH7/THROWAWAY2.
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#include " QatDataAnalys is / Hist2D . h "
#include " Q a t P l o t t i n g / PlotHist2D . h "
#include <random>
typedef std::mt19937 EngineType;
int main (int argc, char * * argv) {

...

const double MAXTHROW=2.0;
EngineType e;
std::uniform_real_distribution<double>

rx(-1.0,1.0),
rphi(0.0,2*M_PI),
ry(0.0,MAXTHROW);

Hist2D hxy( "X vs PHI ",
25, -1.0, 1.0,
25, 0, 2.0*M_PI);

Genfun::Variable X(0,2),PHI(1,2);
Genfun::Square Square;
Genfun::Cos Cos;
Genfun::GENFUNCTION f = 1/(2-X) + (2-X) - 2.0*(1-X*X)*

Square(Cos(PHI));

for (int i=0;i<1000000;i++) {
Genfun::Argument arg(2);
arg[0]=rx(e);
arg[1]=rphi(e);
double y = ry(e);
if (y<f(arg)) {
hxy.accumulate(arg[0],arg[1]);

}
else if (y>MAXTHROW) {
throw std::runtime_error ( " Funct ion va lue exceeds max

random no ");
}

}
PlotHist2D pxy=hxy;
{

PlotHist2D::Properties prop;
prop.brush.setStyle(Qt::SolidPattern);
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prop.brush.setColor( " darkRed ");
pxy.setProperties(prop);

}
PlotView view(pxy.rectHint());
view.add(&pxy);
...

}

7.2.7 Direct sampling (or the transformation method)

The second main method for sampling distributions is called the transformation
method, also known as direct sampling. This is applicable when the PDF that we
wish to sample can be integrated and the resulting cumulative density function can
be inverted. When these conditions are satisfied the distribution can be sampled with
one call to a uniform variate generator and one call to a function that carries out the
transformation from the uniform variate to a nonuniform variate distributed according
to the desired PDF.

Let x be a random variable distributed uniformly on the interval [0,1]. The function
we use to transform x to another variable y is called the sampling function, and we will
designate it as S, so that y = S(x). We wish y to be distributed according to some
probability distribution ρ( y), and our job is to determine the sampling function.

To do so, consider a small interval in the range of x of width dx. The probability for
the variate generator to draw a value in this interval is ρx(x)dx. The interval corresponds
to an interval of the transformed variable y, with width dy such that the probability will
fall within the interval of ρy(y)dy. Setting these two probabilities equal we get:

ρx(x)dx = ρy( y)dy.

However ρx(x) = 1 since x is uniformly distributed so:

dx = ρy( y)dy

or:

∫ x

0
dx =

∫ y

y0

ρy(y)dy ≡ F(y) (7.1)

x = F(y)

or:

y = F−1(x).
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We therefore see that the sampling function is S = F−1, which is the inverse of the
cumulative probability density (CDF):

F(y) =
∫ y

y0

ρy(y)dy.

In Eq. 7.1, the quantity y0 varies from problem to problem but represents the lowest
value for which the PDF ρ(y) is defined. This could be −∞ in certain cases, or 0 in others,
depending on the nature of the PDF. To summarize the requirements of this method: the
PDF must be integrable and indeed normalized; and the integral of the normalized PDF
must be invertible.

Let us now take a look at several PDFs that can be generated by the transformation
method. We start with the normalized PDF for a typical radioactive decay process:

ρ(t; τ) = 1
τ

e−t/τ .

where τ is the mean life of the decaying isotope. The cumulative distribution function is:

y = F(t) = 1
τ

∫ t

0
e−t/τdt = 1 − e−t/τ

and the inverse is:

t = −τ ln(1 − y).

Thus S(x) = F−1(x) = −τ ln(1 − x) is the sampling equation. Recall that x is a uniform
variate on the interval [0,1].

Another useful distribution that can be generated this way is the Cauchy distribution,
which also goes by the name of a Breit-Wigner (for nuclear and particle physicists)
and Lorentzian (for atomic physicists). The Cauchy distribution describes unstable
resonances in physics, such as a spectral line of energy x0 and half-width γ . The PDF is:

ρ(x; x0, γ ) = 1

πγ

(
1 +

(
x−x0
γ

)2
) .

The distribution is characterized by the mean x0, and the half-width at half maxi-
mum γ . The problem can be reduced to sampling the standard Cauchy distribution:

ρ(x; x0 = 0, γ = 1) = 1

π
(
1 + x2

)

by rescaling and shifting the result.



Monte Carlo methods 209

The CDF for the standard Cauchy distribution is:

F(x) = 1
π

∫ x

−∞
1

1 + x2 dx

= 1
π

tan−1 x + 1
2

.

Inverting gives the sampling function:

S(x) = tan
(
π

(
x − 1

2

))
.

As a third example of the transformation method, we sample a symmetric triangular
distribution on the interval [−2,2]. The distribution is:

ρ(x) = 1
4
(2 + x) −2 < x < 0

ρ(x) = 1
4
(2 − x) 0 < x < 2.

The distribution is piecewise continuous, but we will find a trick to generate it efficiently.
The idea will be to generate a uniform variate on the interval [-1,1]. If the result is positive
it is used to generate the negative half of the distribution (−2 < x < 0), if it is negative it
will be made positive and used to generate the positive half. We re-normalize the negative
half of the distribution so that it integrates to unity:

ρ+(x) = 1
2
(2 + x) − 2 < x < 0,

and integrate to obtain the cumulative distribution function:

F(x) = 1
4
(x + 2)2.

Finally, invert to obtain the sampling equation.

S(x) = √
4x − 2.

When x (generated from −1 to 1) is positive we return the value S(x) and when it is
negative we return −S(−x).

Code that implements all three of the examples in this section can be found in the
directory EXAMPLES/CH7/DIRECTSAMPLE. The area is set up to build a program
called directsample that can be invoked with a flag -ex taking the value 1, 2, or 3,
to generate the first (exponential), second (Cauchy/Breit-Wigner), or third (triangular)
examples.
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7.2.8 Sum of two random variables

Imagine that we have two random variates x1 and x2 drawn from probability distributions
ρ1(x1) and ρ2(x2). What is the probability distribution of the sum u = x1 + x2?

To answer this question form the joint probability density for the two variables
ρ(x1, x2) ≡ ρ1(x1) · ρ2(x2) and change variables:

(x1, x2) → u, v

u = x1 + x2

v = x2.

The Jacobian of this transformation has determinant |J| = 1.
Now we transform the probability density as follows:

ρ(x1, x2)dx1dx2 = ρ1(x1) · ρ2(x2)

|J| dudv

= ρ1(u − v)ρ(v) dudv

so that we identify the joint probability density ρ(u, v) = ρ1(u − v)ρ2(v). To obtain the
probability for u = x1 + x2 alone, we integrate over v:

ρ(u) =
∫

ρ(u, v)dv =
∫

ρ1(u − v)ρ2(v) dv.

This latter function is called the convolution, denoted (ρ1 ∗ ρ2), of the two PDFs.
Thus the sum of two random variates is distributed according to the convolution of
their PDF’s.

A common application of convolution is in describing the resolution of a detector or
other effects that smear out the response of an instrument to a signal. Imagine that one
is observing a spectral line with a spectrometer. If resolution effects can be neglected
the spectrometer should record a Lorentzian lineshape, i.e., a lineshape described by
a Cauchy distribution. However a thermal Doppler shift can increase or decrease the
energy of a single detected photon, depending upon the velocity of the atom emitting the
photon. The increase/decrease is governed by a normal distribution with

σ =
√

kT/mc2x0,

where x0 is the natural frequency of the emission line. Thus the observed lineshape will
be the convolution of a Gaussian distribution with a Cauchy distribution. This curve,
having three parameters (� = 2γ , x0 and σ ), is called a Voigt distribution. You can
find an implementation in QatGenericFunctions/VoigtDistribution.

If we sum up more random variates something interesting begins to happen. The
result of summing 1, 2, 3, and 4 uniform variates (from −1 to 1) is shown in Figure 7.3.
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Figure 7.3 Sum of one, two, three, and four uniform variates. The Gaussian behavior of the sum
emerges as a consequence of the central limit theorem.

The sum of a large number of random variates with identical distributions will be
Gaussian according to the central limit theorem. In this example we see that reasonably
Gaussian behavior begins to emerge after only a few uniform variates are summed up.
You therefore might be tempted to add variates to approximate a Guassian distribution.
The distribution, however, cuts off entirely at x = ±N where N is the number of uniform
variates used in the sum, whereas a real Gaussian distribution has infinite extent in either
direction. This might not be a problem if the statistics you intend to generate is such that
fewer than one single event will be found past the cutoff point. But there are better ways
to generate a Gaussian distribution.

7.2.9 The Gaussian (or normal) distribution

Because of its importance in mathematics and physics, many sources of routines for
Gaussian sampling, including the C++ standard library, exist. However, the prominence
of the Gaussian distribution makes a closer look worthwhile.

To start, note that the CDF is related to an error function, and this is not readily
invertible, so the transformation method is awkward. Nevertheless, it is possible to
construct a working algorithm if an accurate implementation of erf−1 can be obtained
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(see (Abramowitz and Stegun, 1972) for this). But a better algorithm, called the Box-
Müller method, obviates the need for this labor.

The method is based on the following simple observation:

1√
2π

e−x2/2 1√
2π

e−y2/2dxdy = 1
2π

e−r2/2r dr dφ.

Because the radial dependence is simple, one can generate points in the r − φ plane
and then transform to Cartesian coordinates (hence two Gaussian variates are created).
Specifically, one generates φ according to a uniform distribion on [0, 2π] and r according
to ρr(r) = e−r2/2r. To do this, note that:

ρr(r) rdr = e−r2/2 rdr

= e−z dz.

To summarize, one has the algorithm to:

1. Generate φ uniformly on the interval [0, 2π].

2. Generate z according to an exponential distribution.

3. Compute r = √
2z.

4. x = r cosφ and y = r sinφ are independent normally distributed random variables.

The Box-Müller method is commonly available within most random number packages
including those of the C++ standard library so you will never actually have to code it
yourself. Use

std::normal_distribution

instead.

7.3 The multivariate normal distribution, χ2,
and correlation

Let x and y be two independent, normally distributed random variables with mean x0
and y0 and standard deviation σx and σy. Their joint probability density is simply the
direct product of two normal distributions:

ρ(x, y) = ρ(x) · ρ(y) = 1√
2πσx

e
− (x−x0)

2

2σ2
x

1√
2πσy

e
− (y−y0)

2

2σ2
y . (7.2)

This is normalized such that
∫∞
−∞
∫∞
−∞ ρ(x, y)dxdy = 1. Contours of constant ρ(x, y) in

the x-y plane are ellipses, with the principal axes oriented along the x and y axes. To obtain
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a more general expression for the distribution we will make the following definitions:

�α ≡ (x, y)

�α0 ≡ (x0, y0)

D ≡
(

σ 2
x 0
0 σ 2

y

)
.

These definitions permit a more compact expression for Eq. 7.2:

ρ(�α) = 1
(2π) |D|1/2 e−(�α− �α0)

T ·D−1(�α−�α0)/2.

Imagine that we choose to express �α − �α0 in terms of another set of random variables:

�α − �α0 = A · (�α′ − �α′
0
)

where A is the matrix of a rotation in the x-y plane; recall that for rotations AT A = 1.
The Jacobian of this transformation is the matrix A, and its determinant is unity. The
rule by which we transform probability densities is the following:

ρ(x′, y′) = ρ(x, y)/||J||

and in our case this is:

ρ(�α′) = 1
(2π) |D|1/2 e−(�α′−�α′

0)
T ·(AT D−1A

)·(�α′−�α′
0)/2.

The expression

AT D−1A =
(

AT DA
)−1

= C−1

defines the covariance matrix, C. This is symmetric, real, and positive-definite
(because all of its eigenvalues are positive). Since |C| = |D|, we can write (dropping
the primes)

ρ(�α) = 1

(2π)N/2 |C|1/2
e−(�α−�α0)

T ·C−1(�α−�α0)/2. (7.3)

In the case N = 2 this is the usual form of a bivariate normal distribution. The
generalization to an N dimensional parameter space is straightforward (as shown) and
is called a multivariate normal distribution.
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Figure 7.4 Profiles of a bivariate normal distribution. Left: with a diagonal covariance matrix.
Middle: with positive correlation. Right: with negative correlation.

Returning to the bivariate normal distribution, since we have obtained the general
expression taking the case of independent, normally-distributed random variables and
rotating the two-dimensional parameters space, the profile of the PDF now resembles an
ellipse whose major and minor axes do not coincide with the coordinate axes, as shown
in Figure 7.4 (middle plot and right-hand plot). This means that the two variables x and
y are no longer independent, but correlated. We say that the correlation is positive when
a positive deviation in x is most likely to be accompanied by a positive deviation in y; and
it is negative when a positive deviation in x is most likely to be accompanied by a negative
deviation in y. When the random variables are uncorrelated or independent, deviations
in one coordinate are unrelated to those in the other coordinate.

An explicit expression for the covariance matrix is:

C =
(

σ 2
x σxy

σxy σ 2
y

)
.

Since the matrix is positive-definite the determinant is greater than zero, which implies:

−1 <
σxy√
σ 2

x σ
2
y

< 1.

The quantity r = σxy/
√
σ 2

x σ
2
y is called the correlation coefficient. When it is exactly

equal to ±1, from the above equations one can see that the covariance has a zero
eigenvalue, and the elliptical profile is degenerate. In such circumstances, the value of
one random variable predicts exactly the value of the other random variable and the
two variables are said to be completely correlated (r = 1) or completely anticorrelated
(r = −1).

Given a known multivariate normal probability distribution and a single vector of
random variables �μ (a measurement) presumed to have been drawn from the distribution
(either from a real or a simulated experiment), one is sometimes called upon to decide
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how probable the vector �μ is. In probability theory we do not discuss the probability of a
single point, but rather the probability of an interval, and the way to properly frame the
question is how probable is it that another vector of random variables drawn from the
same distribution has an even lower value of the probability density.

In Eq. 7.3, the quantity χ2 ≡ ( �μ − �α0)
T · C−1( �μ − �α0) appearing in the exponent,

is called the Mahalanobis distance squared or the standard distance squared, or more
commonly the χ2 between �μ and �α0. This is like the normal Euclidian distance between
a given point �μ in the N-dimensional space and the most probable point �α0, except
it uses the inverse covariance matrix as a metric. We integrate the multivariate normal
distribution over a region centered at �α0 and bounded by the surface ( �μ−�α0)

T ·C−1( �μ−
�α0) = χ2. This integral depends only on the value of χ2, and on the number of
dimensions, or degrees of freedom, N , of the parameter space. It is called the cumulative χ2

distribution:

P(χ2|N) =
∫

V
ρ(�α)dNα =

∫

V

1

(2π)N/2 |C|1/2
e−(�α−�α0)

T ·C−1(�α−�α0)/2dNα

=
∫

V ′
1

(2π)N/2

N−1∏

i=0

1
σi

eu2
i /2σ 2

i dN u

where V is the elliptical (ellipsoidal or hyperellipsoidal) region enclosed by the contour
of constant χ2, and in the second line we transformed variables αi → ui to independent
random variables ui by rotating the hyperellipsoid so that its principal axes coincide with
the N coordinate axes; V ′ is the reoriented hyperellipsoid. A change of variables allows
the integral to be reduced to a simple form:

P(χ2|N) = 1

�(N
2 )

∫ χ
2

2

0
t

N
2 −1 e−t dt.

This function is known as the cumulative χ2 distribution. Implementation of this
function is often made in terms of the incomplete gamma function P(a, x) (Press, 2007):

P(χ2|N) = P
(

N
2

,
χ2

2

)

and in the QatGenericFunctions library it is implemented as CumulativeChi
Square. The complement of the function, Q(χ2|N) ≡ 1 − P(χ2|N) is most often
referred to as the “probability χ2 for N degrees of freedom”. Figure 7.5 shows these
distributions for N = 1, 2 . . . 6 degrees of freedom.

If one has a dataset consisting of N independent random (column) vectors �x i.e.,
D = {�x0, �x1 . . . �xN−1}, one can also define a covariance matrix for the dataset:

C = 〈�x�xT 〉 − 〈�x〉〈�xT 〉 (7.4)
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Figure 7.5 Graphs of the cumulative χ2distribution P(χ2|N) for N = 1, 2 . . . 6 degrees of freedom.

where the angle brackets denote averaging over the dataset. This definition is valid
no matter what the joint PDF is that governs the random vectors xi . If the PDF
is a multivariate Gaussian distribution, then the covariance matrix for the dataset
converges to the covariance matrix of the PDF in the limit N → ∞. The correlation
coefficient

r = Cij/
√

CiiCjj (7.5)

can also be estimated from the data. Because of Schwartz’s inequality it is bounded
by (−1, 1).

7.4 Monte Carlo integration

An immediate application of the stochastic methods developed in this chapter is the
integration of multidimensional functions. Rewind your miserable life to your first
semester of integral calculus. There you are, computing the area of some geometric
shape, maybe the unit circle. Our task will be to recreate this experience with Monte
Carlo methods. Since the area is known to be A = π , we can also pretend that we do not
know the value of π and call this a numerical computation of π .

The unit circle is shown in Figure 7.6. The area of this circle is:

A =
∫ 1

−1
dx
∫ √

1−x2

−
√

1−x2
dy. (7.6)

In the Monte Carlo method, we compute this integral by throwing (over and over again)
two uniform variates on the interval [-1,1]. Each pair maps onto a point on the x -y plane.
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Figure 7.6 The area area of the circle is computed by throwing two random numbers between −1 and
1. Each pair of numbers maps to a point in the x − y plane. The fraction of points falling within the
shaded region is computed.

If the point falls within the unit circle (the shaded region in Figure 7.6), we count it as
a “success”, otherwise it is a “failure”. The number of successes is denoted N and the
number of failures M. The area of the circle is the area of the box (4 units) times the
fraction of successes: A = 4r with r = N/(N + M).

Obviously this procedure works well with a large number of points and less well with,
say, five or ten points. It certainly behooves us to estimate the error. The computed value
of the integral, like the points themselves, is a random variable whose expectation value
is π . We can use statistical methods to quantify the variance and/or standard deviation.
Since M and N are independent, we propagate the statistical errors in these quantities
(
√

M and
√

N , respectively) to obtain:

σ 2
r =

(
∂r
∂N

)2

σ 2
N +

(
∂r
∂M

)2

σ 2
M

=
(

M
(M + N)2

)2

N +
( −N
(M + N)2

)2

M

= r(1 − r)
M + N

. (7.7)

In other words σr = √
r(1 − r)/Ntot, where Ntot = M+N , and the error in the area is σA =

4σr = 4
√

r(1 − r)/Ntot. This error decreases as the square root of the number of points,
and thus as the number of function evaluations. Compared with the Trapezoid rule (error
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Figure 7.7 Another view of the integration in Eq. 7.6.

decreases as the square of the number of evaluations) or Simpson’s rule (fourth power),
the convergence rate is very slow. This slow convergence is disappointing, however,
it is independent of dimension, and therefore represents a massive advantage for high
dimensional problems.

Another way of viewing the quantity r is shown in Figure 7.7. Consider a function
f (x, y) (whose shape is like a top-hat, rising to a value of 1.0 where x2 + y2 < 1 and
having the value zero everywhere else) over the square region defined by |x| < 1 and
|y| < 1. The value of r is the average value of this function. The value of fi = f (xi , yi) for
the ith point is random and equal to either 0 or 1; its mean value over the whole sample
is f = 0·M+1·N

M+N = r. The variance of r, Eq. 7.7, can be related to the variance of the
function f :

σ 2
f = N

N + M
(1 − f )2 + M

N + M
f 2

= f (1 − f )2 + (1 − f ) f 2

= f (1 − f )

so that:

σ 2
r = σ 2

f

Ntot
.

There are two important lessons which one can see already from this simple integration
exercise:

• The integrals converge as “something” divided by
√

Ntot. There is little one can do
to influence this situation!

• However, the “something” (in this case σf ) has everything to do with how much
the function we integrate varies over the domain of integration. Functions with little
variation will have a smaller error.
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It is also useful to consider the fractional error in the integral,

σA/A = 4
√

r(1 − r)/Ntot

4r

= 1√
Ntot

√
1 − r

r

For two dimensions (a circle) the value of r, which is π/4, is high. If, however, we were
using this method to estimate the volume of a sphere in three dimensions, the value would
be π/6. In higher dimensions it is even lower. The problem here is that more and more
of the points are being laid down in regions where the value of the function is small. We
will learn how to deal with this problem next.

7.4.1 Importance sampling

Let us drive home the last point. We seek to compute the probability that a random
point falls inside a hypersphere of unit radius in a D-dimensional hypercube with sides
of length 2. The answer is given by the ratio of volumes:

P(D) = 2
�(D/2)

(√
π

2

)D

.

For D = 100 this is 1.868 · 10−68. Clearly the method we have described for evaluating
integrals will fail drastically for hyperspheres of high dimensionality (Gibbs, 2006).

The resolution of the problem is to throw random points as closely as possible to the
region of interest. In practice this means factoring out a function whose integral is known
from the integrand. This function is denoted w and is called the weight function. Thus
we set:

∫
f (�x) d �x =

∫
h(�x)w(�x) d �x.

The procedure requires generating abscissas according to the weight function, and thus
w must be a positive semi-definite and normalized PDF.

The next step is to generate N random points according to the PDF w(�x). The integral
is then given by:

∫
f (�x) d �x ≈ h

with error:

σ =
√

h2 − (h)2
N − 1

.
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Here:

h ≡ 1
N

N∑

i=1

h(xi)

(with a similar definition for h2). The factor of N − 1 in the expression for σ reflects the
use of the unbiased estimator for the standard deviation.

There is considerable freedom in how to split the integrand into two parts h(x) and
w(x). As discussed above, when carrying out a Monte Carlo integration it is best to
arrange the splitting so that most of the variation is carried by w(x) and as little as
possible in h(x). In practice this desire will be heavily constrained by what you can actually
integrate when forming the weight function.

7.4.2 Example

We seek to evaluate the integral:

∫ ∞

0
x2 e−x dx.

Possible weight functions are exp(−x) and x exp(−x) (and of course x2 exp(−x) since
the integral can be done exactly, but let us not consider this case). These options are
implemented in the directory EXAMPLES/CH7/BASICMCINTEGRATE. An excerpt of
the relevant code is

std::mt19937 e;

const unsigned int N=10000;
{

std::exponential_distribution<double> eDist;
double sum=0,sum2=0;
for (int i=0;i<N;i++) {
double x=eDist(e);
double h=x*x;
sum += h;
sum2 += h*h;

}
double hBar=sum/N,h2Bar=sum2/N, sigma=sqrt((h2Bar-hBar*

hBar)/(N-1));
std::cout << " I n t e g r a l i s " << hBar << "+−" << sigma <<

std::endl;
}
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Table 7.1 Estimating
∫∞

0 x2e−x dx with
various weight functions.

w h Integral Error

e−x x2 1.947 0.043

xe−x x 2.019 0.014

x2 e−x 1 2 –

The results from running the code are given in Table 7.1. One sees that employing a
‘smoother’ integrand h leads to a factor of three or four reduction in the error, as expected.

7.5 Markov chain Monte Carlo

It is often very difficult to sample a probability distribution and one must employ
more powerful techniques such as the Markov chain Monte Carlo method. The
basic idea of this method is to employ a stochastic process called a Markov chain
(defined below) to generate random variables according to a multivariate probability
distribution. This distribution, which will be denoted ρ in the following, can be either
a continuous probability density or a discrete probability distribution. The first case is
reasonably intuitive. In the second case, a common application is to a spin lattice, whose
configuration is governed by a discrete multivariate PDF; discrete, because the spin can
take a finite number of orientations (↑ or ↓), and multivariate because it describes every
site on the lattice. In thermodynamic calculations the state of the lattice is governed by a
Boltzmann distribution.

A Markov chain (named after Russian mathematician Andrei Markov, 1856–1922)
is a sequence of states that are produced by a simple stochastic process wherein the
current state is solely a function of the previous state. A state is a complete specification of
a system. For example, if one is describing a spatial probability density the state consists of
three position variables x, y, and z and the number of states is infinite. In the case in which
the system is a lattice of four spin-1/2 ions, the configurations (↑,↑,↑,↑), (↓,↑,↑,↑), etc.
are possible. Concentrating for simplicity on the latter case, we map the 16 states to unit
vectors in a M = 24 = 16 dimensional space denoted:

X̂1 = (1, 0, . . . , 0) → (↑,↑,↑,↑),
X̂2 = (0, 1, . . . , 0) → (↓,↑,↑,↑),

etc.
A Markov chain is generated by stepping from one element of the set, X̂ i , to another,

X̂ j , with probability pij . The pij are called transition probabilities and the M × M
matrix P that is comprised of these probabilities is called the transition matrix (or
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Markov matrix). Transition probabilities will be taken to be independent of time in our
discussion and can be written as:

pij = X̂ i
T

PX̂ j .

The probability of transitioning to any state i must sum to unity, thus:

M∑

j=1

pij = 1. (7.8)

A Markov process creates a sequence of states X̂ (t) that are labelled by an index t, often
called algorithmic time. A particular X̂ (t) is drawn from a probability distribution x(t)

x(t)T = x(t−1)T P = X̂ (0)T Pt. (7.9)

Notice that the sequence of probability distributions has been initialized with a particular
state. In principle, one could generate the sequence of probability distributions; in
practice this is prohibatively expensive because the dimension M is typically extremely
large. Instead, one generates an ensemble of sequences of states drawn from the sequence
of probability distributions. The ensemble can then be used to compute expectation
values of operators.

Crucially, under certain conditions Markov chains obtain a unique fixed point
distribution,

wT ≡ X̂ (0)T lim
t→∞ Pt.

This result is independent of the starting state. The “conditions” mentioned are often
summarized by saying that the Markov chain must be ergodic. Roughly speaking this
means that all states eventually appear in an infinitely long sequence and that the
sequence does not get stuck in subspaces of the system. A simple way to ensure that
a Markov chain is ergodic is to impose detailed balance:

wipij = wjpji (no sum), (7.10)

where wi are the components of w. Summing this expression over j establishes that wT

forms a fixed point of the Markov process:

wT = wT P.

The Markov chain Monte Carlo method is completed by equating the fixed point to the
desired probability distribution, ρ, by appropriately arranging transition probabilities.
The manner in which this is done is the subject of the following section.
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7.5.1 The Metropolis-Hastings algorithm

The central task is to design the transition probabilities such that the desired probability
density ρ(X̂) is achieved. A number of solutions to this problem exist; here we present
that due to Metropolis et al. (1953) and Hastings (1970).

A simple and general solution to generating this distribution is provided by the
Metropolis-Hastings algorithm. The algorithm generates a new state X̂ ′ from an old
state X̂ according to proposal distribution, R(X̂ → X̂ ′), which is at the discretion
of the programmer. This is done using a source of random variates, either discrete or
continuous, according to the nature of the problem. The algorithm is then defined by:

loop in algorithmic time
generate the next state in the Markov chain according to

R(X̂ → X̂ ′)
accept the new state with probability min

(
1, R(X̂ ′→X̂)ρ(X̂ ′)

R(X̂→X̂ ′)ρ(X̂)

)

if accepted
use the new state

else
re-use the old state

end if
end loop

It is a good idea to tune any parameters in the proposal function to obtain about a
50% acceptance rate in the state updates; acceptance rates between 30% and 70% are
generally considered reasonable. A higher acceptance rate implies that the integration
volume is being explored too slowly, while a lower acceptance rate wastes computational
effort on rejected update attempts.

We note that if the proposal distribution is reversible:

R(X̂ → X̂ ′) = R(X̂ ′ → X̂)

then the acceptance probability simplifies to:

min

(

1,
ρ(X̂ ′)
ρ(X̂)

)

.

In this case the algorithm is called the Metropolis method. A Gaussian of fixed width
is a typical example of a reversible proposal distribution.

7.5.2 Slow mixing

While the Metropolis-Hastings algorithm is simple and straightforward to implement, the
algorithm is prone to several types of problems which we must identify and ameliorate.
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A process that moves frequently and converges quickly to a stationary distribution is
said to be rapidly mixing. One that remains stuck or does not converge quickly to a
stationary distribution is said to be slowly mixing. Achieving rapid mixing is the principal
challenge in Markov chain Monte Carlo (MCMC) implementation. While large steps in
the proposal distribution allow MCMC to explore the parameter space more fully, a
strategy that is too bold will result in a low probability that any one step is accepted. If,
on the other hand, a more cautious strategy with smaller steps is used, the chain takes a
long time to approach the stationary distribution. Worse, an overly cautious strategy may
never reach disconnected regions in the sampled probability density function, because
“tunneling through” to these regions takes a prohibitively long time. Both of these
points are discussed further below. Slow mixing can be sharply reduced if the proposal
distribution is tailored to the desired PDF ρ(X̂) and constructed in such a way that
the proposed step can reach all of the regions in parameter space where ρ(X̂) is non-
negligible.

We illustrate this effect by considering the effect of step size in generating the electron
probability distribution for a hydrogen atom. This is the square magnitude of the
hydrogenic wavefunction:

φnlm(r, θ ,φ) ∝ ρ l e−r/nL2l+1
n−l−1(2r/n)Y m

l (θ ,φ),

where r is measured in units of a0, the Bohr radius and Lq
p(x) is the associated Laguerre

polynomial. The normalization of the wavefunction is not required.
Distributions can be generated using the example program in:

EXAMPLES/CH7/MCMC/HYDROGEN

This program has a few command line arguments to set the quantum numbers
n, l, and m, in addition to the number of points used in the simulation. The
program uses the normal distribution for the proposal function, which is provided by
std::normal_distribution in the C++ standard library. This proposal function
is perfectly reversible, so we apply the Metropolis method. The width of the proposal
distribution is likewise specified on the command line. You can invoke the program with:

mcmc-hydrogen NPOINTS=val N=val L=val M=val fSigma=val

The optional command line arguments have default values of NPOINTS=10K, N=0,
L=0, M=0, and fSigma=1.0. An animated version of the program exists too; it lives in

EXAMPLES/CH7/MCMC/HYDROGEN-ANIM

and allows you to witness the “diffusion” of probability density in Markov Chain Monte
Carlo. Animated code is invoked with the command
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Figure 7.8 Sampling the n = 2, � = 1 hydrogenic probability distribution. From left to right and the
top to bottom we increase the width of the proposal distribution by scaling the nominal proposal
distribution by : 0.1, 0.5, 1.0, 2.0, 4.0, and 8.0. Timid steps (upper left) cause the chains to move slowly
through the parameter space while bold steps result in inefficiency.

mcmc-hydrogen-anim NPOINTS=val N=val L=val M=val

The effect of varying the sampling distribution is shown in Figure 7.8. The sequence
of plots runs from conditions which are too timid in the upper left, to too bold in the
lower right. Ideal conditions lie somewhere in between. There is a clear lesson: sampling
distributions should be carefully explored before full scale Monte Carlo computations
are undertaken.

7.5.3 Thermalization

Markov Chain Monte Carlo needs to be run for long enough for the system to reach
equilibrium and for the probability density function to be sampled enough to obtain
observables to the required precision. If the system is started in a very unlikely state, a
certain amount of time is required for the Markov process to move out of the tails of the
distribution and into the peak. This is shown in Figure 7.9. Even if the chain is started
in a likely configuration, MCMC often needs substantial algorithmic time to settle into
the fixed point distribution. If the chain is terminated before this occurs, the distribution
tails are over-represented.

The usual procedure for dealing with this issue is to let the Markov chain run for a
certain period until the main modes of the likelihood function are found. The initial part
of the chain is discarded. This is called thermalization or burn-in.



226 Markov chain Monte Carlo

Figure 7.9 A Markov Chain Monte Carlo computation of electron probability densities in hydrogen
for the n = 0 state. The Metropolis method is used and the system is started from a very unlikely point.
Its trajectory evolves inexorably towards a major mode of probability. The time taken to reach a likely
configuration is called the burn-in or thermalization time and can be identified with time-series plots.
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Figure 7.10 A time-series plot of the radial coordinate in a Markov Chain computation of electron
probability densities in a hydrogen atom for the n=0 state, when the computation begins from a very
unlikely point. From this plot one can identify a burn-in phase of about 200 iterations.

A time-series plot showing the value of one or more parameters vs. iteration number is
usually informative. An example is shown in Figure 7.10. Evidently about 200 iterations
are required for burn-in in this case. Another strategy is to initiate the Markov process
with different starting states. Observables will typically have very different values until
thermalization has occurred. An example of this approach is given in Figure 20.2. The
figure displays a time series plot of the magnetization of an Ising spin system with “hot”
and “cold” starting configurations. One sees that for kBT = 2.0 around 200 Markov
steps are required before the system has equilibrated.

Both of the preceding methods are simple to implement and give a good indication
of how well thermalization is proceeding.
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7.5.4 Autocorrelation

It is the central limit theorem that underpins the validity (and usefulness) of the Monte
Carlo method for evaluating integrals. We seek the same functionality here; however, the
existence of autocorrelation invalidates a direct application of the theorem.

Autocorrelations are best illustrated by considering a computation of the average
error in a measurement of a quantity 〈O〉. If one has a sequence of N such measure-
ments, then:

〈δO2〉 =
〈(

1
N

N∑

t=1

(Ot − 〈O〉)
)2〉

= 1
N2

N∑

t=1

〈
(Ot−〈O〉)2

〉
+ 2

N2

N∑

t=1

N∑

�=t+1

(
〈OtO�〉−〈O〉2

)

(7.11)

where Ot represents the value of the operator at algorithmic time t. This can be
rewritten as:

〈δO2〉 = 1
N

(
〈O2〉 − 〈O〉2

)
(1 + 2τint) (7.12)

with:

τint =
∑

t

〈O0Ot〉 − 〈O〉2
〈O2〉 − 〈O〉2 . (7.13)

In deriving this we have used homogeneity in time of expectation values, which is true
for any stationary sequence. The factor 1 + 2τint is called the statistical inefficiency
and can be disastrously large under certain conditions (to be explored in Chapter 20).
The time scale, τint, is sometimes called the integrated autocorrelation time. It can be
defined in terms of a temporal autocorrelation function:

C(t) = 〈OiOi+t〉 − 〈Oi〉2
〈O2

i 〉 − 〈Oi〉2
(7.14)

Notice that this expression coincides with the summand in Eq. 7.13; and by comparison
with Eq. 7.5 one can recognize it as the correlation coefficient r between a quantity at a
time i and a later time i + t. Like the correlation coefficient, the function C(t) is bounded
by (−1, 1) because of Schwartz’s inequality. Figure 7.11 shows the autocorrelation plot
for the example of the previous section.

Markov chain Monte Carlo, like ordinary Monte Carlo, can be used to evaluate
integrals; when doing so, Eq. 7.12 implies that:

∫
f (�x)w(�x) d �x = f̄ ±

√
( f 2 − ( f̄ )2)(1 + 2τint)

N − 1
. (7.15)
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Figure 7.11 The autocorrelation of the radial variable in a computation of electron probability
densities in the hydrogen atom for the n = 0 state. This plot indicates that the system forgets its state
after approximately 200 iterations.

Here f̄ is the average of a quantity f (�x) evaluated over the elements of the Markov
chain (after thermalization) and the integrated autocorrelation is given by Eq. 7.13 with
the operator O replaced by f . Finally, the probability density w(�x) is the fixed point
distribution of the Markov chain.

Eq. 7.12 shows the importance of minimizing the correlation between states in the
stochastic sequence. Usually the dependence decreases as the number of steps between
elements in the chain increases, so a simple way to decrease autocorrelations is to skip
elements in the sequence when evaluating observables.

7.5.5 Multimodality

Slow mixing is particularly aggravated when probability density functions are mul-
timodal, that is, they have separated regions of high probability. The 3-dimensional
electron probability densities discussed above offer a good example. In such cases the
Markov chain must “tunnel” through areas of low probability to probe other important
regions in the distribution, otherwise observables will be poorly estimated.

Multimodality is best handled by carefully constructing proposal functions that
transition to other nodes with an appropriate frequency. Unfortunately, no general
algorithm exists and one must tune according to the problem at hand. This is reminiscent
of the situation with integrals: the numericist is well advised to know her foe!

To summarize, the Metropolis-Hastings algorithm is easily implemented but requires
monitoring and tuning to ensure fidelity of the computation. The main challenges are to
achieve good mixing, particularly among the modes of the distribution when multiple
modes exist; to ensure a proper identification of the burn-in phase; and to generate
Markov chains that are long enough to detect possible anomalies. Patience, and liberal use
of time series plots, autocorrelation plots, and multiple redundant computations using
independent chains are recommended.
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7.6 The heat bath algorithm

The heat bath algorithm is a type of Markov chain method that is closer to direct
Monte Carlo than MCMC. Again we assume that it is impractical to evaluate the
complete PDF, and that other methods must be employed. The heat bath algorithm
achieves this by sampling a given multivariate distribution in terms of its conditional
distribution; which, presumably, is easier to compute. This form of sampling is also
known as Gibbs sampling.

The algorithm uses the components of a state, which we denote:

x(k) = (X (k)
1 , . . . , X (k)

M ) (7.16)

as before. With this notation, the Gibbs sampling algorithm is:

select an initial X̂
(0)

iterate in algorithmic time, k
iterate in components, i

sample X (k+1)
i from the conditional probability

p(X (k+1)
i |X (k+1)

1 , . . . , X (k+1)
i−1 , X (k)

i , . . . , X (k)
M )

end
evaluate observables

end

Notice that the conditional probability is evaluated with states that have already been
updated up to the index location, i − 1. After this location the current states are
used.

Although this is the usual way that Gibbs sampling is presented, the reader will note
that the ordering of state components is arbitrary and hence it is not necessary to sweep
linearly through state components. In fact, an acceptable alternative is to choose the index
i at random. This amounts to subsuming the index i into the algorithmic time k, yielding
a “component-algorithmic time”.

7.6.1 An application: Ising spin systems

Let us make the preceding, rather theoretical, discussion concrete by considering an
application to compute the thermodynamic properties of a one-dimensional Ising model.
The Ising model we explore (see Chapter 20 for much more) consists of a series of
“spins” that take on the values σi = ±1 (representing “up” or “down”) which interact
with their neighbors according to the Hamiltonian:

H = −
M∑

i=1

σiσi+1. (7.17)
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The index i refers to the position of the spin in the Ising chain. The minus sign implies
that the ground state of the system is the magnetized state, + + + . . .+ (or, of course
− − − . . .−).

We remind the reader that all thermodynamic properties can be obtained from the
partition function:

Z =
∑

σ1,...,σM

exp[−βH(σ1, . . . , σM)], (7.18)

with β = 1/(kBT). Thus, for example, the energy of the system is:

〈E〉 = − ∂

∂β
log Z.

Implementing the heat bath algorithm requires evaluating the conditional probability
for the I th spin:

p(σI |σ1, σ2, . . . σM) = exp(−βH(. . . σI . . .)∑
σI

exp(−βH(. . . σI . . .)
. (7.19)

The crucial feature of this expression — the one that makes Gibbs sampling feasible —
is that it simplifies drastically because of the form of the Hamiltonian, Eq. 7.17.
Indeed, substituting for H reveals that all spin-dependence cancels between numerator and
denominator except for those spins that interact with σI . Thus the conditional probability
simplifies to:

p(σI |σI−1, σI+1) = exp[βσI · (σI−1 + σI+1)]∑
σI

exp[βσI · (σI−1 + σI+1)]
. (7.20)

This is a simple function that depends only on σI and:

σI−1 + σI−1 ∈ {−2, 0, 2}

and hence can be pre-computed and stored in an array.
This remarkable cancellation is no accident: it exists because the Ising Hamiltonian is

local, meaning that a given degree of freedom only interacts with a small collection of
other degrees of freedom.

The final step in implementing the algorithm is choosing an update scheme. The
method displayed in the pseudocode of the previous section can be achieved by simply
iterating through the spin index I while using σI−1 (which has been updated) and σI+1
(which has not been updated) to form the conditional probability. Alternatively, one can
select the index I at random, as mentioned above.
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7.6.2 Markov chains for quantum problems

The Ising model example makes it clear that Markov chain algorithms are powerful
methods for evaluating thermodynamic observables. However, their utility is much
greater; for example later chapters will use them to simulate physical processes. Perhaps
surprisingly, Markov chain Monte Carlo is also an effective tool for investigating quan-
tum mechanical problems.

An intuitive way to see the connection of quantum mechanics to stochastic processes
is by considering the Schrödinger equation in imaginary time (this is also sometimes
called Euclidean time, or Wick rotating). We thus let t → −iτ and obtain:

ih̄
∂

∂t
ψ = − h̄2

2μ
∇2ψ + V (x)ψ →

∂

∂τ
ψ = h̄

2μ
∇2ψ − 1

h̄
V (x)ψ .

The latter equation is a diffusion equation with diffusion coefficient D = h̄/(2μ). The
interaction term can be thought of as an additional drift that affects the diffusing particles
(this is then called the advection-diffusion equation).

The connection to stochastic processes is provided by the physics of diffusion:
namely the equation is a continuum version of random walks by microscopic particles.
Thus in a very real sense quantum mechanics is equivalent to random walks, and
random walks are a type of Markov chain. This equivalence will be exploited to
construct a powerful stochastic method to evaluate quantum mechanical observables in
Chapter 21.

Another deep connection of quantum mechanics to thermodynamics, and hence
Markov chains, was noted in the 1940s by Richard Feynman (American physicist, 1918 –
1988). At that time Feynman was developing the path integral from a suggestion due
to Dirac (Feynman, 1948). The idea is that the quantum mechanical amplitude for a
particle to transit from (x0, t0) to (xf , tf ) is given by a sum over all possible paths the
particle can take (physical or not) weighted by the exponentiated action evaluated for
that path. The mathematical expression for this is:

〈xf tf |x0t0〉 =
∫ xf

x0

Dx(t) exp
[

i
h̄

∫ tf

t0
dtL(x, ẋ)

]
, (7.21)

where L is the particle lagrangian:

L = 1
2

mẋ2 − V (x)

and Dx is notation that summarizes the concept of “summing over paths”.



232 Where to go from here

Feynman noted that making the transition to Euclidean time changes the path integral
to the form:

∫ xf

x0

Dx(τ ) exp

[

−1
h̄

∫ τf

τ0

dτ

{
1
2

m
(

dx
dτ

)2

+ V (x)

}]

.

and that this resembles a thermodynamic partition function. The latter can be seen by
approximating the path x(τ ) with a set of discrete variables xi and replacing the Euclidean
temporal derivative with (xi − xi+1)/ε, where ε is a small time difference. The result is:

〈xf τf |x0τ0〉 =
∫ ∏

i

dxi exp

⎡

⎣−ε

h̄

∑

j

{
1
2

m
(

xj − xj+1

ε

)2

+ V (xj)

}⎤

⎦ . (7.22)

The expression in braces is a Hamiltonian for an unusual many-particle system and the
full expression is a partition function with temperature kBT = h̄/ε. Thus all the methods
used to evaluate many-body thermodynamic observables can be applied to quantum
problems. Finally, this equivalence applies equally well to field-theoretic path integrals.
This will be exploited to perform computations in quantum field theory in Chapter 24.

7.7 Where to go from here

Monte Carlo methods form an important and ubiquitous tool in modern science. As a
result they appear often, and in many guises, in the remainder of this book. Here we
provide a short guide to subsequent Monte Carlo applications so that the assiduous
reader can continue her education in this topic.

The heat bath algorithm is applied to classical spin systems in Chapter 20. Different
initial configurations and boundary conditions are discussed and an explicit computation
of autocorrelation is made. Cluster algorithms are introduced as a way to overcome the
long autocorrelation times that exist near phase transitions. An alternative Monte Carlo
update, called Glauber updating, is discussed in exercise 17. Finally, the technique of
reweighting, which permits evaluation of observables at many different parameter (such
as temperature) values, is explained.

A novel MCMC approach to evaluating quantum mechanical path integrals, called
guided random walks, is introduced in Chapter 21. This method leverages the
similarity between the Schrödinger equation and diffusion once a Wick rotation has been
made. The guided random walks method is extended to the case of discrete systems in
Section 22.4.

The application of MCMC to quantum field theory is the subject of Chapter 24,
where the topic of microcanonical updating is discussed. This method permits
making large-scale changes to configurations that assist in overcoming multimodality
and strong autocorrelation.
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7.8 Exercises

1. Find a method for generating points uniformly:

a) on the surface of a sphere,

b) on the surface of a sphere in N dimensions,

c) within the volume of a sphere,

d) within the volume of a sphere in N dimensions.

Use direct sampling rather than von Neumann rejection to make your method
efficient.

2. A gas is in thermal equilibrium at a temperature T , thus the velocity distribution is:

ρ(v)dv =
( m

2πτ

)3/2
4πv2e−mv2/2τdv,

where τ = kBT , m is the mass of a molecule and kB is the Boltzmann constant.
Nondimensionalize this and show that the Maxwell velocity distribution can be
sampled with the aid of a gamma distribution. Make a plot of the velocity distribution
together with data generated using the std::gamma_distribution of the
standard library.

3. Repeat the previous problem, but this time generate the Maxwell distribution using
Markov chain Monte Carlo. Plot the distributions and check that they agree with
the theoretical line shape.

4. Repeat again, but this time also add a strong gravitational field to the system.
Compute the probability densities for both position and momentum. Assume a
binary mixture that is 50% argon and 50% nitrogen.

5. Generate data using the Monte Carlo method according to an exponential distribu-
tion convolved with a Gaussian distribution.

a) Carry out the convolution analytically and plot it, using the value τ = 3 and
σ = 2.

b) Generate two random variables, one drawn from an exponential distribution with
τ = 3 and one from a Gaussian distribution with σ = 2. Make a histogram of
the sum of these two variables and compare with the analytic convolution from
part (a).

c) Use the rejection method to generate data distributed according to the analytic
convolution of part (a).

6. A particle that is polarized along the z direction decays to a pair of lighter
particles, of which one is visible. The angular distribution of the visible particle is
given by:
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ρ(cos θ) =
(√

3√
8

P1(cos θ)−
√

7√
6

P3(cos θ)+
√

11√
24

P5(cos θ)−
√

15√
6

P7(cos θ)

)2

Generate data according to this distribution, and plot it vs. cos θ in a histogram
overlaid with the original function.

7. Importance sampling.

a) Use the Monte Carlo technique to estimate the volume of a hypersphere in 10
dimensions. The convergence rate is a constant divided by

√
N . Estimate the

value of this constant.

b) Estimate the probability density in the N-dimensional space by making a
histogram of xj where j is any index between 1 and 10. From the one dimen-
sional distribution construct an estimate of the 10-dimensional distribution
g(x1, x2, x3 . . . x10). The estimate does not have to be extremely accurate. Note:
this is the approach employed by the well-known Monte Carlo program Vegas.

c) Using your estimate for g(x), re-evaluate the volume of the sphere and estimate
again the value of convergence rate constant.

8. A hydrogen molecule ion consists of two protons and a single electron. The
Hamiltonian for the system is:

H = −1
2
∇2ψ(�r)− 1

|�r + ẑd/2| −
1

|�r − ẑd/2|
where d is the separation of the two protons, the unit of length is the Bohr radius, and
the unit of energy is the Hartree (1 Hartree = 27.2 eV). Consider trial wavefunctions
consisting of the symmetric and antisymmetric linear combination of hydrogenic
ground-state wavefunctions, ψs,a(�r) ≡ Ns,a (φ1(�r)± φ2(�r)), where:

φ1 ≡ 1√
π

e−(|�r−ẑd/2|) φ2 ≡ 1√
π

e−(|�r+ẑd/2|).

a) Compute and plot the normalization factors Ns and Na as a function of the
interatomic distance d.

b) Compute and plot the energy of the system as a function of interatomic distance
d, in both cases.

Use Monte Carlo integration to evaluate the integrals occurring in this problem.

9. In Problem 12 of Chapter 5 you solved an integral to determine the rate of gamma
radiation originating from K40 decays. Revisit this integration exercise, but this time
framed as an exercise in simulation in which a radioactive atom decays at a random



Monte Carlo methods 235

distance and angle within the granite and the radiation is absorbed (or not) at a
random location along its path. From the simulation estimate the flux of gamma
rays emerging from the granite and compare to the result from Chapter 5.

10. [T] Convolution.
Show that the convolution of two uniform distributions, each over the interval
[-1,1] is a triangular function. A change of variable from x1, x2 to u = x1 + x2 and
w = x1 − x2 will help. Project the joint probability distribution onto u by integrating
with respect to w.

11. Line Broadening.
Study the code in the directory EXAMPLES/CH7/BWDOPPLER. Use this code to
make a plot of a photon emission line that has been generated with a Breit-Wigner
distribution with additional Doppler broadening. The result is called the Voigt
distribution.

12. In the transformation method (Section 7.2.7), a known probability density function
ρ(x) is sampled by transforming a uniform variate by a transformation equation.
The transformation equation is obtained by integrating ρ(x) and inverting the
integral. If instead the transformation equation is given, one can reverse these steps
to determine the probability density of a transformed uniform variate.

Generate a uniform variate x on the interval [0,1] and transform it according
to either of the transformation equations below. In each case, plot a histogram of
the resulting variate; determine an analytic form for the distribution, and plot the
analytic function on top of the data to check your answer:

f (x) = xmin(xmax/xmin)
x

for xmax > xmin > 0 (you can take xmin = 1 and xmax = 10);

f (x) =
√

M2 + M� tan (M�x)

for M > 0 and � > 0 (you can take M = 100 and � = 10).

13. [T] Heat Bath and Detailed Balance.
Establish that the heat bath algorithm obeys the condition of detailed balance.

14. Importance sampling i.
Consider the example of Section 7.4.2 again.

a) Modify the code of EXAMPLE/CH7/BASICMCINTEGRATE to initiate the
Mersenne twister engine with a user-inputted random seed.

b) Add a section that computes the integral by generating uniform variates over the
interval (0, 1). Implement this with the change of variables u = x/(1 + x). Use
the weight function w = 1. How does the error compare to the other cases? Can
you explain this result?
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15. Importance Sampling ii.
Consider evaluating the integral:

I =
∫ 1

0

ex − 1
e − 1

dx = e − 2
e − 1

.

a) If abscissas are drawn uniformly on (0, 1) show that the error in a Monte Carlo
estimate of I is given by:

0.286√
N

.

What sample size need be employed to achieve 1% accuracy?

b) Now draw abscissas with a weight function w = x. Show that the error is now

0.0523√
N

.

Again, what sample size need be employed to achieve 1% accuracy?

c) Repeat the previous exercise in D dimensions assuming f =∏i f (xi). Show that
for large D the ratio of variances goes as:

10−aD

and determine the constant a.

16. [T] A Simple Markov Chain.
Consider the transition matrix

P =
⎛

⎝
3/4 1/4 0
0 2/3 1/3

1/4 1/4 1/2

⎞

⎠ .

Find

a) the eigenvectors and eigenvalues of P.

b) the left eigenvectors and left eigenvalues of P.

c) the left fixed point probability vector, w.

d) limn→∞ Pn. Is the fixed point independent of the starting vector?

17. [T] Simple properties of Markov chains.

a) Prove that every eigenvalue of a transition matrix is bounded by unity, |λ| ≤ 1.

b) Prove that every transition matrix has at least one eigenvalue equal to unity.
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18. [T] Construct an Ising-like spin model for which the simplification necessary to
implement the heat bath algorithm is not realized.

19. [P] Simple Harmonic Oscillator.
We consider the evaluation of matrix elements for the one-dimensional quantum
mechanical simple harmonic oscillator. The imaginary time action is given by:

S[x(τ )] =
∫ τf

τi

(
1
2

mẋ2 + 1
2

mω2x2) dτ

a) Discretize time via Nε = τf − τi .

b) Nondimensionalize. You should obtain an expression like:

S = 1
2

N−1∑

j=0

[(ξj+1 − ξj)
2 + κ(ξj+1 + ξj)

2]

Identify κ.

c) Manipulate further to obtain the form:

S =
N−1∑

j=1

u2
j − g

N−1∑

j=0

ujuj+1.

What condition is required on x0 and xN to obtain this form? Obtain an
expression for the coupling g.

d) Implement the following Metropolis-Hastings algorithm:

initialize uj
loop

randomly select a time slice t
propose an update ut → u′

t = ut + d̂ where d̂ is chosen

uniformly in the range −a < d̂ < a.
compute the change in action �S = S(u′

t)− S(ut)

accept u′
t with probability min(1, exp(−�S))

update observables
end loop

e) Select a cold start (uj = 0) or a hot start (random uj). Set ωε = 0.25 and
Nt = 1000. Tune a to achieve approximately 50% update acceptance.

f) Measure autocorrelation with 〈u(τ + 5)u(τ )〉. About how many updates are
required to reduce autocorrelation to 10%?
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g) Measure 〈x2〉 and compare to the analytic value. Make a plot of 〈x2〉 as a function
of Metropolis step and compare this observable’s thermalization to that obtained
above.

20. [P] The traveling salesman problem.
The traveling salesman problem is an old and famous problem in combinatorial
optimization. The goal is to find the shortest path between a collection of N cities.
The brute force method for solving this problem requires examining all N ! possible
paths; something that is computationally infeasible for N as low as 20.

You are asked to implement a heuristic algorithm that is designed to find a
solution, but is not guaranteed to find the optimal solution. Our algorithm is known
as simulated annealing, which is implemented as follows:

set Ti, Tf, r
generate node coordinates
set initial path
T = Ti

while T > Tf
generate new path
compute � = d(newpath)− d(oldpath)
if � < 0 or exp(−�/T) > rnd(0,1)

distance = distance + �

path = new path
end if
T = r ∗ T

end while

As the pseudocode indicates, the idea is to randomly explore “path space”, while
accepting paths with shorter total lengths according to the Metropolis algorithm.
Paths that are longer are sometimes accepted according to the parameter T , which
acts as a pseudo-temperature. In this way one hopes to avoid being trapped in a local
minimum as the temperature is slowly lowered.

a) Implement a class for two vectors to represent the city locations, a method to
compute total distance as a function of the path and the city locations, and a way
to generate new paths. Permuting cities in the path is a good way to achieve the
latter. You should find results similar to those shown in Figure 7.12.

b) Assuming that N city locations are placed randomly on a square of size (0, 1)×
(0, 1), what is a reasonable starting temperature for the simulation?

c) Explore the behavior of the algorithm as a function of the cooling rate, r. We
have found that very slow cooling rates (and therefore very many iterations) are
required to find reasonably reliable global minima.
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Figure 7.12 Initial and final paths for 40 random cities.

d) Consider making many Monte Carlo updates at each temperature. Explore the
behavior of the algorithm as a function of this parameter.

e) If you have not already done so, implement an efficient way to compute � that
leverages the fact that most inter-city distances do not change when only two
cities in the path are permuted.

..........................................................................................
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Consider a field randomly populated with clumps of grass. If one clump catches fire how
will the fire spread? This is a problem of percolation where one seeks global properties
of spatially random configurations of local objects. Bond percolation in two dimensions
provides a simple example: take a two dimensional grid of points. Connect neighboring
points with probability p. What is the probability that two sides of the grid are connected
by a sequence of bonds? How does the probability change as the size of the grid changes?
What features do the connected regions display? The answers to these questions are
surprising and reveal deep truths about the structure of physical phase transitions.

Percolation theory is also useful, having found application in a variety of physical
systems including the flow of oil through porous rock, the spread of epidemic disease,
electron mobility in a disordered semiconductor, switching in amorphous semiconduc-
tors, and gelation of branched macromolecules. We will consider it to be primarily a
problem in statistics and will use it as a vehicle to learn computational methods for Monte
Carlo configuration generation, pattern recognition, data analysis, and error estimation.
Along the way we will also be exposed to the important concepts of scaling, critical
exponents, universality, and fractals.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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8.1 Site percolation

We shall take site percolation in two dimensions as our percolation paradigm. Thus
consider an L × L checkerboard of squares. Color each square with probability p. We
define a cluster to be a collection of colored squares which share a common side; these
will be called nearest neighbors. Note that sites touching at a corner do not qualify as
nearest neighbors. A cluster is said to percolate if it connects the top and bottom of the
grid (other definitions of percolation are possible and yield similar results).

The first question we address is what is the probability of percolation as a function
of the coloring probability p and the grid size, L? We call this P(p, L). It is possible to
analytically compute the percolation probability for small grids, but the problem rapidly
becomes intractable since the number of configuration grows as 2Ld

, where d is the
number of dimensions of the lattice.

Show that P(p, 2) = p2(2 − p2).

It is clear that some sort of computational scheme is required to answer our question.
Our strategy will be to set up a lattice of points �i (where i = (i1, i2) is an ordered pair
labeling the ith square) of size L×L and set �i = 1 with probability p. We then generate an
ensemble of stochastic grid configurations and compute the probability that percolation
occurs. Some example configurations are shown in Figure 8.1.

8.1.1 The cluster algorithm

Generating configurations is simple; detecting clusters in a configuration is a more
difficult task. It is easy for people to see clusters but how does one teach a computer
to do it? The natural first step is to create a cluster matrix that labels each site according

Figure 8.1 Clusters on a 400 × 400 grid. On the left, the configuration was generated using p = 0.55,
on the right, p = 0.59. The right-hand configuration includes a percolating cluster, which is drawn in a
light purple color and extends from top to bottom.
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to the cluster of which it is an element. Let’s call �i ∈ (0, 1) the lattice of occupied or
unoccupied sites and ci the cluster number associated with the site i. As above, i is a
generic location label: it could be an array of integers or a mapping from such an array
to a super-index. The quantity i + 1 then means ‘the neighbors of i’ as defined by the
geometry of the lattice in question.

The algorithm is now reasonably simple to specify:

// first attempt at a cluster algorithm
cnum = 1
{ci = 0} for all i

sweep through the lattice
if �i and �i+1 are occupied

(1) if ci = 0 and ci+1 = 0
ci = ci+1 = cnum
increment cnum

(2) else if ci �= 0 and ci+1 = 0
ci+1 = ci

(3) else if ci = 0 and ci+1 �= 0
ci = ci+1

(4) else if ci �= 0 and ci+1 �= 0
set max(ci,ci+1) = min(ci,ci+1)

end if
end sweep

There are four possibilities on sweeping through the lattice.

(1) neither site belongs to a cluster: assign them to cnum and increment cnum.

(2) site i is in a cluster and i + 1 is not: assign site i + 1 the cluster number of site i.

(3) the same as (2) but reverse the roles of i and i + 1.

(4) both sites are elements of clusters, thus we merge the clusters by retaining the
lower cluster number.

While this is pretty clear, the reader may be wondering how exactly one implements
step (4). One could, for example, sweep through the lattice and replace all the instances
of max(ci , ci+1) with min(ci , ci+1). But this turns an order Ld algorithm into an order
L2d algorithm, which is disastrous for large lattices. A better approach is to keep track of
which clusters have been linked. One can do this with a pointer array cluster. Thus
if clusters 3 and 7 are to be merged one simply sets cluster[7] = 3. It might happen



Percolation and universality 243

that cluster 3 has already been linked so we introduce a function root to scan the path
of cluster links to determine the ‘root’ cluster number

root(c):
while cluster[c] �= 0
c = cluster[c]

end while
return c

Lastly, note that one must set cluster[cnum] = 0 to terminate the cluster pointer
tree.

We thus arrive at an efficient version of the cluster algorithm:

// efficient cluster algorithm
cnum = 1
{ci = 0} for all i

sweep through the lattice
if �i and �i+1 are occupied

(1) if ci = 0 and ci+1 = 0
ci = ci+1 = cnum
cluster[cnum] = 0
increment cnum

(2) else if ci �= 0 and ci+1 = 0
ci+1 = ci

(3) else if ci = 0 and ci+1 �= 0
ci = ci+1

(4) else if ci �= 0 and ci+1 �= 0 and root(ci) �= root(ci+1)
mx = max(root(ci),root(ci+1))
mn = min(root(ci),root(ci+1))
cluster[mx] = mn

end if
end sweep

Once the lattice has been scanned one can clean house by resetting all the cluster
numbers:

sweep through the lattice
ci = root(ci)

end sweep
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Determining whether a cluster percolates between two sets of border sites can be done
simply by checking if the cluster numbers on any two sites of the borders agree:

pc = 0 // the percolating cluster number
percolate = false

sweep along border 1
sweep along border 2

if cborder 1 �= 0 and cborder 1 = cborder 2
percolate = true
pc = c border 1
break

end if
end sweep

end sweep

A final word: the increase in algorithm speed has been gained at the expense of
memory, the array cluster must be of size Ld and the total memory required goes
from 2Ld to 3Ld . The exchange of memory for speed (or vice versa) is common in
algorithm design.

8.1.2 Code verification

Debugging Monte Carlo code is notoriously difficult–how does one determine an error
in a random number? In general one must compute the expectation value of a quantity
and compare that to an analytically known result. In this case we have the expression
for P(p, 2). The comparison is shown in Figure 8.2 and indicates that we are on the
right track. Numerical data were generated with eight groups of 100 configurations.
Because the lattice size is only 2×2, the test is not very stringent, so some additional
visual debugging may also be necessary. Notice that the points do not lie exactly on the
analytic curve–as one expects for randomly generated numbers!

8.1.3 The percolation probability

It is time to answer the question posed in this section: what is the percolation probability?
Certainly P runs to zero as p → 0 and P → 1 as p → 1. We expect a monotonic
curve in between. But how does the curve change as a function of the grid size? The
numerical answer is provided in Figure 8.3, where we have chosen to focus on the range
p ∈ (0.55, 0.65).

The error bars in Figure 8.3 seem to get smaller as L increases. Explain.
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The percolation probability rapidly gets steeper as L gets larger. In fact as the lattice
size approaches infinity the percolation probability approaches a step function:

lim
L→∞ P(p, L) = θ(p − pc), (8.1)

where pc is the critical probability. In the bulk limit generating configurations with
a density below pc never yields a percolating cluster, while it always yields one above
pc. While reminiscent of a phase transition, this remarkable property of percolation has
nothing to do with dynamics, it is purely statistical in nature!

Next we focus on computing the percolation probability. The reader is likely aware
of fitting algorithms that are designed to adjust a parameterized function to sequences
of data such as those shown in Figure 8.3. Such algorithms are common components of
data analysis packages. The common ones are χ2 (or linear least-squared) fitting, binned
maximum likelihood fitting, and unbinned maximum likelihood fitting. These techniques
are based at some level on the notion of likelihood, which we encounter first in the
following paragraphs.

To make maximum use of the information we have on hand, we wish to incorporate
all points in our estimate. We focus first on one set of points in Figure 8.3 collected with
fixed L, which we will call a sequence and denote by S, consisting of many sets of trials,
each set with fixed p. For each value of p in the sequence, the set of trials is represented
on the graph with a central value and an error bar, which together are meant to summarize
all the information about result of the many trials, i.e. that there were N successes out of
M trials. The probability of that happening is given by the binomial distribution:

Pr(N |M, f ) = M!
N !(M − N)! f

N (1 − f )M−N (8.2)

where f = P(p, L). This probability predicts the number of successes given f . However,
having observed N successes in M trials, it can also be re-interpreted as an a posteriori
probability density1 for the unknown parameter f . Accompanying our re-interpretation
of Eq. 8.2 is a change of vocabulary. The same expression is now called a likelihood:

L(f |N , M) = M!
N !(M − N)! f

N (1 − f )M−N . (8.3)

This likelihood should be normalized such that
∫
L(f )df = 1, as is already the case in

Eq. 8.3. The function happens to be a beta distribution in the variable f . As you can check
for yourself, the standard deviation of the beta distribution in the limit of large M is:

√
f (1 − f )

M

1 The theoretical justification for this is subject to certain caveats which are discussed later in the text.
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so this should be the size of the error bar. This type of error is called a binomial error.
The central value and the error bar are both important to include in the graph for
purposes of visualization, but keep in mind that it cannot substitute for full information
at a point i, namely the number of successes Ni and the number of trials Mi . In fact, it
merely summarizes the lowest two moments of the binomial distribution.

We seek next a function that describes the data. To do that, we need to select a plausible
functional form to construct a parametrized fitting function, i.e., a function which predicts
the value of f given p. The curves in Figure 8.3 all have an S-shape. Such functions are
called sigmoids. Several sigmoid functions that one could consider are the error function,
hyperbolic tangent, or arc tangent; since the error function occurs frequently in statistics,
we consider it the most likely form to describe this data, and we choose this function to
work with. We obtain a parametrized fitting function from erf by translating it so that
its midpoint occurs at p50, and then scaling its width:

f (p|p50, σ) = erf ((p − p50)/σ ) (8.4)

This is to be understood as a function of p, whose shape is determined by parameters p50
and σ . Now, the likelihood for a single point at pi with Ni successes out of Mi trials is:

Li(p50, σ |Ni , Mi) = Mi !
Ni !(Mi − Ni)! f (pi|p50, σ)N

i (1 − f (pi|p50, σ))Mi−Ni . (8.5)

and we can see that this is a funtion of p50 and σ . The likelihood for the entire data set
is simply the product of the likelihood for all of the points in the sequence, i.e.:

L(p50, σ |S) =
∏

i

Li(p50, σ) (8.6)

This function, the likelihood function, can be considered as a joint probability distri-
bution for the parameters p50 and σ . It is defined by the sequence S. It is usually a
simple matter to compute the likelihood. In this example, we first define a data structure
representing the data of each point:

struct DataPoint {
double p;
unsigned int success;
unsigned int total;

};

The entire sequence is a std::vector of these DataPoints. The computation of
the likelihood function L(p50, σ |S) is given by:

double likelihood(double p50, double sigma, const std::vector
<DataPoint> & sequence) {
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double lL=0;
for (unsigned int i=0;i<sequence.size();i++) {

double P=(1+erf((sequence[i].p-p50)/sigma))/2.0;
double M=sequence[i].total;
double N=sequence[i].success;
double logProb= lgamma(M+1) - lgamma(N+1) -lgamma(M-N+1)+

sequence[i].success*log(P) + (sequence[i].total-
sequence[i].success)*log(1-P);

lL+=logProb;
}
return exp(lL);

}

Here we have preferred the use of the lgamma function, computing the logarithm of the
gamma function, to factorials which lead more quickly to overflow errors.

It is instructive to plot the likelihood function. To do this, we can use Markov chain
Monte Carlo to generate a realization of the likelihood function, following the methods
of Chapter 7. After some trial, error, and tuning, we obtain the following plots for the
parameters p50 and σ : In this case (and many others) the likelihood function has a simple
Gaussian form, so we can estimate the central value for p50 and σ from the mean of the
histograms in Figure 8.4. For this sequence the values are p50 = 0.592713 ± 0.000048
and σ = 0.00594091±0.000061. For the purposes of a visual cross-check we co-display
the function f (p|p50, σ) with the data after fixing the parameter values to those extracted
from MCMC. We obtain the plot in Figure 8.5, which indicates a very good fit to the
data. Repeating this for the other three sequences at L = 160, L = 40, and L = 10 gives
the results in Table 8.1.

The critical probability pc is the limit limL→∞ p50. We conclude that at a lattice size of
L = 640, our procedure has converged to the accuracy of the fit and quote a numerical
value of this constant as 0.59271 ± 0.0005. These data required 100K Monte Carlo
configurations per lattice site. If one wanted to reduce the error by an order of magnitude,
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Figure 8.4 Likelihood projections in the parameters p50 and σ for the sequence with L = 640.
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Figure 8.5 In this plot we co-display the fitted function together with the data for a visual cross-check
of the fitting procedure.

Table 8.1 Extracted values of p50 for four
sequences at different lattice sizes L.

L p50 σ

10 0.58646 ± 0.00039 0.12459±0.0016

40 0.59137 ± 0.00031 0.04616±0.0012

160 0.59277 ± 0.00008 0.01680±0.0010

640 0.59271 ± 0.00005 0.00594±0.0006

10 million configurations would be needed. For comparison, the exact value of the critical
probability (to five digits) is 0.59275.

8.2 Fractals

Take another look at Figure 8.1. The percolating cluster has a ragged perimeter and is
riven with holes. The cluster is reminiscent of other rough structures such as coast lines or
cell phone antennas or the Sierpinski carpet (Figure 8.6). Such objects were popularized
by Mandelbrot2 who called them fractals. Although a strict mathematical definition of
a fractal has not been established, it is generally agreed that they are self-similar and
carry fractional dimension.

A solid material of linear size r and volume v obeys the simple scaling law:

v ∝ rd (8.7)

2 Benoît Mandelbrot (1924–2010), Polish-French-American mathematician. Earlier investigations were
made by Gottfried Leibniz, Karl Weierstrass, Georg Cantor, Henri Poincaré, Wacław Sierpiński, and others.
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Figure 8.6 Sierpinski carpet.

in d dimensions. Fractals, on the other hand, are perforated with holes on all scales, which
distorts the scaling relation:

v ∝ rD (8.8)

where D is in general not an integer. Let’s compute the fractal dimension of the Sierpinski
carpet as an example (this is also called the Hausdorff dimension). The carpet is made
by iteration; the first stage is a 3×3 grid with the central square empty. Thus the volume
is v1 = 8 (in units of the fundamental square) and the length scale is r1 = 3. At the next
stage each occupied square is subdivided into 3× 3 grids and the central square is again
empty. Thus v2 = 82 and r2 = 9. Continuing the process yields rn = 3n and vn = 8n,
thus the fractal dimension of the Sierpinski carpet is:

D = log 8
log 3

. (8.9)

Similar computations can be made for any ‘regular fractal’; see the exercises for an
example with the Koch snowflake.

Perhaps the construction of the Sierpinksi carpet gives an idea of what ‘self-similarity’
means. In this case the recursive nature of the construction implies that the carpet looks
precisely the same if one were to zoom in by a factor of 3. Hence the carpet is self-
similar. This is pretty clear for regular fractals like the Sierpinski carpet, but what about
our percolating clusters? Zooming in on a cluster yields another ragged looking cluster,
but it certainly does not look the same. The trick here is that is does look the same
on average.

Let’s firm this up by computing the Hausdorff dimension of clusters. We focus on
the average number of sites, v, in the largest cluster at a particular value of p. The length
scale r can be defined as the mean square distance:
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r2 = 1
v

v∑

i=1

||ri − r0||2 (8.10)

from the barycenter of the cluster:

r0 = 1
v

v∑

i=1

ri (8.11)

and ri is the location of the ith occupied site in a given cluster. We thus seek the exponent
in the relation v ∝ rD. It is, in fact, not necessary to spend the effort computing r because
any appropriate length scale will do to determine the Hausdorff dimension. In this case
it suffices to use L as a proxy for r; we therefore compute the average size (and error)
of the largest cluster as a function of lattice size for p = 0.55, 0.59275, and 0.65. The
results are presented in Figure 8.7. For p < pc clusters are rare and small and become
increasingly so as the lattice size increases. Thus one expects:

D(p < pc) = 0 (8.12)

and this is what is observed. Alternatively, for p > pc clusters tend to span the entire
lattice and are ‘normal’, thus one expects D = d. A fit to the data for p = 0.65 yields:

D(p > pc) = 2.0005 ± 0.0001, (8.13)
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reasonably close to expectations. Finally, right at the percolating threshold, clusters are
ragged and spongy and one anticipates fractal behavior. In fact the fit to the data at
p = 0.59275 yields:

D = 1.887 ± 0.003, (8.14)

reasonably close to the exact result of D = 91/48 = 1.8958. It appears that percolating
clusters are indeed fractal! The general lattice dependence is given by:

v ∼

⎧
⎪⎨

⎪⎩

log L p < pc

L91/48 p = pc

L2 p > pc.

(8.15)

8.3 Scaling and critical exponents

You are familiar with the utility of reduced units (cf. Section 5.11). For example the SHO
problem is naively defined in terms of two dimensionful quantities m and k:

mẍ + kx = 0 (8.16)

but can be simply recast in terms of a reduced time, τ = t
√

k/m as:

d2x
dτ2 + x = 0. (8.17)

Thus all temporal dependence must scale according to
√

m/k. Similarly the quantum
mechanical problem:

− h̄2

2m
∇2ψ + κxnψ = Eψ(x) (8.18)

has eigenvalues that scale as E ∝ (h̄2κ2/n/m)n/(n+2).

Does an analogous simplification occur in the percolation problem? The answer,
perhaps surprisingly, is yes. It turns out, for example, that the percolation probabilities,
P(p, L) are really a function of one variable:

P(p, L) = f ((p − pc)L1/ν). (8.19)

We verify the scaling by replotting the data of Figure 8.3 as a function of the scaling
variable. The result (Figure 8.8) shows the remarkable collapse of all points to a single
universal function–even for small values of L and p away from pc.
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This result can now be used to obtain an estimate of the critical percolation probability.
Indeed, Eq. 8.19 implies that:

∂P
∂L

∣∣∣
p=pc

= 0. (8.20)

Thus plots of P for various L must cross–and where they cross is pc. Consult Figure 8.3
again. It is clear that the curves (especially for larger L) are crossing at a common point.
Evidently:

pc ≈ 0.593. (8.21)

in agreement with the fits of Section 8.1.3.

8.3.1 The correlation length and the anomalous dimension

Why does the scaling law hold? In the example of the SHO, scaling holds because there
is only one scale to the problem,

√
m/k, not two. The same must occur here: for large

lattices there is only one relevant spatial scale. This scale is called the correlation length
and is often denoted as ξ .

Roughly speaking the correlation length is the size of a typical cluster, as defined, for
example, by Eq. 8.10. It is, however, traditional to define it in terms of a more fundamental
quantity called the pair correlation function. This function is the probability that a site
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at location y a distance r from an occupied site at location x belongs to the same cluster.
If one sets:

G(x, y) = �x�yδ(cx, cy) (8.22)

then the correlation function is given by:

g(r = ||x − y||) = 〈G(x, y)〉. (8.23)

Translation invariance implies that g can only be a function of the distance between the
locations x and y.

Argue that

∑

r

g(r) = v

for a given cluster.

The correlation function can now be used to obtain the correlation length via a
moment:

ξ2 =
∑

r r2g(r)
∑

r g(r)
. (8.24)

Notice that if one defines g as an average over all sites in the lattice then g(r) = p for
all r. This is not useful. Rather we define the correlation function as an average over all
sites that are both in a single cluster. For large p most sites are filled and belong to the
same cluster, thus:

g(r) ≈ p, p > pc (8.25)

For small p clusters are small and one expects that g drops rapidly beyond the typical
cluster size. In this case:

g(r) ∼ 1
r(d−1)/2 e−r/ξ , p < pc, r → ∞. (8.26)

This expression dates back a century to the work of Ornstein and Zernike (1914), who
postulated that the Fourier transform of the correlation function is given by the following
equation:
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g(r) =
∫

ddq
(2π)d e−i�q·�r 1

q2 + ξ−2 . (8.27)

Evaluating this integral for large r yields the form given in Eq. 8.26.
The correlation length must diverge at the critical coupling. This is because a

percolating cluster is self-similar and hence looks the same (on average) at all scales.
If the correlation were finite, it would provide a scale beyond which self-similarity would
break down. Thus new scaling laws emerge at criticality. For example:

ξ ∼ |p − pc|−ν (8.28)

where ν is a critical exponent to be determined. Thus at criticality the only scale in
the system disappears and the correlation function must assume a power law behavior,
g(r) ∼ r2−d . In two dimensions one obtains g(r) ∼ log(r), which cannot be correct. Fisher
(1964)3 corrected this problem by assuming that g(q) ∼ q−2+η for small q. This yields
the expectation:

g(r) ∼ 1
rd−2+η

, p = pc, r → ∞. (8.29)

The new exponent η is termed the anomalous dimension.
Determining the anomalous dimension is not an easy numerical exercise (although,

as always, there are good and bad ways to achieve numerical goals). We shall take a
direct approach and evaluate g(r, L, p) at p = pc and attempt fits of the form of Eq. 8.29.
Various correlation functions (arbitrarily normalized to fit on the same graph) are shown
in Figure 8.9. One immediately detects a problem: the curves appear linear (on a log
scale) at large distances, which does not agree with the expected form of Eq. 8.29. The
problem is that we necessarily work with finite systems, hence the correlation lengths are
limited by L. In fact, because we compute at criticality, one expects ξ ∼ L. A simple-
minded guess that accommodates this reality is:

g(r) ∼ 1
rd−2+η

exp(−r/ξL), p = pc, r → ∞, finite L. (8.30)

Let us now examine Figure 8.9 in more detail. First, the data have been generated as
an array g(i, j) where i = |x1 − y1| and j = |x2 − y2|. The correlation function must
be a function of r = √

(i2 + j2) in the bulk limit. However for finite lattice sizes residual
dependence on i and j will remain. We handle this situation (and avoid having to bin in r)
by computing g(i, j) and plotting g versus

√
(i2+j2). The resulting points should fall onto

a universal curve if translation invariance is good. The ragged appearance of the curves
in Figure 8.9 is an indication of how close one is to the bulk limit.

3 Michael E. Fisher (1931 –). British physicist renowned for his contributions to understanding critical
phenomena and phase transitions.
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Figure 8.9 Pair correlation function at p = 0.59275. Fit to L = 140 data for large r: dash-dot curve;
fit for small r: grey line.

Table 8.2 Fit parameters and extrapolation for the pair correlation function at p = 0.59275.

L 40 60 80 100 120 140 ∞
ξL 14.1(2) 20.1(1) 26.8(1) 36.3(3) 38.8(1) 46.5(2) ∞
η 0.401(8) 0.349(6) 0.320(5) 0.280(5) 0.269(3) 0.262(3) 0.201(8)

The parameters η and ξL of Eq. 8.30 have been obtained by fitting in the small r and
large r regimes respectively. Sample fits are shown for the L = 140 data in the figure
(the dash-dot line disappears under the data points past r = 10); fit results are given
in Table 8.2. It is clear that the correlation length is diverging with the lattice size, and
indeed, a linear fit gives ξL ∼ 0.33(2)L. Thus, as expected, the exponential portion of the
fit Ansatz (Eq. 8.30) becomes irrelevant as the bulk limit is approached. Alternatively, the
short distance behavior starts at η ≈ 1/2 for small lattices but rapidly becomes smaller
with increasing lattice size. A linear fit in 1/L yields η(L = ∞) = 0.201(8), which is in
good agreement with the analytically known value η = 5/24 ≈ 0.208.

8.3.2 Additional scaling laws

It is perhaps not surprising that scaling relations exist for a variety of quantities near the
critical point. For example, the fraction of sites that belong to an infinite cluster obeys
the relation:

F ∼ |p − pc|β , p > pc, (8.31)
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while the mean cluster size follows:

S ∼ |p − pc|−γ . (8.32)

Here S is defined as:

S =
∑

s s2ns∑
s sns

, (8.33)

where ns is the number of clusters of size s (Stauffer and Aharony, 1994). The
parameter ν that appeared in the scaling law for the percolation probability (Eq. 8.19)
also features in an expression for the dispersion in the percolation probabilities near
criticality:

〈(pc − 〈pc〉)2〉 ∼ L−2/ν . (8.34)

Finally, Fisher (1964) has introduced a scaling law for the quantity ns:

ns ∼ s−τ f ((p − pc)sσ ), p → pc, s → ∞. (8.35)

At first sight one might think that these critical exponents are independent. But this
cannot be true if more elemental quantities also scale, which is the case. The number
of clusters of size s, ns is one such quantity.4 A variety of scaling relations thus exist
(Levinshtein, 1976; Stanley, 1971); some of these are listed here.

2D = d + 2 − η (8.36)

D = d − β/2 (8.37)

τ = d/D + 1 (8.38)

β = (τ − 2)/σ (8.39)

γ = (3 − τ)/σ (8.40)

ν = (τ − 1)/(σd) (8.41)

dν = γ + 2β. (8.42)

Some of these are merely restatements, for example Eq. 8.42 follows from Eqs 8.39,
8.40, and 8.41. Other relations follow from elementary scaling. For example the relations:

F +
∑

s

sns(pc) = p, (8.43)

p =
∑

s

sns(p), (8.44)

4 In a more familiar setting, the free energy scales near phase transitions; all thermodynamic quantities can
be derived from the free energy, and hence also scale. (Widom, 1965).
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and the Fisher scaling Ansatz yield:

F ∼
∑

s

s1−τ
(

f ((p − pc)sσ )− f (0)
)

∼ (p − pc)
(τ−2)/σ

∫
dz
(

f (z)− f (0)
)

z−1+(2−τ)/σ . (8.45)

In the second line we have used a standard trick to replace a sum with an integral and
have made a change of variables. When combined with the definition of Eq. 8.31 one
obtains the scaling relation of Eq. 8.39.

Argue that Eqs 8.43 and 8.44 are true.

Similarly:

S ∼
∫

ds s2−τ f ((p − pc)sσ ) ∼ (p − pc)
(τ−3)/σ

∫
dz z−1+(3−τ)/σ f (z), (8.46)

which, along with Eq. 8.32, yields Eq. 8.40.
Notice that the scaling relations imply that we have wasted effort (but not instructional

opportunity!) in computing the anomalous dimension because it is simply related to
the fractal dimension. Perhaps this is not surprising–somehow the ‘fractalness’ of the
system should be related to the power law behavior of the pair correlation function in
the percolating cluster. Alternatively, scaling is a hypothesis and our computations have
confirmed that:

2D + η − d − 2 = −0.025 ± 0.01. (8.47)

Note that the result, despite being small, is 2.5σ removed from zero. Although it is
statistically possible that this result is consistent with zero it is more likely that errors
have been underestimated (this is a common occurrence!)–indeed systematic errors have
been ignored in this estimate, and can be considerable.

8.4 Universality and the renormalization group

So far we have concentrated effort on site percolation in the two-dimensional square
lattice. What happens in three or more dimensions? What about other types of two-
dimensional lattices? In this case one would retain an array �i, j to describe the configu-
ration but nearest neighbors would be described by a different set of “cell” vectors. For
example, for the triangular lattice one could employ {x̂, (

√
3ŷ + x̂)/2, (−√

3ŷ + x̂)/2} as
a basis set. This can be implemented in code by distorting the basis so that the three
neighbors are, for example, at {(i + 1, j), (i, j + 1), (i, j − 1)}.
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Once a suitable geometry has been implemented a lot of hard work of the type
discussed above will yield results similar to that of Table 8.3 (see (Essam, 1983) if you
are interested in how one makes the analytic computations). The notations ‘cubic’, ‘bcc’,
and ‘fcc’ in the table refer to three-dimensional cubic, body centered cubic, and face
centered cubic lattice structures.

If one were to press on and compute critical exponents and fractal dimensions for
the new systems one would run into a rather remarkable result: the exponents only
appear to depend on the dimensionality of the lattice, and not on the lattice type!
Some critical exponents are given in Table 8.4. This stunning phenomenon, called
universality (Fisher, 1974), is a deep result of the self-similar nature of percolation
models at criticality. In brief, it is properties of the percolation cluster that determine
critical exponents, and these properties are long range (or better: all range). However
lattices differ only in their short range structure, and hence universality is a plausible
outcome. Of course many quantities, such as the critical probability pc, do depend on
short range structure.

The loss of sensitivity to short-range properties is a familiar property of nature. One
does not need, after all, to understand the details of the quantum mechanical interactions
of H2O molecules to obtain an accurate and useful macroscopic description of water.
Similarly, all manners of microscopic diffusion processes can be described by the large
scale effective equation5

∂φ

∂t
= ∇ · (D∇φ). (8.48)

Table 8.3 Critical probabilities for various lattices.
s = 2 sinπ/18.

Lattice Site Bond

hex 0.6962 1 − s

square 0.59275 1
2

triangular 1
2 s

diamond 0.428 0.388

cubic 0.3117 0.2492

bcc 0.245 0.1785

fcc 0.198 0.119

5 Let’s pursue the diffusion example a bit more. Consider Pascal’s recurrence relation for the binomial
coefficients:

P(X , T + 1) = 1
2

[P(X − 1, T)+ P(X + 1, T)]
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Table 8.4 Critical exponents. See Ex. 4 for Cayley
trees. The singular behavior of the total number of
clusters is specified by α.

Exponent d = 2 d = 3 Cayley

α –2/3 –0.6 –1

β 5/36 0.4 1

γ 43/18 1.8 1

ν 4/3 0.9 1/2

σ 36/91 0.45 1/2

τ 187/91 2.2 5/2

D(p = pc) 91/48 2.5 4

D(p < pc) 1.56 2 4

D(p > pc) 2 3 4

Lastly, the immense successes of thermodynamics are underpinned by a lack of sensitiv-
ity to microscopic structure. It appears that the presence of very many interacting entities
serves to wash out dependence on the details of the entities themselves.

8.4.1 Coarse graining

It is useful to think of self-similarity of a percolating cluster in terms of invariance under
coarse graining. Coarse graining is defined generically as a process of removing degrees
of freedom (Sethna, 2006). For the case of percolation it is convenient to implement this
idea by replacing a sublattice of size b× b with a single superlattice site. The superlattice
site will be deemed to be occupied if the original sublattice percolated. Thus an L × L
lattice is mapped to an L/b × L/b superlattice with an effective percolation probability
called p′. It is clear that (i) the superlattice is simply another percolation problem with
a different scale ξ ′ and probability p′ (ii) the coarse graining process can be repeated
yielding a sequence of superlattices.

and suppose that the triangle positions X and T map onto a lattice with cutoffs δx and δt so that X = x/δx and
T = t/δt. Let p(x, t) = P(x/δx, t/δt)/δx then Pascal’s equation is equivalent to:

p(x, t + δt)− p(x, t)
δt

= D
p(x − δx, t)+ p(x + δx, t)− 2p(x, t)

(δx)2

where D = (δx)2/(2δt). This equation is strongly dependent on the microscopic cutoffs δt and δx unless the
continuum limit is approached in such a way that D is kept constant. It is in this sense that sensitivity to microscopic
details are washed out in the large scale limit.
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The effective correlation length is related to the original correlation length in a
specific way:

ξ = k(p − pc)
−ν (8.49)

ξ ′ = kb(p′ − pc)
−ν . (8.50)

(We have supplied the constant of proportionality in Eq. 8.28.) At criticality one must
have p = p′ and ξ = ξ ′ thus:

ν = lim
p′→p

log b

log
(

p′−pc
p−pc

) , (8.51)

which provides a useful mechanism for determining the critical exponent ν.
To see this in action let us consider the two-dimensional triangular bond lattice

(with critical probability pc = 1/2). We construct the superlattice by averaging three
neighboring sites. The probability that this sublattice percolates is given by:

p′ = p3 + 3p2(1 − p). (8.52)

The critical probability can be estimated by imposing the criticality condition p′ = p = pc.
Solving Eq 8.52 gives two trivial solutions pc = 0 and pc = 1 and the nontrivial estimate
pc = 1/2 (which in this case happens to be exactly right).

Expanding about p = pc and setting b = √
3 then yields a simple estimate:

ν ≈ log
√

3
log 3/2

= 1.355 (8.53)

This is not a bad first approximation to the exact value ν = 4/3.
We add two observations: (i) such successes do not come so easily in other models,

(ii) the larger one can take b, the more accurate the calculation is. Unfortunately, even
dealing with the relatively simple case of 3 × 3 sublattices on the square lattice means
enumerating 29 configurations! How this can be done in practice is the subject of the
next section.

More than forty years ago Wilson (1971)6 suggested that the process of coarse
graining configurations can be abstracted to coarse graining theories. It is convenient to
postulate the existence of theory space when conceptualizing Wilson’s idea. By this we
mean the set of all possible theories that describe a given general situation, such as
percolation, spin systems, or quantum field theory. If a generic Hamiltonian in such a
set can be written as:

6 Kenneth G. Wilson (1936 –). American physicist. Inventor of ‘Wilsonian renormalization’ for which he
won the Nobel prize, the operator product expansion, and lattice field theory.
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H({λ}) = H0 + λ1H1 + λ2H2 + . . . (8.54)

where the Hi are interaction terms of fixed form and the λi are coupling constants, then
theory space would consist of the set of points labelled by (λ1, λ2, . . .).

Wilson’s idea was to study how theory space maps onto itself under coarse graining.
Indeed, one can consider coarse graining to be a map M that effects H ′ = M(H), or
more specifically,

H({λ′}) = M(H({λ})). (8.55)

One says that the theory parameters {λ′} have been renormalized by the mapping. The
mapping itself is often called a renormalization group, although it does not satisfy all
the requirements to form a mathematical group.

Figure 8.10 illustrates what can happen under renormalization group flow, in
which a map that corresponds to an infinitesimal coarse graining is iterated many times.
Lines indicate how Hamiltonians are renormalized as the map is iterated. The arrows
indicate the direction of flow, which is typically towards large scales (ie., b > 1)7. It may
happen that a fixed point of the map exists:

H = M(H ), (8.56)

where H = H({λ }). This is indicated by the point labelled H in the figure. All theories
that flow into this point are in the basin of attraction of the fixed point and are said to
be in a universality class. We have already learned that all two-dimensional percolation
models are members of one universality class.

gas

liquid
H*

H(λ) H(λc)

Figure 8.10 Renormalization group flow in theory space.

7 The fancy way to say this is ‘the renormalization group flows towards the infrared’.
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The dark line in Figure 8.10 represents a particular theory as a coupling is varied
(in our familiar percolation model the parameter would be p). At some point the model
crosses a flow line that feeds into the fixed point. This point is the critical coupling λc.

Notice that the fixed point has flow lines that diverge from it (the fixed point is
thus conditionally stable).8 The physical behavior the theory is qualitatively different
depending on which direction one follows on this line. In fact the two sides of the
diverging flow line represent different phases which are separated by a phase transition.
Right at the fixed point the system does not ‘know’ which phase it is in and experiences
fluctuations at all scales between the phase options (labelled gas and liquid in the figure).

How would you a interpret a diagram in which all flows approached a fixed point?

8.4.2 Monte Carlo renormalization group

In general critical exponents can be obtained from Eq. 8.55 by linearizing the map near
the fixed point (which must be determined by other means). We call the values of the
couplings after n iterations λ

(n)
i and the fixed point couplings λ i . Define the distance

from the fixed point:

�λ
(n)
i = λ

(n)
i − λ i . (8.57)

Then linearizing the coarse graining map near the fixed point yields:

�λ
(n+1)
i =

∑

j

T 
ij �λ

(n)
j (8.58)

where

T 
ij =

∂Mi

∂λj

∣∣∣
λ=λ 

. (8.59)

The eigenvalues of the linearized coarse graining map are related to critical exponents.
For example, the largest eigenvalue of T is defined to be b1/ν . Notice that Eq. 8.51 is the
one-dimensional version of this result.

Implementing the renormalization procedure in this more general case is a daunting
task. One must remove (or ‘integrate out’) degrees of freedom in a system that can
have many couplings. This can be nearly as difficult as solving the original problem,
and theorists often resort to drastic approximations such as the ‘ε-expansion’ (where
d = 4 − ε) or the ‘1/N-expansion’ (where N is the dimension of an internal symmetry
group) (Wilson and Kogut, 1974). In addition every mapping step induces many (often

8 Fixed points and their classification are discussed at depth in Chapter 13.
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infinitely many) new operators and their couplings, and these must be truncated in an
uncontrollable way to render any computation practical.

The great difficulties involved in implementing renormalization group ideas naturally
suggest employing numerical methods. This suggestion was first made by Ma (1976),
while the efficiency of the method was improved by Swendsen (1979).

The case of percolation is unusually simple: one seeks to numerically evaluate the
percolation probability p′ on a L/b × L/b lattice. But this is equivalent to the original
problem, so there is literally no additional work to perform, only a reinterpretation of old
results. Specifically p′ will be given by the percolation probability computed on a lattice
of size L′ = L/b thus:

p′ = P(p, L′). (8.60)

Evaluating the derivative at pc then gives the numerator of Eq. 8.51 and hence the
exponent ν.

In more complicated situations one can invert Eq. 8.58 to obtain:

Tij = ∂λ
(n+1)
i

∂λ
(n)
j

(8.61)

and use the chain rule to obtain the derivatives:

∂〈H (n+1)
i 〉

∂λ
(n)
j

=
∑

k

∂λ
(n+1)
k

∂λ
(n)
j

· ∂〈H
(n+1)
i 〉

∂λ
(n+1)
k

(8.62)

Finally, the derivatives of the expectation values of interaction terms can be related to
correlation functions (Landau and Binder, 2000) as follows:

∂〈H (n)
i 〉

∂λ
(m)
j

= 〈H (n)
i H (m)

j 〉 − 〈H (n)
i 〉 〈H (m)

j 〉. (8.63)

Numerical implementations of this scheme must carefully explore the dependence on
the algorithmic parameters that specify the size of the system, the number of coarse
graining iterations, and the truncation in the number of operators. One finds that
convergence is quite fast for the two-dimensional Ising model, but that this fortunate
situation does not hold for other systems (Landau and Binder, 2000).

8.5 Epilogue

Perhaps the reader is feeling a little pummelled at this point: what started as an
investigation of a nearly trivial problem in statistics has turned into a whirlwind tour of
some of the most profound concepts of modern physics. We stress that the presentation
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has not been historical, all of the general concepts–scaling, self-similarity, fractals, critical
exponents, the renormalization group–were developed in different contexts. However the
application of them to percolation is particularly simple and hence this chapter served as
a useful introduction to these sophisticated concepts. They will be re-visited in chapters
on nonlinear dynamics (Chapter 13), molecular dynamics (Chapter 18), classical and
quantum spin systems (Chapters 20 and 22), and quantum field theory (24). In short,
any problem with many degrees of freedom and a phase transition can benefit from the
renormalization group methodology.

Computationally, we have learned a useful technique in pattern recognition, and how
to apply scaling laws to extract critical couplings. Previous expertise in extrapolation and
data fitting has also been leveraged.

The existence of fluctuations at all scales underpins self-similarity at a critical point.
This in turn implies that a large set of theories, all of which differ at short distances,
share the same singular structure at large distances. Although the concept of universality
is perhaps new to the reader, it is vital to our ability to describe nature. Indeed, if
the phenomena of every day life depended on the details of the microscopic quantum
mechanical world that supports such phenomena we would never have been able to
perceive simple physical laws.

8.6 Exercises

1. [T] Elementary Statistics.
Consider Figure 8.2. If the error bars represent one standard deviation then
approximately how many points should lie 1σ or more from the exact curve? If
you saw data as in Figure 8.11, would you be suspicious? See (Volkow, 2011) for a
real-world example of this problem.
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0.8
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1.2
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0.5 1 1.5 2 2.5 3

y

x

Figure 8.11 Dubious data?
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Figure 8.12 Koch snowflake.

Figure 8.13 Affine leaf.

2. [T] Koch Snowflake.
A Koch snowflake is obtained by adding triangles to sides of triangle, as illustrated
in Figure 8.12. Obtain expressions for the perimeter and area of the nth order Koch
snowflake. How do they behave as n runs to infinity?

3. Affine Maps.
Write a program to generate points according to the algorithm:

�x = �x0
iterate

�x = �f (�x; μ̂)
end iterate

Here μ̂ is a random variable that is regenerated at each iteration. It is often better
to let the components of �x update on the fly in the iteration. Obtain something like
Figure 8.13 with the function:
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Figure 8.14 A Cayley tree with z = 5 and two generations.

fx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 3%
0.2x − 0.26y 13%
−0.15x + 0.28y 11%
0.85x + 0.04y 73%

.

fy =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.16y 3%
−0.23x + 0.22y + 1.6 13%
0.26x + 0.24y + 0.44 11%
−0.04x + 0.85y + 1.6 73%

where the percentages indicate the probability of using the particular map. Is the
object self-similar?

4. [T] Cayley Trees.
A Cayley tree with coordination number z is a structure formed by adding z links
to a node such that only one link connects two nodes as in Figure 8.14

a) Terminate a z-tree after r generations and call the terminal sites the ‘surface’ of
the tree. Derive an expression for the ratio of the surface sites to the total number
of sites. How do you interpret the dimensionality of the tree?

b) Occupy each site in a z-tree with probability p. A percolating cluster will be one
that starts at the center and reaches the surface. Prove that:

pc = 1
z − 1

.

c) Prove that the probability that a given site belongs to an infinite cluster for
z = 3 is:

F = p − (1 − p)3

p2 .

Obtain β. See (Flory, 1941) if you are having trouble.
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d) Obtain the mean cluster size, defined as the average number of sites in a cluster
containing the origin, for z = 3:

S = 1 + p
1 − 2p

.

Obtain γ .

5. [T] One-dimensional Percolation.
Consider site percolation in a one-dimensional chain of squares. Show the following

a) The critical probability is:

pc = 1.

b) The probability that a site in the lattice is the left-hand end of a cluster of size s is:9

ns = ps(1 − p)2.

c) The pair correlation function obeys:

g(r) = pr .

d) Use g(r) to obtain ν.

e) Lastly, prove that the average cluster size obeys:

S = pc + p
pc − p

.

6. Binned Likelihood Fitting.
In the directory DATA/CH8/EX6 you will find a data file containing measurements
obtained in a simulation of a one-dimensional percolation problem. Each row of the
file contains, first, the cluster size s, and second, the number of clusters found to have
size s in the simulation. The physicist who simulated the data forgot which value of
p was used to generate those data. Construct a likelihood function L(p) for the data
sample based upon the Poisson distribution:

9 this is called the cluster number, which is perhaps a misleading term.
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P(N |λ) = e−λ λ
N

N ! .

At what value of p does your L(p) take its maximum value? Over what distance does
it fall by a factor e−1/2?

7. 1d Clusters.
Write your own algorithm to generate and cluster configurations in 1 dimension. Use
the algorithm developed in the previous exercise to re-extract from the simulation
the value of the probability p. How does the performance of your algorithm depend
upon the lattice size L?

8. [T] Critical Exponent ν.
Compute analytically the percolation probability P(p, 3) on a 3×3 lattice as a
function of p. From this, estimate the critical probability on a 9×9 lattice, a 27×27
lattice, and an infinite lattice. Then, estimate the critical exponent ν.

9. Parallel Cluster Recognition Algorithm.
Design a parallel cluster recognition algorithm. Write your answer in pseudocode
or, better, implement and test it. Under what conditions is it less efficient than the
serial cluster recognition algorithm?

10. Universality.
Implement code to analyze the bond percolation model on a two-dimensional square
lattice. This model joins neighboring sites with probability p. Percolation is defined
when two sides of a lattice are continuously connected by occupied bonds.

a) Determine pc and show that is different from that of the 2d site percolation model.

b) Implement viable schemes to compute the critical exponents ν, β, and γ .

c) Verify that the site and bond models belong to the same universality class.

11. Monte Carlo Renormalization Group for Percolation.
Consider the square site percolation model.

a) Attempt to obtain an accurate estimate of the critical probability pc by using the
renormalization group equation p′ = P(p, L′) at criticality.

b) The deviation of this solution from the exact result scales as L−1/ν . Verify this
form and use it to estimate ν.

12. Cluster Growth Algorithm.
An alternative approach to analyzing clusters is to generate them from a single
occupied site by visiting all neighboring sites and marking them with probability
p. In this way the system automatically percolates on a lattice up to the largest linear
size of the cluster. Iteration stops when no neighbouring sites have been marked.
Implement this algorithm in your favorite language and test it by computing the
anomalous dimension of the percolation cluster for a square lattice.
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13. One-dimensional Ising Model.
The one-dimensional Ising model is a traditional instructional tool for statistical
mechanics. Here we compare the exact solution to a renormalization group compu-
tation of the partition function.

a) Obtain the exact partition function for the one-dimensional chain with periodic
boundary conditions,

Z =
∑

{σ1,σ2,...,σN }
exp

(

K
∑

i

σiσi+1

)

.

Here σ is a classical spin variable, σ = +1,−1. Hint: use the transfer matrix
method where Z = trV N , with:

Vσσ ′ = exp(Kσσ ′) =
(

exp(K) exp(−K)

exp(−K) exp(K)

)
.

Diagonalize V and obtain:

F = lim
N→∞

1
N

log(Z) = ln 2 cosh K .

b) Coarse grain by summing over the even spins. For example, summing over σ2
gives a factor:

exp(K(σ1 + σ3))+ exp(−K(σ1 + σ3)).

This needs to be rewritten in a form that mimics the original Hamiltonian.
Fortunately this is easily achieved via:

exp(K(σ1 + σ3))+ exp(−K(σ1 + σ3)) = f (k) exp(K ′σ1σ3)

where f (K) = 2
√

cosh(2K) and K ′ = 1
2 ln cosh 2K . The end result is a partition

function of precisely the same form as the original but with one half the degrees
of freedom and a renormalized coupling. Specifically, for large N :

Z(K , N) = f (K)N/2Z(K ′, N/2)

and hence:

F(K) = 1
2

ln f (K)+ 1
2

F(K ′).

Invert the expression for f (K) to obtain K = f −1(K ′). Notice that these equations
iterate towards larger coupling K . Choosing a small initial value for K ′ then
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permits an estimate of the initial value for F ≈ ln 2 and estimates of F for
larger K .

Iterate from small K ′ and obtain a series of estimates for F . Compare this
to the exact values. Remarkably, the error in the initial estimate for F actually
gets smaller as the iteration proceeds. Notice that there is no fixed point in the
iteration so no phase transition is predicted.

14. Two-dimensional Ising Model.
Apply the renormalization group to the two-dimensional Ising model. Take the
interaction to be

∑
(i, j) σiσj where the indices run over nearest neighbors on a square

lattice. As in the previous question, sum over the odd sublattice to obtain a new
expression for the partition function:

Z(K , N) = f (K)N/2
∑

even

exp(H1 + H2 + H3)

where:

f (K) = 2 cosh1/2(2K) cosh1/8(4K)

and:

H1 = 1
4

ln cosh(4K)
∑

nn

σiσj (8.64)

H2 = 1
8

ln cosh(4K)
∑

nnn

σiσj (8.65)

H3 =
(1

8
ln cosh(4K)

− 1
2

ln cosh(2K)
) ∑

�
σiσjσkσ�.

Here nn means ‘nearest neighbor’–those sites
√

2 in distance from each other; nnn
means ‘next nearest neighbor’ and refers to sites a distance 2 apart. The last term is
a sum over sites that form a square around the former site.

Unlike the one-dimensional case, coarse graining generates new terms in the
effective Hamiltonian which make mapping to the original form ambiguous. One
approach would be to simply ignore the new terms H2 and H3. Then:

K ′ = 1
4

ln cosh(4K) (∗)

and:

F(K ′) = 2F(K)− ln f (K).
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Verify that no phase transition occurs with this truncation. Replace Eq. (∗) with:

K ′ = 3
8

ln cosh(4K).

What happens in this case? You should find a fixed point in the transformation.
Locate the fixed point and compare to the exact result Kc = 1

2 sinh−1(1). The
new coefficient in the expression for K ′ is an attempt to incorporate H2 in the
computation.

15. The Central Limit Theorem and the Gaussian Fixed Point.
The central limit theorem is a general statement about sums of variates that is
(largely) independent of the details of the initial probability distribution. This is
reminiscent of renormalization group arguments, and in fact one can derive the
central limit theorem by considering a map from the space of probability functions
onto itself.

a) Coarse grain by combining two variates. Show that the probability distribution
for the sum of two numbers drawn from the distribution ρ is:

C(x) =
∫

dy ρ(x − y)ρ(y).

b) Rescale C so that width of the coarse grained distribution remains fixed (take
μ = 0). This means multiplying the argument of ρ by

√
2 and normalizing.

Thus the renormalization map is:

M[ρ] = √
2
∫

dy ρ(
√

2x − y)ρ(y).

Show that a Gaussian is a fixed point of this map. Studying the eigenvalues of
the linearization of the map near the fixed point yields information on how the
Gaussian distribution is approached as the number of variates becomes large.

..........................................................................................
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The topic of parallel computing tends to be neglected or added as an afterthought in
computational text books. We have chosen to present it relatively early because parallel
computing is no longer an esoteric subject only meant for power users. In fact, parallel
computing has become a commonplace experience in modern life: almost all current cell
phones leverage parallel computing to enhance battery life, and massively parallel cloud
computing is utilized every time someone seeks driving directions or asks Siri a question.

This chapter begins with an overview of the terminology encountered in the field
of high performance computing. This leads to an examination of methods to measure
performance and a brief look at Moore’s Law. We then introduce different schemes used
to implement parallel computing in hardware. Of course the main goal is to learn how to
leverage this hardware, which is the objective of this chapter. We thus introduce several
popular parallel computing protocols: MPI, openMP, and the C++11 concurrency
library. Finally, parallel computing implies inter-computer communication; accordingly,
the chapter closes with an examination of C++ sockets.

9.1 High performance computing

Modern computers are complex devices with structure over many length scales1. At
the largest scale typical supercomputers are comprised of many nodes. A node is a

1 In fact the scales range over an astounding ten orders of magnitude.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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physical unit with its own processors, memory, and I/O bus. A processor is an integrated
circuit chip whose primary role is to perform operations on data. The operations can
include arithmetic computations (performed by an arithmetic logic unit) or memory
manipulation. Processors often contain several central processing units, or “CPUs”.
When a single chip contains several CPUs, these are referred to as cores. Finally, a core
may support multiple threads, which are independent instruction streams that share
memory and other logical units in the chip. Threads are distinct from processes that
demand more resources, such as memory, of the hardware.

It is possible that a core implements pipelining, where instructions can be executed
in parallel. This is called instruction-parallelism and, because it is transparent to the
user, is typically not counted towards “parallelism” of the device.

Characteristics of the world’s largest supercomputers are given in Table 9.1. These
machines contain millions of cores and petabytes (250 ≈ 1015 bytes) of memory. Their
computational capabilities are measured in flops (or flop/s), which is a floating point
operation per second. Typical calculators operate at around 10 flops, whereas the six
cores of an Apple A9 can maintain 173 Gflops. Finally, the last column of the table
gives the power requirements of the respective machines. Notice that they are quite large!
The US government is actively pursuing “exascale supercomputers” capable of exaflops
of sustained computations. If power requirements are naively scaled up from those of
Table 9.1, tens of gigawatts (i.e., several large scale nuclear reactors) would be needed
to power a single computer. Clearly energy efficiency is a primary concern in future
supercomputer development.

At the other end of the computational spectrum, my laptop has an Intel Core i7
processor with two cores, each of which is capable of running two threads. The most
familiar computer is the cell phone, which owes its existence to the miniaturization
revolution. A significant challenge with cell phones is powering their vast computational
capabilities. One approach is to employ processors with multiple low power cores.
When the phone is idle only a single core need run; additional cores are activated for

Table 9.1 World’s leading supercomputers. The theoretical peak capacity is listed.

Machine Location Cores Peak Memory Power
(M) capacity (PB) (MW)

(Pflop/s)

Sunway TaihuLight National Supercomputing 10.65 125 1.3 15.4
Center, Wuxi, China

Tianhe-2 National Super Computer 3.1 55 1.0 17.8
Center, Guangzhou, China

Titan Cray XK7 Oak Ridge National 0.56 27 0.71 8.2
Laboratory, TN, USA

Sequoia BlueGene/Q Lawrence Livermore National 1.57 20 1.6 7.9
Laboratory, CA, USA
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Table 9.2 Cell phone SoC characteristics.

Model Introduced Chip Speed Word size Cores Feature size

Galaxy S7 2016 snapdragon 820 1.6 GHz 64 bits 4 14 nm

iPhone 6S 2015 A7 1.4 GHz 64 bits 2 16 nm

HTC One M8 2014 snapdragon 801 2.45 GHz 32 bits 4 28 nm

computationally demanding tasks such as navigation or searching for Japanese cartoon
monsters.

Table 9.2 lists some recent cell phones and characteristics of their primary computing
engines. These are often called system on a chip (SoC) devices because the chips incor-
porate CPUs; graphical processing units (GPUs) which are optimized to perform the
computations required for graphics visualization; power management hardware; sensors
(motion, magnetic field, orientation); and devices in support of communication protocols
such as wifi and bluetooth. Each of the cell phones listed below encompass approximately
one hundred times the memory and computational power of a typical supercomputer of
the 1980s.

Table 9.2 has a column labelled “feature size”. This refers to the size, typically
measured in nanometers, of integrated circuit features such as a transistor gate length or
the distance between wires. Historically, the bulk of the advances in computational power
has arisen due to rapidly decreasing feature size. This carries three benefits: lower power
consumption, increased speed, and smaller chip size. These favorable characteristics
have underpinned Moore’s law (named after American businessman, Gordon Moore,
1929–), which states that the number of components in an integrated circuit double every
year2. Nevertheless, the specific reason for performance increases has changed with time:
from 1960 to 1986 this was due to increasing word size, from 1986 to 2004 decreasing
feature size was used to leverage chip clock speed increases, and since 2004, a steadily
increasing number of cores has pushed the performance boundary.

The right panel of Figure 9.1 shows the approximate validity of Moore’s law over four
decades; the left panel makes clear the incredible decrease in the cost of computing since
1960. Recent reduction in feature size is shown in Figure 9.2.

Recently the ability to shrink feature size has slowed and the industry has turned
to increasing core count to keep Moore’s law afloat. Certainly, the exponential behavior
seen in Figure 9.1 cannot be maintained indefinitely. At a fundamental level chip features
are already approaching the limit where quantum effects will ruin chip reliability. And
the problem with power requirements has already been mentioned. One expects that
ingenuity will carry the stupendous advances of the previous 50 years on for some time;
however, it all must end some time. This is a sobering thought as it implies that there will
be limits to what can be computed–it may never be possible to predict weather a year in
advance or to compute the mass of the X(3872) meson to four digits accuracy.

2 The doubling period has been revised several times since the original observation.
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9.2 Parallel computing architecture

A CPU operates on data according to instructions. Thus the CPU must deal with data
streams and instruction streams. It is possible to make either of these parallel, depending
on the hardware implementation chosen. In 1966, Michael Flynn (American computer
scientist, 1934 –) proposed Flynn’s taxonomy which labels the four possibilities for
parallelism. These are:

SISD Single instruction stream; single data stream.

SIMD Single instruction stream; multiple data stream.

MISD Multiple instruction stream; single data stream.

MIMD Multiple instruction stream; multiple data stream.

All four types of architecture exist. SISD machines are not parallel and are chiefly
older PCs and mainframe computers. SIMD computers execute a common code against
multiple data streams. This is a useful paradigm for GPUs. MISD computers execute
several instruction streams which act on identical data. The most common type of
supercomputer implements the MIMD architecture. In this case independent instruction
streams can access independent data streams. Data can be stored in a single common
memory or it can be distributed across nodes.

Parallel computers must communicate information between cores and nodes. This
often forms a large portion of computational effort and it is therefore important to
design algorithms that reflect the physical constraints of the computer to be used. Some
terminology associated with this problem is as follows.

bandwidth The maximum rate at which data can be sent.

latency The time required to send a length zero message (thus this is the communi-
cation overhead).

granularity The ratio of computational demands to communication demands of
a program. Coarse granularity calls for few communication requests while fine
granularity means many communications are required per unit computation.

embarrassingly parallel Embarrassingly parallel code requires no (or nearly no)
communication between subprocesses.

Another important concept is synchronization. Synchronization refers to the timing
in which tasks are performed; for example, a thread may require input from another
thread before it can continue its computation. Alternatively, two threads may modify
a single variable at the same time, leading to unpredictable outcomes. A parallel
programmer must be aware of these situations and construct code accordingly.

Scalability refers to how performance varies as the number of CPUs or threads
is increased. This is rarely linear because more cores means greater communication
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overhead. Load balancing is another important concept associated with parallel
computing. It may occur that some threads carry most of the computational effect
while others lie idle. This is clearly an inefficient situation and astute programmers will
work to maintain appropriate load balance in their code.

Unlike SISD coding, it is apparent that machine architecture affects parallel coding
design in important ways. This added layer of complexity cannot be avoided by the
researcher. However, scientific parallel coding is often fairly simple, and even novices
can make good use of the power of multicore machines.

9.3 Parallel computing paradigms

A variety of methods for achieving parallelism exist: the main paradigms in parallel
coding are threads, message passing, and the data parallel model.

The data parallel model achieves parallelization by independently manipulating
portions of a large data set. For example, an array can be divided into N portions and
a task assigned to each portion with each task performing the same operations. This
paradigm is implemented in Fortran 95 via extensions called Coarray Fortran. Global
Arrays is a public domain library with Fortran 77 and C bindings.

The message passing model separates tasks and their associated memory. Tasks and
memory can reside in the same node or across multiple machines. Tasks exchange
information by sending and receiving messages. Message passing has been employed
since the 1980s, and, starting in the 1990s, has been standardized via the message
passing interface (MPI). Basic features of the MPI are discussed below.

The final major paradigm for parallel computing is the thread model. Threads are
usually implemented as independent streams of instructions within a controlling heavy
weight program. This program acquires all of the resources necessary to run the code.
The heavy weight program spawns threads as subtasks that can have local data but also
share the resources of the heavy weight program. This carries the benefit of avoiding data
replication. Because of this the subtasks are called light weight. Threads communicate
via shared memory, which raises synchronization issues of which the programmer needs
to be acutely aware. The two most common threading implementations are posix
threads (also called pthreads) and openMP. Both of these will be discussed below.

We note that it is also possible (and useful) to consider hybrid models wherein
the previous models are combined. For example, threads can be used to perform
computationally intensive work on local nodes and MPI can be used for internode
communication. This paradigm lends itself well to common supercomputer architecture
that consists of clusters of multi-core nodes.

9.3.1 MPI

Implementation of the message passing interface (MPI) started in 1992 as a
(successful) attempt to standardize the message passing paradigm. The most recent
implementation was made in 2015 (MPI-3.1) and includes specifications for C, C++,
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and Fortran90. MPI consists of several hundred routines that manage tasks and the
communication between tasks which run on one or more computers.

The following Hello World code illustrates the use of a few of these routines. The
routine MPI_Init must be called once before any parallel tasks are to be undertaken.
This routine establishes a series of tasks (to be run in parallel, of course) according to
specifications made in your local job submission scheme. Each task has a rank associated
with it that can be accessed with the routine MPI_Comm_rank. In the following, we refer
to these as taskids. Notice that most of the MPI routines reference MPI_COMM_WORLD;
this is a predefined communicator that accesses all the MPI tasks available to the
program.

#include " mpi . h "
#include <iostream>

int main(int argc, char *argv[]) {
using namespace std;
int numtasks, taskid, len, rc;
char hostname[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,&argv); // initialize
MPI

MPI_Comm_size(MPI_COMM_WORLD,&numtasks); // get number
of tasks

MPI_Comm_rank(MPI_COMM_WORLD,&taskid); // get my rank
(taskid)

MPI_Get_processor_name(hostname, &len); // obtain
hostname

cout << " Hel lo World from t a s k " << taskid << endl;
cout << " hostname : " << hostname << " number of t a s k s :

" << numtasks << endl;

MPI_Finalize(); // clean up
return 0;

}

This code was compiled with the wrapper mpic++ which implements openmpi for
the gcc compiler. The code can be executed on one or many machines using the runmpi
command; alternately, and depending on the configuration of the host machine or cluster,
the code can be submitted under a batch system. Running the code with two nodes and
20 tasks per node gave the following output:

Hello World from task 6
hostname: n197.mpi.sam.pitt.edu number of tasks: 40
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Hello World from task 24
hostname: n198.mpi.sam.pitt.edu number of tasks: 40
Hello World from task 31
hostname: n198.mpi.sam.pitt.edu number of tasks: 40

...

Tasks 0 to 19 have been assigned to node n197.mpi.sam.pitt.eduwhile tasks 20
to 40 have been assigned to n198.mpi.sam.pitt.edu. Notice also that the order in
which the tasks are reported is random. This occurs because many tasks are attempting
to access a single resource (the output file) at the same time, and is an issue with
synchronization. Indeed, we have often seen cases where letters from each output stream
are intermingled in the output file. In general, I/O is problematic in parallel computing
and one is well-advised to minimize it, or to only have a “master task” deal with it.

Embarrassingly parallel example

The hello world application did not need intertask communication. We now consider
an embarrassingly parallelizable problem that it often encountered by the numericist,
namely Monte Carlo computation. Stochastic calculations rely on executing independent
actions very many times–clearly it is useful to divide these among processors. Communi-
cation is required to initiate the tasks and to combine their results after the computations
are complete.

Our application will be a computation of the integral
∫∞

0 x2 exp(−x) dx via direct
Monte Carlo. The reader is directed to Section 7.4.2 to see the serial solution to this
problem. Most of the code for the parallel implementation is given below. The new
element in this example is MPI_Reduce, which collects the Monte Carlo sums from
each task and combines them (into fsum). The communication necessary to do this is
implemented via send and receive buffers whose jobs are to store information being
generated by tasks and receive that information for further use.

int main (int argc, char *argv[]) {
int taskid,numtasks;
int seed = 12341;
const unsigned int N=10000000;
const unsigned int MASTER=0;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
const unsigned int Npertask=N/numtasks;

std::mt19937 e(seed+taskid); // assign a unique
seed to each task

std::exponential_distribution<double> eDist;
double sum=0,sum2=0;
for (unsigned int i=0;i<Npertask;i++) {
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double x=eDist(e);
double f=x*x;
sum += f;
sum2 += f*f;

}

double fsum,f2sum;
int rc = MPI_Reduce(&sum, &fsum, 1, MPI_DOUBLE, MPI_SUM,

MASTER, MPI_COMM_WORLD);
// fsum is the receive buffer

int rc2 = MPI_Reduce(&sum2, &f2sum, 1, MPI_DOUBLE, MPI_SUM,
MASTER, MPI_COMM_WORLD);

if ((rc != MPI_SUCCESS) || (rc2 != MPI_SUCCESS))
std::cout << " MPI_reduce f a i l u r e " << std::endl;

// MASTER computes average and sigma
if (taskid == MASTER) {

fsum /= N;
f2sum /= N;
double sigma=sqrt((f2sum-fsum*fsum)/N);
std::cout << " numtasks : " << numtasks << std::endl;
std::cout << " f ba r = " << fsum << " +/− " << sigma <<

std::endl;
}
MPI_Finalize();
return 0;

}

The specification of this routine is:

int MPI_Reduce(
void* send_buffer,
void* recv_buffer,
int count,
MPI_Datatype datatype,
MPI_Op op,
int master,
MPI_Comm communicator)

where send_buffer is the variable to be sent, in this case sum, and recv_buffer is
the receiving variable (fsum). The latter can be an array of size count; in our case we
combine variables into a scalar so count=1. Note that revc_buffer is only known
to the task with rank master. MPI_Datatype is one of the predefined MPI datatypes;
in this case MPI_DOUBLE. A subset of MPI datatypes is given in Table 9.3. The type of
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Table 9.3 Some MPI datatypes.

MPI_datatype C datatype

MPI_CHAR signed char

MPI_INT signed int

MPI_FLOAT float

MPI_DOUBLE double

MPI_C_BOOL _Bool

MPI_C_COMPLEX float _Complex

Table 9.4 MPI operations.

MPI_Op Function

MPI_MAX maximum element

MPI_MIN minimum element

MPI_SUM element sum

MPI_PROD element product

MPI_LAND logical and the elements

MPI_LOR logical or across the elements

MPI_BAND bitwise and across the bits of the elements

MPI_BOR bitwise or across the bits of the elements

MPI_MAXLOC maximum value and the rank of the process that owns it

MPI_MINLOC minimum value and the rank of the process that owns it

operation to perform on the data is specified by MPI_Op. Possible values for this variable
are listed in Table 9.4. Finally, the MPI world communicator (MPI_COMM_WORLD) is
specified by the last variable.

The final point concerning the code is that a single task, denoted MASTER, has
been assigned to manipulate the received data and to print out this information. If this
procedure were not followed, numtasks integrals would be printed and most of them
would be wrong.

The routine MPI_Reduce is termed thread safe because all communications are
executed in a manner that prevents overwriting memory in an uncontrolled fashion.
The importance of this can be seen when considering task-to-task communication.
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This is typically achieved with paired send and receive routines. Thus, for example, the
pseudocode

MPI_Comm_Rank(... currentTask ...);

if (currentTask == sendTask)
MPI_generic_Send(&sendBuffer, ..., destTask,...);

if (currentTask == destTask)
MPI_generic_Recv(&recvBuffer, ..., sendTask, ...);

sends information from sendTask to destTask. Problems can occur if this code is
iterated and the send operation has not completed, in this case the send buffer will be
overwritten and unexpected results will ensue. This behavior can be avoided by using
blocking routines that do not permit program execution to continue until the send buffer
has cleared. Similarly, the receiving routine can also block until it has processed its receive
buffer. This can slow program execution, thus nonblocking routines are also provided.
The MPI implementations of the blocking routine is:

int MPI_Send(
void *buf,
int count,
MPI_Datatype datatype,
int dest,
int tag,
MPI_Comm comm)

The new element in this implementation is the tag which is a non-negative integer
assigned by the coder to identify a message.

The nonblocking routine is specified as:

int MPI_Isend(
void *buf,
int count,
MPI_Datatype datatype,
int dest,
int tag,
MPI_Comm comm,
MPI_Request *request)

The new element in this case is request. Because non-blocking operations can return
before the requested system buffer space is obtained, the system issues a unique
“request number” which can be used by the coder to confirm completion of the
operation.
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Although we have only explored a small part of the MPI implementation, the reader
should be able assess whether MPI is a useful tool for her computational problem. For
more information consult the excellent online documentation or the sources listed in the
bibliography.

9.3.2 openMP

The openMP (open multi-processing) initiative is a joint effort of several hardware
and software companies that seek to standardize thread-based parallel computing. The
central idea is to use compiler directives to permit a master thread to fork a number
of slave threads which run concurrently. The system divides the computational effort
among threads and allocates threads to different processors. Once the parallel section
of code completes, the threads synchronize and control is returned to the master thread
(this is called a join).

These ideas are illustrated with a simple “hello world” program.

#include <iostream>
#include "omp . h "

int main(void) {
#pragma omp parallel
{
int numthreads = omp_get_num_threads();
int id = omp_get_thread_num();
std::cout << " Hel lo , world " << id << " [ " << numthreads

<< " ] " <<std::endl;
} // end of scope; returns to serial execution
return 0;

}

The compiler directive pragma omp parallel instructs the compiler to fork
threads, which join after the pragma goes out of scope. As can be seen openMP routines
are available to obtain the number of threads and the current thread number.

The number of threads can be set with an environment variable:

>export OMP_NUM_THREADS = <n>

or in-code with the line (which should precede the pragma):

omp_set_num_threads(<n>)

The number of supported threads can be queried with the unix command

>ulimit -a
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the maximum possible number of threads with

>ulimit -Hu

and the number can be set with

>ulimit -a <n>

In general many more threads are available than cores to run them. This is useful for
software applications in which concurrency is valuable (for example, a cell phone app can
run communication procedures in one thread and monitor user input in another), but this
is generally not useful in scientific applications where dividing intensive computations is
the desired effect (divide et impera). In this case the maximum number of threads should
be set to the number of cores available.

The hello world code was compiled with the command

g++ -fopenmp -o helloWorld helloWorld.cpp

The output was

Hello, world 6 [24]
Hello, world 1 [24]
10 [24]
Hello, world 0 [24]
Hello, world 15 [24Hello, world 22 [24] ]

9 [24]
Hello, world 21 [24]
Hello, world 13 [24]
...

As can be seen, a total of 24 threads were created. As with MPI, the threads reported to
the output in random order, although in this case more severe synchronization issues are
apparent. This is no surprise: std::iostream is not thread-safe.

The problem can fixed by invoking several other features of openMP as illustrated in
the following code snippet.

int main(void) {
int th_id, nthreads;
#pragma omp parallel private(th_id) shared(nthreads)
{

th_id = omp_get_thread_num();
#pragma omp critical
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{
std::cout << " Hel lo World from thread " << th_id <<

std::endl;
}
#pragma omp barrier // wait until all threads

reach here [1]
#pragma omp master // only the master thread

runs this section
{
nthreads = omp_get_num_threads();
std::cout << " There are " << nthreads << " t h r eads "

<< std::endl;
}

}
return 0;

}

The keyword critical is used to specify a region where only one thread can be run at a
time. This avoids the problem of multiple threads accessing the output stream at the same
time. The barrier directive imposes synchronization on threads. In particular, threads
will stop execution once they reach this statement; once all threads reach this point,
parallel execution will resume. Finally, the omp master directive specifies a region of
code that is only executed by the master thread. All of the other threads skip this region.

The other new elements in this code snippet are scoping directives, private and
shared. The default scoping behavior is to make variables declared outside of the
parallel region shared (i.e., known to all threads), while variables declared within the
parallel region are private, which means that a local copy is kept by each thread. Other
threads do not have access to private variables. The shared and private keywords
can be used to override this behavior in way that we hope is clear.

Another useful openMP construct permits parallelization that is specific to loops
wherein the loop is shared amongst threads. The syntax is:

#pragma omp parallel for
for (i=0;i<100;++i) {

A(i) = ... // work will be divided amongst
threads

}

Scheduling

This example raises the issue of scheduling, which is the strategy employed for sharing
the work load represented by the loop. Two common strategies are static scheduling
and dynamic scheduling. The former approach divides loops into chunks which are
then assigned to threads. With dynamic scheduling the loops are divided into chunks
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and chunks are assigned to threads as the threads become available. The latter approach
is faster in situations when threads can take greatly varying times to perform their tasks;
however, additional computational overhead is incurred. Both options can be set in the
omp parallel for command (details can be found in the bibliography).

Embarrassingly parallel example

As discussed in Section 9.3.1, Monte Carlo computations are a canonical example of
embarrassingly parallel applications. We illustrate this, again, by evaluating the integral,∫∞

0 x2 exp(−x) dx with the direct Monte Carlo method. The problem is solved with the
following code

int main (void) {
int taskid=0,numtasks=1,Npertask;
int seed = 12341;
const unsigned int N=10000000;

double sum=0.0,sum2=0.0;
#pragma omp parallel reduction(+:sum,sum2)
{

numtasks = omp_get_num_threads();
Npertask=N/numtasks;
taskid = omp_get_thread_num();
std::mt19937 e(seed+taskid); // assign a unique seed to

each task

std::exponential_distribution<double> eDist;
for (unsigned int i=0;i<Npertask;i++) {
double x=eDist(e);
double f=x*x;
sum += f;
sum2 += f*f;

}
} // [1]
#pragma omp master
{

int nn = Npertask*numtasks;
sum /= nn;
sum2 /= nn;
double sigma=sqrt((sum2-sum*sum)/nn);
std::cout << " f ba r = " << sum << " +/− " << sigma <<std

::endl;
}

// [2]
return 0;

}
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The only new element of this code is the statement

#pragma omp parallel reduction(+:sum,sum2)

The phrase reduction(op:var) tells the compiler to perform the operation op on
the variable var across threads. In the above example, this means that the sum of all sums
and sum2s is performed and made available at location [1]. Variables must be scalars and
declared shared. Operators can be any of +, -, *, / , &, ˆ, |, &&, or ||.

openMP environment variables

All threading environments must provide local memory for each thread, which can
be problematic for applications with extensive memory requirements. In fact openMP
creates separate data stacks for every worker thread to store copies of private variables
(the master thread uses the regular stack). The size of these stacks is not defined in the
openMP standards and can vary substantially. The default stack size for g++ is a paltry
2 MB–once this limit is breached undefined program behavior results, although most
compilers throw a segmentation fault. Fortunately, it is relatively easy to overcome this
restriction, either memory can be assigned on the heap and manually divided amongst
threads, or the default stack size can be changed with an environment variable. For
example:

export OMP_STACKSIZE=1GB

Other openMP environment variables permit controlling the number of threads, the
way that loop iterations are divided, binding threads to processors, setting thread wait
policy, and enabling dynamic threads.

9.3.3 C++11 concurrency library

The C++ concurrency library will be the final system we consider for implementing
parallelism. This is likely the system that will be most accessible to readers since it
is part of the C++ standard and is implemented in clang or newer versions of gcc.
The standard achieves parallelism with threads, hence all the caveats associated with
openMP also apply here; in particular, the user needs to carefully maintain thread safety.
In our experience, threads can be much faster than MPI, but they are only useful for
implementing concurrency on a single computer.

All threads have access to the same global shared memory and their own private
data. Programmers are responsible for synchronizing access (protecting) to globally
shared data.

Threads are created with a declaration (look at the code below). Notice that the thread
is associated with a function (in this case f) and that a value can be passed to that
function. The idea is that many functions (or single functions of different variables)
can run concurrently. The join member method of thread must be called some time
before exiting main. It’s function is to block execution until all threads finish. As with
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Table 9.5 Timing tests with eight threads.
Times with the -O3 compile optimization are also listed.

Threads -O3 Time Speed up

1 no 2.062s 1

1 yes 0.733s 2.81

8 no 0.341s 6.05

8 yes 0.114s 18.1

all previous examples of this type, the ouput is a scrambled version of the numbers 400
and 100 (recall that iostream is not thread-safe).

#include <thread>
#include <iostream>

void f(int i) {
int j = i*i;
std::cout << j << std::endl;

}

int main() {
std::thread t1(f,20);
std::thread t2(f,10);

t1.join();
t2.join();

}

Does this really work? Run times for adding 8 · 108 integers are shown in Table 9.5.
These were generated on a quad-core Intel Mac with eight threads. As we have
mentioned, running more threads than physically supported wastes overhead and is likely
not useful in a numerically intensive application.

At this point it is not difficult to assemble a Hello World program. One solution is:

#include <thread>
#include <iostream>
#include <string>

void hw(std::string const& message, int i) {
std::cout << message << " " << i << std::endl;

}
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int main() {
unsigned int nthreads = std::thread::hardware_concurrency

();
std::cout << " t h r eads / co re s a v a i l a b l e = " << nthreads <<

std::endl;

std::thread *th = NULL;
th = new std::thread[nthreads];
for (int i=0;i<nthreads;i++) {

th[i] = std::thread(hw, " h e l l o world ! ",i);
}
for (int i=0;i<nthreads;i++) {

th[i].join();
}
delete [] th;
return 0;

}

The only new element is creating an array of threads of length nthreads, where

std::thread::hardware_concurrency()

is used to determine the number of threads that are available.
This code is compiled with the command:

g++ -std=c++11 -pthread -o helloWorld helloWorld.cpp

Some systems do not need the -pthread option. As is usual, the code output is a mess,
similar to that shown on page 286.

One can use more modern constructs such as the vector class template to achieve
the same thing, thereby accruing all of the benefits associated with that class (dynamical
memory allocation and automatic garbage collection among them).

#include <thread>
#include <iostream>
#include <string>
#include <vector>

void hw(std::string const& message, int i) {
std::cout << message << " " << i << std::endl;

}

int main() {
unsigned int nthreads = std::thread::hardware_concurrency

();
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std::cout << " t h r eads / co re s a v a i l a b l e = " << nthreads <<
std::endl;

std::vector<std::thread> th;
for (int i=0;i<nthreads;i++) {
th.push_back(std::thread(hw, " h e l l o world ! ",i));

}
for (auto &t : th) {
t.join();

}
th.clear();
return 0;

}

There is yet another way to say hello to the world that uses the future class template.
This is discussed below.

Synchronization: mutex and atomic

Having multiple threads all attempting to update a global variable is a clear recipe for
chaos. Consider the following code, where many threads increment the global variable
sh. If there are 24 threads, one might naively hope that the output is 24, but two threads
may access sh when its value is 12 and leave it with a value of 13. Thus, in general, the
printed output is a number less than 24 (our tests in this situation commonly gave 24,
23, and 22 as results).

#include <thread>
#include <iostream>
#include <vector>

int sh=0;

void incr(void) {
sh++;

}

int main() {
unsigned int nthreads = std::thread::hardware_concurrency

();
std::cout << " t h r eads / co re s a v a i l a b l e = " << nthreads <<

std::endl;

std::vector<std::thread> th;
for (int i=0;i<nthreads;i++) {
th.push_back(std::thread(incr));
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}

for (auto &t : th) {
t.join();

}
std::cout << " got " << sh << std::endl;
th.clear();
return 0;

}

None of this is a surprise. Like MPI and openMP, the thread class provides methods
to deal with synchronization. One such method is called a mutex (“mutual exclusion”),
whose purpose is to block thread execution while a code segment is owned by another
thread. Usage is controlled with lock and unlock methods:

std::mutex mx;
int sh; // shared data
...

mx.lock();
sh++; // manipulate shared data

mx.unlock();
...

Only one thread can execute in the critical region between the lock and unlock
commands. Any other thread that attempts to execute statements in this region will be
blocked until the owning thread executes mx.unlock().

Resolving the conflict in our incrementing code is now simple: one simply declares
a mutex and surrounds the offending statements with lock and unlock statements. All
other code remains unchanged. This version of the program will always produce 24 as
its output.

...
#include <mutex>

int sh=0;
std::mutex mx;

void incr(void) {
mx.lock();
sh++;
mx.unlock();

}
...
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We remark that this seemingly benign construct can be dangerous at times. For example,
if an exception is thrown before an unlock statement, execution will block with no
escape possible.

The C++11 Concurrency Library has implemented another way to resolve synchro-
nization issues via the atomic class template. The class permits declaring atomic type
variables whose access is guaranteed to be thread-safe. Coding is similar to mutexes, but
locking and unlocking are handled internally.

...
#include <atomic>

std::atomic<int> sh (0); // initialize to 0

void incr(void) {
sh++;

}
...

Again, running this code always yields 24 as the output.
While all this is fine, we wish to stress that a parallel numericist should generally

avoid these techniques. The issue is that using atomic data types is blocking, and hence
antithetical to parallel computing. It is far preferable to avoid relying on global variables
in the first place. One way to do this is shown in the next section, where we examine a
simple Monte Carlo integral for the third time.

Embarrassingly parallel example

Once again, our application will be a computation of the integral
∫∞

0 x2 exp(−x) dx
via direct Monte Carlo. As before, 107 integrand evaluations are divided amongst
nthreads tasks. Each thread is given its own random number engine with a unique
seed. Threads run independently while summing the integrand in a global variable that
is unique to the thread (we implement this with an array vector<double> sum). In
this way all synchronization issues are avoided. Once the threads exit the code combines
the results from each thread to produce the final estimate for the integral.

...
typedef mt19937_64 MersenneTwister;
vector<thread> th;
vector<MersenneTwister> MT;
vector<double> sum,sum2;
const unsigned int N=10000000;
unsigned int nthreads = thread::hardware_concurrency();
unsigned int Npertask = N/nthreads;

void run_th(int th_id) {
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exponential_distribution<double> eDist;
for (int i=0; i<Npertask;i++) {
double x=eDist(MT[th_id]); // access exp distn with

different engines
double f=x*x;
sum.at(th_id) += f;
sum2.at(th_id) += f*f;

}
}

int main(void) {
unsigned long int seed;
cout << " e n t e r seed " << endl;
cin >> seed;

for (int th_id=0;th_id<nthreads;th_id++) {
sum.push_back(0.0);
sum2.push_back(0.0);
MT.push_back(MersenneTwister(seed+th_id));
// create unique engines

}
for (int th_id=0;th_id<nthreads;th_id++) {
th.push_back(thread(run_th,th_id)); // [1]

}
for (auto &t : th) { // wait for threads to exit
t.join();

}
int nn = Npertask*nthreads; // analyze results
double fsum=0.0,f2sum=0.0;
for (int th_id=0;th_id<nthreads;th_id++) {
fsum += sum[th_id];
f2sum += sum2[th_id];

}
fsum /= nn;
f2sum /= nn;
double sigma=sqrt((f2sum-fsum*fsum)/nn);
cout << " f ba r = " << fsum << " +/− " << sigma << endl;

return 0;
}

The reader will notice that this code is somewhat more elaborate than the analogous
openMP program. In that case all the effort in creating the threads and in rendering the
sums thread-safe was handled by the compiler.
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Creating thread-safe code can be subtle, sometimes extremely so. The reader is
directed to Ex. 10 to see a particularly brutal example that involves the code just
presented.

Future and promise

The C++ standard library provides an alternative mechanism to execute parallel code
with the future class template. This is implemented with future and promise objects.
Future and promise enable the transfer of data between tasks without implementing
a lock. In particular, a task places data into a promise when the task wants to return
data to the thread that created it. The system then makes that data appear in the future
object that is associated with the promise.

The central mechanism for our purposes is the function

async(launch::async, fn, args)

which calls a function fn(args) and returns without waiting for its execution to
complete. The value eventually returned by fn can be accessed by a future object that
is returned by async. These objects are of type

future<type>

and can be accessed with future::get. Finally, the phrase launch::async is a
directive that instructs the compiler to create a new thread which calls fn.

The concepts are illustrated in the following code, which implements the third variant
of Hello World promised above.

#include <iostream>
#include <future>
#include <vector>
#include <string>

void hw(string const& message, int i) {
std::cout << message << " " << i << std::endl;

}

int main() {
unsigned int nthreads = std::thread::hardware_concurrency

();
std::cout << " t h r eads / co re s a v a i l a b l e = " << nthreads <<

std::endl;
std::vector<future<void>> th;
for (int i=0;i<nthreads;i++) {
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th.push_back(async(launch::async,&hw, " h e l l o world ! ",i));
}
th.clear();
return 0;

}

An advantage of async is that it has a simple mechanism by which threads can pass
data back to main. This is illustrated in the following example:

#include <iostream>
#include <future>
#include <vector>

using namespace std;

int square(int x) {
return x * x;

}

int main() {
unsigned int nthreads = thread::hardware_concurrency();
vector<future<int>> fut;
for (int i=0;i<nthreads;i++) {

fut.push_back(async(launch::async,&square,i)); // [1]
}
int sum=0;
for (auto &f : fut) {

sum += f.get(); // [2]
}
cout << " the sum i s " << sum << endl;
return 0;

}

Here nthreads threads are created in line [1], each thread computes the square of its
thread number and this is returned as a future object. Line [2] serves to obtain the values
of these objects. Importantly, the get function blocks until the return value becomes
available, hence the sum being computed is thread-safe.

We now consider our favorite embarrassingly parallel application yet again; this time
with the future-promise paradigm.

...
typedef mt19937_64 MersenneTwister;
vector<MersenneTwister> MT;
const unsigned int N=10000000;
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unsigned int nthreads = thread::hardware_concurrency();
unsigned int Npertask = N/nthreads;
struct vevs {

double mu;
double musq;

};

vevs run_th(int th_id) {
exponential_distribution<double> eDist;
vevs v = {0.0,0.0};
for (int i=0; i<Npertask;i++) {

double x=eDist(MT[th_id]); // access uniform distn
with different engines

double f=x*x;
v.mu += f;
v.musq += f*f;

}
return v;

}

int main(void) {
unsigned long int seed;
cout << " e n t e r seed " << endl;
cin >> seed;

vector<future<vevs>> fut_sum;
for (int th_id=0;th_id<nthreads;th_id++) {

MT.push_back(MersenneTwister(seed+th_id));
}
for (int th_id=0;th_id<nthreads;th_id++) {

fut_sum.push_back(async(launch::async,run_th,th_id));
}
int nn = Npertask*nthreads;
double fsum=0.0,f2sum=0.0;
for (auto &fs : fut_sum) {

vevs v = fs.get();
fsum += v.mu;
f2sum += v.musq;

}
fsum /= nn;
f2sum /= nn;
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double sigma=sqrt((f2sum-fsum*fsum)/nn);
cout << " numtasks : " << nthreads << " [ " << nn << " ] " <<

endl;
cout << " f ba r = " << fsum << " +/− " << sigma << endl;

return 0;
}

The main difference from the threaded implementation are the use of async to launch
threads and the use sync::get to block and obtain results. We have also used a struc
to clean up the passing of data between threads and the master thread.

9.4 Parallel coding

The previous sections have presented several parallel methods for evaluating an integral
with direct Monte Carlo. Variations of this code can be immediately applied to any
problem that is embarrassingly parallel. The issue of non-embarrassing parallel problems
remains to be addressed. Unfortunately, no general method exists–every problem will
have a different strategy for (parallel) solution, and these will even vary depending on
the machine architecture and programming paradigm.

To illustrate we consider creating a parallel solution to the percolation problem of
Chapter 8. Certainly, generating the percolation configurations is embarrassingly parallel
and the solutions presented above apply. However, cluster recognition is nontrivial. One
way to proceed would be to divide the grid into subgrids (say nine of them) and run
the cluster recognition algorithm in a thread which has been assigned one subgrid.
Again, this step is easy to implement because it is embarrassing. The next step would
be to merge clusters by traversing the boundaries between the subgrids and equating
cluster identification numbers when sub-clusters “touch”. This latter step is easiest to
implement in a serial fashion; however, it can be made parallel by assigning boundaries
to different threads to join neighbouring subgrids, and iterating the joins until the entire
grid has been merged.

Molecular dynamics (the subject of Chapter 18) is another area that can benefit from
parallel code. In this case one might divide the N particles being considered into groups
of size M and have a thread manage their interactions. Collisions between particles in
different groups would have to be signalled by inter-thread communication. Alternatively,
one could divide the spatial volume into subvolumes which are managed by a thread.
Once molecules pass from one subvolume to another, inter-thread communication would
be required to reassign the particles.

The reader will appreciate that coding parallel algorithm is not a simple task and there
will be many opportunities to destroy thread-safety!
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9.5 Forking subprocesses

Multithreading is a decent way of parallelizing a calculation if your goal is to use all of
the CPUs on a given processor. However, in order to multithread a computation, all of
the code that runs in the thread needs to be thread-safe. This includes code that you
run indirectly, over which you may have no control. In this unhappy situation, forking
subprocesses may be a viable alternative to multithreading.

With a fork system call a parent process clones itself, and both parent and daughter
processes pick up from where they left off. Processes, however, unlike threads, have
completely independent memory spaces, so write operations to variables (local or global)
that occur within the daughter processes affect neither other daughter processes nor the
parent process. Initially, the memory space of the daughter process is an exact clone of the
parents. If the computation requires a lot of memory, this strategy may be a poor choice
because the memory of the parent is duplicated as many times as daughter processes
are created. The advantage of the approach is that it is applicable even if the code is
not thread-safe, such as the code that your ignorant colleagues are likely to have written,
probably years ago.

Parent and daughter processes, picking up from the same place after a fork system
call, follow different paths of execution. Continuing from that point, each of the two
processes knows its identity from the return value of the fork call. In the parent process,
fork returns the process id for the subprocess which was spawned. In its clone, the
daughter process, the call to fork returns 0. Here is an example:

#include <unistd.h>
pid_t child = fork();

if (child != 0) {
std::cout << "HELLO from the master " << std::endl;
...

}
else {

std::cout << "HELLO from the s l a v e " << std::endl;
...

}

The unix command ps xf shows the process tree, and if you execute this command
while both parent and slave are executing you should be able to identify both processes
from the output. In most circumstances, the parent process should wait for the child
process to finish. This is accomplished by invoking the wait (or waidpid) system call;
if you fail to do so you will create a zombie process which will not die until you kill it with
the kill command. Killing zombies might seem like fun at first, but you will tire of it
ultimately. Your child processes can otherwise be made to die when they finish executing
by making the following invocation prior to forking:
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signal(SIGCHLD, SIG_IGN);

This tells the parent process to ignore the SIGCHLD signal, which is raised whenever
a child process terminates. In fact, the signal is already ignored by default, but when
you explicitly set its disposition to SIG_IGN, it has the side affect of allowing the child
processes to die when they terminate. In other words, no zombies.

One last issue: how does one harvest results from the child process? What is needed is
a communication channel from the daughter process to the parent process. In unix this
is called a pipe. The pipe system call fills an array of two integers, one reading and one
for writing. Here is an example in which data is transmitted in one direction, from child
to parent; the complete code and project file can be found in CH9/EXAMPLES/PIPE.

//
// Pipe: a simple program to pass some data (a string) from a

child
// to a parent. The parent prints it to the terminal.
//
int main() {

// Don’t wait for child to finish.
signal(SIGCHLD,SIG_IGN);

// Open a pipe:
int pipefd[2];
pipe(pipefd);

// For subprocess
pid_t child = fork();

if (child == 0) { // Child writes string to the pipe:
close(pipefd[0]); // Close unused read end

std::string blurb= " Ceci n ’ e s t pas une pipe ";
size_t bsize=blurb.size();

write(pipefd[1], &bsize, sizeof(bsize));
// write the data size
write(pipefd[1], blurb.c_str(), blurb.size());
// write the date
close(pipefd[1]);
// close the write end

} else { // Parent reads string from pipe
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close(pipefd[1]); // Close unused write end

size_t bsize;
read(pipefd[0], &bsize, sizeof(bsize)); // Read the

string size

char buf[bsize]; // Allocate space
read(pipefd[0], buf, bsize); // Read the

string

std::cout << buf << std::endl; // Print the
string

close(pipefd[0]); // Close the read
end

}
}

9.6 Interprocess communication and sockets

A client/server architecture is yet another way to achieve parallelism, though it is
interesting in its own right. There are many examples of systems with a client/server
architecture, from web servers to email servers. But servers can handle requests for heavy
scientific calculation as well.

We can see how parallelism comes about in these architectures by considering an
email server. You probably connect to a central Exchange server or IMAP server at your
university, laboratory, or place of employment from your personal computer, laptop,
or smartphone. You may make a request to search for a particular email. This search
will be executed on the server, rather than on your local machine, whatever it may
be. But at the same time, in a large organization, many other clients are executing
similar requests. These are carried out in parallel, typically within different processes
on the server.

The way in which this works is described succinctly in Tougher (2002). A server
process opens a numbered port and listens for requests. The client, possibly executing
on a different computer, connects to the host using the ip address and the port number.
If the connection is successful, a two-way communication channel is opened between the
two machines. System calls send and recv are used then to transfer data between the
two machines. Two classes,ClientSocket and ServerSocket, based upon Tougher
(2002), are included with the QatDataAnalysis library and facilitate client/server
communication, hiding the details. A basic example of their use can be found in our
examples area. The code for the client is shown here:



Parallel computing 303

#include " QatDataAnalys is / C l i en tSocke t . h "
#include <stdexcept>
#include <iostream>
#include <string>
#include <sstream>
#include <stdexcept>

enum Command {GET_VERSION_INFO,
CALCULATE,
HANGUP_SERVER};

int main ( int argc, char * argv[] )
{

using namespace std;
//
string usage = string ( " usage ") + argv[0] + " [−h hos t /

l o c a l h o s t ] [−p por t /7000] ";
//
string host = " l o c a l h o s t ";
unsigned int port = 70000;

for (int i=1; i<argc;i++) {
if (string(argv[i])== "−h ") {
i++;
host=argv[i];

}
else if (string(argv[i])== "−p ") {
i++;
istringstream stream(argv[i]);
if (!(stream>>port)) {

throw runtime_error( " Cannot parse por t ");
}

}
else {
cerr << usage << endl;
return 1;

}
}
try {

ClientSocket clientSocket(host,port);
unsigned int version, concurrency, pid;
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clientSocket << GET_VERSION_INFO; // Sample size and
version;

clientSocket >> version;
clientSocket >> concurrency;
clientSocket >> pid;
cout << " C l i e n t Connected to hos t "

<< host
<< " por t "
<< port
<< " s e r v e r v e r s i o n "
<< version
<< " hardware concurrency "
<< concurrency
<< " pid "
<< pid
<< endl;

clientSocket << CALCULATE;
clientSocket << HANGUP_SERVER;

}
catch (const exception & e ) {

cout << " Except ion caught : " << e.what() << endl;
}

return 0;
}

This code can be found in EXAMPLES/CH9/CLIENT. The simplest server code can be
found in EXAMPLES/CH9/SERVER, but the example there has a fundamental drawback:
it can only handle one request at a time, and blocks for the entire time it is connected to a
client. This is usually not the desired behavior: imagine what would happen if webservers
behaved like this! A slightly more sophisticated version of this code can be found in
EXAMPLES/CH9/MULTISERVER. This version forks a subprocess every time a client
connects; the subprocess handles all communication with the client. The multiserver
can be monitored with the unix command ps xf. With five active connections that
command will show something like this:

18771 pts/1 Ss 0:01 \_ bash
20504 pts/1 S+ 0:00 | \_ ../local/bin/multiServer
20507 pts/1 S+ 0:00 | \_ ../local/bin/multiServer
20509 pts/1 S+ 0:00 | \_ ../local/bin/multiServer
20512 pts/1 S+ 0:00 | \_ ../local/bin/multiServer
20514 pts/1 S+ 0:00 | \_ ../local/bin/multiServer
20516 pts/1 S+ 0:00 | \_ ../local/bin/multiServer
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The (multi)server code is:

#include " QatDataAnalys is / ServerSocke t . h "
#include <stdexcept>
#include <sstream>
#include <thread>
#include <signal.h>

enum Command {GET_VERSION_INFO,
CALCULATE,
HANGUP_SERVER};

using namespace std;

// Version this server. The client can then check for
compatibility.

const unsigned int version=0;

int main(int argc, char ** argv ) {

// Usage statement:
string usage = string ( " usage ") + argv[0] + " [−p por t ] ";

// Default port is 70000
unsigned int port = 70000;

// Parse the command line:
for (int i=1; i<argc;i++) {
if (string(argv[i])== "−p ") {
i++;
istringstream stream(argv[i]);
if (!(stream>>port)) {

throw runtime_error( " Cannot parse por t ");
}

}
else {
cerr << usage << endl;

}
}
//
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// This call prevents child processes from living on as
Zombies:

//
signal(SIGCHLD,SIG_IGN);
//
try {

//
// Create the socket:
//
ServerSocket *server = new ServerSocket(port);
while (true) {

cout << " Server ready , w a i t i n g . . " << endl;
ServerSocket newSocket;
server->accept(newSocket);
pid_t child = fork();

if (child == 0) {

delete server;
server=NULL;

while (true) {
//
// Read the command:
//
Command command;
newSocket >> command;
//
// Execute the command:
//
if (command==HANGUP_SERVER) {
std::cout << getpid() << " HANGUP" << std::endl;
break;

}
else if (command==GET_VERSION_INFO) {
std::cout << getpid() << " VERSION" << std::endl;
newSocket << version;
newSocket << std::thread::hardware_concurrency();
newSocket << getpid();

}
else if (command==CALCULATE) {
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std::cout << getpid() << " CALCULATE" << std::
endl;

}
}

}
if (!server) break;

}
}
catch (exception & e) {
cerr << " Except ion was caught : " << e.what() << " \ n

E x i t i n g " << endl;
}
return 0;

}

The server is invoked with the command:

multiServer -p 7000

(the server will listen on port 7000) and the client with

simpleClient -h localhost -p 7000

Output from a single client is

Client Connected to host localhost port 70000 server
version 0 hardware concurrency 4 pid 20509

While the server output, which might typically be directed to a log file, is:

Server ready, waiting..
Server ready, waiting..
20507 VERSION
Server ready, waiting..
20509 VERSION
Server ready, waiting..
20512 VERSION
Server ready, waiting..
20514 VERSION
Server ready, waiting..
20516 VERSION
20507 CALCULATE
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20507 HANGUP
20509 CALCULATE
20509 HANGUP
20512 CALCULATE
20512 HANGUP
20514 CALCULATE
20514 HANGUP
20516 CALCULATE
20516 HANGUP

A few final remarks may be in order. We have demonstrated a system with one server
connecting to N clients, but it is also possible for each client to open multiple connections,
causing multiple independent subprocesses to be spawned on the server side, and thus
achieving a high degree of parallelism.

Typically, many services will run on any given processor, and each service listens on
its own dedicated port. The lower number ports are assigned to common linux services,
such as telnet (23), ssh (22), ftp (21), irc(994). Those ports with number 1024 and
greater are unassigned and may be used for custom services, provided they do not clash
with other services.

Communication between client and server on a single host usually poses no problems,
but host-to-host communication may be blocked by firewall settings. Another issue
arises when a single “head” node handles all the communication for a cluster, which
communicates only through the head node. In such cases, specific ports on the hidden
machines may be “forwarded” to the outside world. The configuration of services on a
server machine and/or cluster can lead such issues of system and network administration;
your degree of success in solving these may depend upon the quality of your relationship
with the local administrators, so be nice to them.

9.7 Exercises

1. Construct Table 9.5 for your computer and your compiler using std::thread.

2. Implement the following code in place of that described in Section 9.3.3:

for (int i=0;i<nthreads;i++) {
th.push_back(std::thread(sum,i));
th[i].join();

}

How do your timing tests differ? Explain the results.

3. Discuss the impact of I/O on parallel program performance.
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4. Implement the following code in an environment that supports openMP.

#include <iostream>
#include "omp . h "
int main(int argc, char **argv) {
int N;
std::cout << " e n t e r number of nodes " << std::endl;
std::cin >> N;
omp_set_num_threads(N);
#pragma omp parallel for
for (int i = 0; i < 1000000000; i++) {
double x = 2.0 * i;

}
return 0;

}

Run time ./<fn> for various N (depending on your system) and interpret the
results.

5. openMP reduce.

a) Implement the code for parallel direct Monte Carlo on page 288 and run it.

b) Now move the scope brace from location [1] to [2] and rerun. Explain the
difference in behavior.

6. Implement a matrix multiply M�x in parallel using openMP directives.

7. Remove the line labelled [1] in the Hello World code on page 286 and run the code.
Explain the resulting behavior.

8. Dot Product.

a) Write a code snippet that performs dot products with openMP. Use dynamic
scheduling with chunk size, chunk.

b) Why might reduction not be associative for real numbers?

9. Thread and Mutex.

a) Write code using thread that prints out 40 characters (in a row) in a thread.
Create several threads with different characters and confirm that the characters
are interleaved.

b) Repeat this exercise with a mutex and confirm that the lines are unmixed. What
sets the order of the lines?
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10. Threaded Coding is Hard.

a) Implement the threaded parallel code on page 294 on your system. Run it several
times with the same seed and note the behavior.

b) Now place the thread creation statement (labelled [1]) into the loop above. Run
this code several times with the same seed. Note that the behavior is different!
This seemingly benign change has introduced a bug. What is it? (Hint: how does
vector manage memory?)

11. [P] Rainbows.
A rainbow is produced by white light refracting into a spherical droplet, reflecting
from the back surface, and refracting back into the air (for which we approximate
the index of refraction to be n = 1). The index of refraction of water varies with
wavelength (see Chapter 4, Exercise 7). Simulate the formation of a rainbow. Start by
randomly choosing the wavelength of a photon between 400-700 nm. Let it strike
a raindrop at a fixed direction and a random position upon the spherical surface,
and follow the trajectory through the raindrop until in re-emerges after a single
reflection.

a) Plot the angle between the incident beam and the scattered beam for light of
various frequencies. You should obtain a sharp peak near 40 degrees.

b) Generate a color image of the rainbow, or a segment thereof.

c) Choose a convenient paradigm for parallelizing your code and implement it.

d) Get your hands on a machine with as much hardware concurrency as possible
and run your procedure, following at least 25 million photons.

You will have created a simulation of rainbow formation which captures some
of the main features of the rainbow, but leaves out many details. The degree of
reflection and refraction, governed by Fresnel’s equations, vary according to the light
wavelength, angle of incidence, and polarization. The resultant rainbow is therefore
polarized! Thin film interference can also play a role. Multiple reflections within
the rainbow can generate secondary rainbows. Consider expanding your code to
explore these features.

..........................................................................................
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Nature exists in three dimensions. Effectively representing phenomena like applied
forces and vector fields, moving objects, colliding galaxies, spreading micro-organisms,
interacting particles, and travelling light rays in two dimensions is a difficult task. Data
from experiments and simulations can be often better explored and understood if
visualized with an interactive three-dimensional representation. The goal of this chapter
is to develop important skills in order to visualize data from simulated and actual
experiments. Our first application will come in the following chapter, in which we
compute the trajectories of dynamical systems. We use open source object modeling
software called Open Inventor/Coin3D.

10.1 Graphics engines

The rules for representing a three-dimensional world on a two-dimensional screen were
first codified in the early 1400s by the Italian architect Filippo Brunelleschi, who observed

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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Figure 10.1 The machine used by Albrecht Dürer to help draw objects in perspective
(adapted from https://commons.wikimedia.org/wiki/File:Dürer_Stich_aus_Anweisung_2.jpg.
Public domain)

that when using a fixed single point of view, parallel lines in a scene appear to converge
to a single point in the distance called the “vanishing point”. He used a double-mirror
device to draw the famed Florentine baptistry in a realistic way, thereby inventing “linear
perspective”–a technique that has been explored and enhanced by artists and architects
throughout the following centuries (Figure 10.1). These rules remain the foundation of
modern 3d graphics systems. Nowadays, modern computer graphics software packages
use virtual cameras to render three-dimensional images on the two-dimensional screen
of the computer monitor. This can be achieved in different ways: Figure 10.2 shows
the two most common camera configurations, namely perspective and orthographic
cameras.

10.1.1 3d libraries and software

There are two major approaches to 3d computer graphics. The first approach uses
real-time rendering to produce images quickly. This is useful when user interactivity
is desired. The second approach, called deferred rendering, uses many hours on
thousands of cores to produce photorealistic images to compose the frames for animated
films. Real-time rendering is more important for scientific applications and will be the
focus of our attention. Real time rendering relies on APIs known as graphics engines,
which produce images on demand at upwards of 32 frames/second (the frame rate of
motion pictures).

https://commons.wikimedia.org/wiki/File:D�rer_Stich_aus_Anweisung_2.jpg.
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Figure 10.2 Modern computer graphics software packages use virtual cameras to get correct
three-dimensional images on the flat 2d screen of the monitor. Different cameras project 3d objects on the
view plane in different ways: on the left, a perspective camera, which makes distant objects appear
smaller, and which is the natural view for human beings; on the right, an orthographic camera, used for
technical purposes, which makes equal distances appear the same in the whole image.

What follows is only a very brief introduction. More information can be found in
specialized books like Hughes et al. (2013) and Akenine-Moller (2008)1.

10.1.2 Generating graphics

Real-time rendering of 3d objects onto a two-dimensional screen is accomplished in
several steps, requiring both a graphics engine, which is a software component, and a
graphics pipeline, which is a hardware component that resides in the primary CPU or
in a dedicated graphics processing unit (GPU).

We start by assuming that there exists, in software, a three-dimensional description
of the geometry to be rendered. We call this a scene. The graphics engine decomposes
a scene into simpler geometrical objects (such as triangles) that can be handled by the
graphics hardware, and transforms them into world coordinates. The following steps then
occur in the graphics pipeline. World coordinates are transformed into camera coordinates,
according to whether an orthographic or a perspective camera is used. The effect of light
sources is applied. The 3d scene is culled to remove geometric primitives lying outside
of the cone of view, and the entire scene is mapped onto the screen. In a step known
as rasterization, RGB color values are assigned to each pixel on the screen, and finally, a
step called texturing may then apply external images or patterns to the shapes. The whole
chain can be run many times per second, and some pieces of the chain such as lighting
may even require multiple passes.

1 The authors of (Akenine-Moller, 2008) also maintain an annotated and updated on-line version of the
bibliography on the book’s website, where a list of very useful books on computer graphics and a review of free
resources available on the web can be found.
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10.1.3 The Open Inventor/Coin3d toolkit

A graphics engine is an API designed to carry out the translation from high-level
objects including shapes, transformations, lights, and cameras into triangles, so that the
programmer does not have to care about these processing steps. The graphics engine also
handles events such as mouse clicks and key strokes, which are typically important for the
selection of objects displayed on the screen. In this text our examples and exercises are
carried out using the free Coin2 implementation of the Open Inventor class library.Coin
uses the ubiquitous OpenGL API for object rendering. OpenGL is one of two low-level
graphics APIs. The other is Direct3d, a proprietary standard of Microsoft Corporation
that is historically linked to game development. OpenGL, being an open standard, can
run on virtually any platform.

The development of Open Inventor started in 1988 as a proprietary software package
written by SGI (Silicon Graphics International Corp, 2009) that implemented a high
level approach to the creation of 3d graphics. In parallel, a “clone” named Coin
was independently created by Systems in Motion (SIM) (Kongsberg, 2014). Coin
reimplemented and optimized all Open Inventor classes and functions while adding
some functionality. Both Open Inventor and Coin were released open-source and
they continue to be used in a number of projects, both in industry and in academe.
The original Open Inventor toolkit has been taken over by software companies, first
Template Graphics (TGS), and more recently FEI (part of Thermo Fisher Scientific)
and packaged into commercial products. These are used in the automotive, oil and gas,
and medical industries. See FEI (2015) for more details.

In this book we will use the Coin toolkit, which is currently the most popular of
the two open-source implementations. Moreover, the documentation is excellent and
available for all of the classes, numbering in the hundreds; and a very good pedagogical
introduction to graphics programming with Coin/Inventor is available (Wernecke,
1994a). The basic ideas behind the toolkit have migrated to other C++ toolkits such
as (Osfield, 2015), or to other computer languages, such as Java in the form of Java3d
(Selman, 2002). Thus the reader will able to use the concepts acquired here in other
contexts or with other technologies as well.
Coin/Open Inventor (in the following “Coin” only) is a C++ class library

containing shape nodes that represent primitive constructed solids (like Sphere and
Cone), objects called property nodes to store parameters and settings (like Color and
Material), objects to be used to set the 3d scene (like Light and Camera), called light
nodes and camera nodes respectively3. Figure 10.3 shows an example of the icons used
by Open Inventor and Coin to graphically representing those nodes. We will see other
nodes later on.

2 The Coin graphics engine is part of the Coin3d framework, which contains some other libraries. Very
often Coin and Coin3d are used as synonyms.

3 A complete list of all nodes can be found in Wernecke (1994b) and documentation for all the nodes and
classes can be found in the Open Inventor C++ Reference Manual (Open Inventor Architecture Group, 1994).
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geometry transformations (translations, rotations, ...)  

groups of nodes

collections of nodes (separators)  

geometry objects (coordinates, normals, ...)  shapes (circles, cubes, lines, points, text, ...)  

appearance properties (color, material, texture, ...)  

Figure 10.3 An example of Open Inventor/Coin node icons.Open Inventor and Coin use
icons to represent the different nodes which define a shape, like a circle, or a parameter, like a color. Some
examples are displayed here.

All objects are stored in a scene graph, a hierarchical tree of objects linked together in a
manner similar to a file directory tree. These objects are called scene objects, and the scene
graph describes a scene, which is a collection of objects to be rendered onto the screen.
When an image of the scene has to be generated, the objects are rendered.

The order and the structure of the scene graph affect the final image; this will be
discussed more later. For complicated scenes, it may be a good idea to sketch the scene
graph before implementing it in code.

10.2 First steps in a 3d world–3d visualization

This section contains some simple examples of how to create a scene and to visualize
it in a window that gives the user control over the camera. The final goal is building
a complete program to take and visualize plain data from a simulation program in an
interactive three-dimensional scene. We start with a simple example that establishes
the basic structure of a 3d application by creating a 3d scene and then adding three-
dimensional text to it.

10.2.1 The basic skeleton of a 3d application

The main ingredients in the example to appear in this chapter are the Coin and SoQt
APIs. The SoQt library binds the graphics library Coin to the windowing system Qt.
Our first example creates the window shown in Figure 10.4. The scene is empty in
this example, but a large amount of infrastructure for user interaction such as selection
and zoom is evident from the figure. Listing 10.1 shows the code, which is the basic
skeleton of all graphics applications that use Coin and SoQt. It can be found in
EXAMPLES/CH10/SKELETON.
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Figure 10.4 The basic user interface to display 3d content, using the Coin and SoQt packages.

Listing 10.1: The basic Coin graphical user interface

1 // SoQtSkeleton.cpp
2 //
3 // SoQt includes
4 #include <Inventor/Qt/SoQt.h>
5 #include <Inventor/Qt/viewers/SoQtExaminerViewer.h>
6 // Coin includes
7 #include <Inventor/nodes/SoSeparator.h>
8
9 int main(int argc, char ** argv)

10 {
11 // Initialize the Qt system:
12 QApplication app(argc, argv);
13
14 // Make a main window:
15 QWidget mainwindow;
16 mainwindow.resize(400,400);
17
18 // Initialize SoQt
19 SoQt::init(&mainwindow);
20
21 // The root of a scene graph
22 SoSeparator *root = new SoSeparator;
23 root->ref();
24
25 // Initialize an examiner viewer:
26 SoQtExaminerViewer * eviewer = new SoQtExaminerViewer
27 (&mainwindow);
28 eviewer->setSceneGraph(root);
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29 eviewer->show();
30
31 // Pop up the main window.
32 SoQt::show(&mainwindow);
33
34 // Loop until exit.
35 SoQt::mainLoop();
36
37 // Clean up resources.
38 delete eviewer;
39 root->unref();
40
41 // exit.
42 return 0;
43 }

The program initializes the Qt windowing system, creates a top-level window with a
size of 400 by 400 pixels, then initializes the SoQt system which is the “glue” between
the Coin graphics API and Qt. A SoSeparator is an empty scene; empty, at least, until
we start to populate it with shapes and properties. Finally, the SoQtExaminerViewer
is an object that provides for both scene rendering and a high level of user interaction.

Memory management is facilitated by reference counting: the ref() method
increases the objects reference count (here, from zero to one) while unref() decreases
it (from one to zero). When the reference count drops to zero, the object is deleted. The
usefulness of this system will become apparent later. The program blocks in the call to
SoQt::mainLoop, during which all user interaction is handled, until the user closes the
main window or activates a Quit button.

The compilation of this kind of program is controlled by a qt project file, an example
of which can be found in

EXAMPLES/CH10/SKELETON/src/qt.pro.

10.2.2 A three-dimensional greeting to the world

The next step is to add graphical content to the empty scene. This content can be built
from a set of predefined objects in the Coin library called nodes. These include 3d
shapes, like SoCube, SoCone or SoLight, as well as objects to group these together
like SoGroup. The prefix “So” means Scene Object.4.

Out of respect for tradition, the first content that we shall add to the scene is the classic
message, “Hello world!”, which will be implemented with an SoText3 object. We color
it yellow by combining one unit of red with one unit of blue and no green, using the

4 Coin on-line documentation can be found at (Kongsberg, 2014) or (CCNLab, 2015).
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SoBaseColor node. Listing 10.2 shows the relevant lines of code to be added to that
above. You can find the whole working code here:

EXAMPLES/CH10/HELLO_WORLD.

Figure 10.5 shows the final structure of our simple scene graph and Figure 10.6
shows the resulting image. The order in which the nodes are added to the scene graph
is important: here, for example, the SoBaseColor node is added to the scene graph
before the SoText3 node, because the SoBaseColor node, as many other Coin
nodes, affects all the objects which follow that node in the node tree. For example, when
we add a yellow SoBaseColor node to the scene graph, all subsequent nodes that have
a color property will be colored yellow, while nodes added before will be not affected.
When a SoBaseColor node is added to the scene graph, it replaces any other color
that was set before. Note that other types of nodes—like those describing geometrical
transformations—accumulate their effect when added to the same root node.

Listing 10.2: The 3d “Hello World!” program in Coin: adding a three-dimensional
text to the scene graph

1 // Coin includes
2 #include <Inventor/nodes/SoBaseColor.h>
3 #include <Inventor/nodes/SoText3.h>
4 #include <Inventor/nodes/SoSeparator.h>
5
6 ...
7
8 // Set the main node for the "scene graph"
9 SoSeparator *root = new SoSeparator;

10 root->ref();
11
12 // Set the color for the text (in RGB mode)
13 SoBaseColor *color = new SoBaseColor;
14 color->rgb = SbColor(1, 1, 0); // Yellow
15 root->addChild(color);
16
17 // Set the node for the 3d text, set the visible surfaces
18 // and add actual text to it
19 SoText3 * text3d = new SoText3();
20 text3d->string.setValue("Hello World!");
21 text3d->parts.setValue("ALL");
22 root->addChild(text3d);

In this example the SoSeparator functions as a group node, SoGroup, from which
it inherits. Group nodes can be used to group scene objects into more complex structures,
and in addition they can be used to group together different properties; for example
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SoSeparator

SoText3SoBaseColor

Figure 10.5 The scene graph for the 3d “Hello World!” example.

Figure 10.6 A first basic 3d visualization, which displays a three-dimensional greeting to the world.

one might bundle a draw style together with a color. The SoSeparator differs from
the SoGroup in one important way: property nodes in the SoSeparator can only
affect children below the separator, whereas those under the SoGroup affect other nodes
encountered in the top-to-bottom and left-to-right traversal of the scene graph, which
occurs during rendering.

If you compile and run this example you will see that the controls on the
SoQtExaminerViewer window allow you to zoom and rotate the scene. You can
also use the mouse to zoom and rotate. Be aware that the top two buttons in the toolbox
on the right toggle between two interaction modes; the default interaction mode (“the
hand”) is used for viewpoint control, while the other interaction mode (“the arrow”) is
for object selection. The seventh and last button in the toolbox (the red/yellow cube)
is also noteworthy: it toggles between two different visualization modes: “perspective”
(the default mode) or “orthographic” (see Figure 10.2). More information on the user
interface can be found in the manual pages.
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10.2.3 A colorful spherical world

Our second basic example will show how to use textures. Texturing an object means
applying a flat image (the texture) onto that 3d object. In computer graphics texturing is
used to mimic a surface’s texture or material. Here we will use it to build a model of the
Earth.

Listing 10.3 shows the code of our simple example; this codes constructs a simple
scene graph shown in Figure 10.7. The node SoTexture2 is a property node that affects
subsequent shapes. It is placed under a separator, and before a sphere, and reads a texture
file containing the image in Figure 10.8(a). The outcome of our basic example is a 3d
model of the Earth, shown in Figure 10.8(b).

Listing 10.3: How to apply a texture to a shape

1 // A node for the whole Earth object
2 SoSeparator *earth = new SoSeparator;
3
4 // A node for the texture
5 SoTexture2 *texture_earth = new SoTexture2;
6
7 // Name of texture file
8 texture_earth->filename = "world32k.jpg";
9

10 // Add texture to group node
11 earth->addChild(texture_earth);
12
13 // Add sphere to group node
14 // => Draw texture on surface of sphere
15 earth->addChild(new SoSphere);

SoSeparator

SoSphereSoTexture2

Figure 10.7 Graph of a textured sphere (SoTexture2+SoSphere) used to represent a colorful Earth.
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(a) A world image to be used as a texture (b) Creating a 3d rotating Earth
applying a texture to a sphere

Figure 10.8 (a), the flat image of the Earth that will be used as texture; (b), the resulting 3d rotating
Earth, obtained applying the texture (a) to a 3d sphere.

10.2.4 Deleting nodes in the scene graph

We return now to the issue of node deletion. Recall from Chapter 6 that when memory
is allocated using operator new it should be released with operator delete. In
Coin, operator delete is in fact private and the scene objects take care of deleting
themselves when the reference count reaches zero.

Reference counts may be incremented explicitly, but they are also incremented when
parent-child links are established. When these links are broken, for example when a
parent is destroyed, the reference count is decremented. When an explicit unref()
method is invoked on the root node, the root node destroys itself, decrementing the
reference count of its children, which will also delete themselves if their reference count
drops to zero. This is more sophisticated than a simple recursive delete of children, and
with good reason: it is necessary if any of scene objects are shared, i.e., if the same scene
object appears in different portions of a complex scene graph (see Section 10.4.1). In
our example, one call to unref() on the root node suffices to free all of the memory
allocated to scene objects, and the program does not leak memory.

10.3 Finding patterns–Testing random number generators

In Chapter 7, we discussed the high-quality Mersenne twister engine, a pseudorandom
number generator (PNG) which we highly recommended. We now discuss (but do not
recommend) the RANDU PNG, for reasons that will become apparent after we implement
some data visualization.
RANDU is a linear congruential generator (or LCG), which generates sequences of

pseudorandom numbers according to:

Xn+1 = (aXn + c) (mod m), (10.1)
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where a is an integer called the multiplier, c is the integer increment, m is a large prime
integer called the modulus, and X0 is the seed. The parameters characterize the behavior
of the generator and their particular values are very important (Park, 1988). If the
parameter c is equal to 0, then the generator is usually called a multiplicative congruential
generator (or MCG) (or Lehmer random number generator, or Park-Miller random number
generator). RANDU is an example of an MCG since it is defined as:

Xn+1 = 65539 Xn · mod 231.

These parameters were chosen because they were easy to handle by older machine
architectures. The non-prime modulus was chosen for simplicity in computing the
basic CPU-operation MOD, and the multiplier was picked because of its simple binary
representation.

Today, no LCG PNG is considered good enough for serious numerical work like
Monte Carlo simulation, let alone more demanding applications like cryptography. In
fact RANDU is considered an example of an LCG with a particularly tragic choice of
defining parameters. Why this is so is established by the code in the directory

EXAMPLES/CH10/RANDOM_NUMBERS

We can make an LCG identical to the RANDU generator using template class

std::linear_congruential_engine

as in listing 10.4.

Listing 10.4: Instantiation of an LCG of type RANDU using std::linear_congruential_
engine

1 // Instantiate a random number generator identical to the
deficient RANDU

2 linear_congruential_engine<uint_fast32_t, 65539, 0,0
X80000000> randu(1);

We use this generator to create a triplet of points, each point on the interval [0,1], so
that the points fill the interior of a cube in three dimensions. The three axes are colored
red for the x axis, green for the y, and blue for the z (this is a common convention). The
axes are represented by the scene (sub)graph in Figure 10.9. Each axis is represented
by an SoLineSet, however the coordinates of the line are determined by a property
node,SoCoordinate3 inserted before the SoLineSet. The SoCoordinate3 stores
three-vector coordinates (i.e., (x, y, z) triplets) in an array. In Listing 10.5, all three
axes are built by instantiating the scene objects, setting their properties, and assembling
them into a scene graph in order to obtain the more complete subgraph of Figure 10.9.
Properties must always be added before shapes. In Figure 10.10, a single SoDrawStyle
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SoSeparator

SoMaterialSoDrawStyle SoLineSetSoCoordinate3

Figure 10.9 The sub-graph which defines a single axis.

SoSeparator

SoMaterialSoDrawStyle SoLineSetSoCoordinate3 SoMaterial SoLineSetSoCoordinate3 SoMaterial SoLineSetSoCoordinate3

Axis 1 Axis 2 Axis 3

Figure 10.10 The graph that defines the three axes.

node suffices to affect the draw style of all subsequent scene objects in the graph,
until a new SoDrawStyle node is encountered. The order of the SoCoordinate3
and the SoMaterial nodes is not important as long as they are inserted into the
graph before the node which uses them, i.e., the SoLineSet. Each new property node
like SoLineSet and SoMaterial changes the previous property settings and makes
them default. The SoSeparator, like SoGroup, is a group node, but it also serves
a special purpose: it prevents property nodes rooted beneath the SoSeparator from
propagating to nodes above the SoSeparator.

Listing 10.5: Defining the three X,Y and Z axes

1 SoSeparator *aSep=new SoSeparator();
2 root->addChild(aSep);
3
4 // a loop to create the three axes
5 for (int i=0;i<3;i++) {
6
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7 // coordinates for the starting and ending points of the
axes

8 SoCoordinate3 *arrow = new SoCoordinate3();
9 arrow->point.set1Value(0,0,0,0);

10
11 // (1,1,0,0), (1,0,1,0) or (1,0,0,1)
12 arrow->point.set1Value(1,i==0,i==1,i==2);
13 aSep->addChild(arrow);
14
15 // drawing style
16 SoDrawStyle *ds= new SoDrawStyle();
17 ds->style=SoDrawStyle::LINES;
18 ds->lineWidth=3;
19 aSep->addChild(ds);
20
21 // material/color for the axes
22 SoMaterial *aMaterial = new SoMaterial();
23 // (1,0,0), (0,1,0) or (0,0,1)
24 aMaterial->diffuseColor.setValue(i==0,i==1,i==2);
25 aSep->addChild(aMaterial);
26
27 // a LineSet, which uses the Coordinates to draw the axes

lines
28 SoLineSet *line = new SoLineSet();
29 line->numVertices=2;
30 aSep->addChild(line);
31 }

Next we add the randomly generated points to the scene. We will render them as
white dots. For this we need both a new SoCoordinate3 to define the position of each
dot and an SoPointSet to interpret these positions as dots. These steps are shown in
Listing 10.6.

If you want to explore this example more, the code can be found in

EXAMPLES/CH10/RANDOM_NUMBERS.

This code produced the graphical output in Figure 10.11. From our visualization we
can easily see that RANDU badly fails the spectral test: random numbers are not generated
evenly in the whole space; instead, they are distributed over planes in the 3d space.

Listing 10.6: Drawing the random points in the 3d scene

1 // Adding the Coordinates and the PointSet to the root
separator
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Figure 10.11 Visualizing a spectral test of pseudo-random numbers.

2 SoCoordinate3 *coordinates = new SoCoordinate3();
3 root->addChild(coordinates);
4 SoPointSet *pointSet =new SoPointSet;
5 root->addChild(pointSet);
6
7 // Fill the coordinates with uniform random numbers:
8 for (int i=0;i<n_points;i++) {
9 // generate new random coordinates

10 double X = double(randu())/randu.max();
11 double Y = double(randu())/randu.max();
12 double Z = double(randu())/randu.max();
13 coordinates->point.set1Value(i,X,Y,Z);
14 pointSet->numPoints=i+1;
15 }

10.4 Describing nature’s shapes–fractals

Nature cannot always be represented by basic geometrical shapes and rules; natural
phenomena like thunder, or the growth of a cell culture, or even the shape of a tree
are difficult to represent using basic Euclidean entities. Instead they are represented by
fractal geometry. In the following example we will see how to generate and visualize
fractal shapes, using Coin SoLineSet, while encountering geometry transformations and
employing recursion, using space transformations to draw 3d objects in more complex
scenes.

Let us start with a classical example: drawing a tree-like shape. The branches of
trees follow some basic rules: from each branch, a number of smaller sub-branches are
generated, which are similar to the main branch. We observe the same behavior at each
level of the tree, decreasing always in size, starting from the trunk. Thus a tree can be
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generated easily with a recursive function—i.e. a function that calls itself—starting from the
trunk and generating a number of smaller sub-branches for each step. While a true fractal
would be infinite, our representation will only display a finite portion of the sequence.

A tree can be represented by a line, the trunk, with two smaller lines emerging from
its tip, the branches. This structure is repeated to build an entire tree. With each step a
few parameters, like the size of the branches, will change. Thus the tree is self-similar,
which is a common feature of fractals (see Chapter 8 for much more on this).

Two functions are required: first, a function to draw a single line on the screen, and
second, a function to draw a main branch followed by two sub-branches, the latter being
recursive. A full working version of the example code can be found in the directory:

EXAMPLES/CH10/FRACTALS/DrawFractalTree

Listing 10.7 shows the function drawLine which draws a single line segment. It takes
two pairs of (x, y) values, which set the endpoints of the line segment in a two-dimensional
space, and a pointer to a SoGroup. The function constructs the line segment according
to methods which are now familiar to the reader, under an SoSeparator, and adds the
SoSeparator to the SoGroup. Figure 10.12 shows the scene graph representing the
line segment.

Listing 10.7: Drawing the basic line for the fractal tree-like shape

1 void drawLine(float x1, float y1, float x2, float y2,
SoGroup* group)

2 {
3 // Declare a new Separator to contain the line
4 SoSeparator *sep = new SoSeparator;
5
6 // Declaring a set of 3d coordinates.
7 SoCoordinate3* points = new SoCoordinate3;
8
9 //Using the two points as coordinates

10 points->point.set1Value(0, x1, y1, 0);
11 points->point.set1Value(1, x2, y2, 0);
12
13 // Declare a new LineSet, to draw our line
14 SoLineSet *pLineSet = new SoLineSet;
15
16 // Build the line object, adding to the Separator node...
17 // ...first, the two points representing
18 // the start and the end of the line...
19 sep->addChild(points);
20 // ...then, the line, which will be
21 // drawn between the two points
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SoSeparator

points pLineSet

Figure 10.12 Graph of the single branch used in the tree-like shape.

22 sep->addChild(pLineSet);
23
24 // Add the line to the scene graph
25 group->addChild(sep);
26 }

Listing 10.8 shows an excerpt of the drawTree function that draws the simplest basic
tree: a main branch with two sub-branches. Its input parameters include: the coordinates
of the starting point, the length of the main branch, the angle under which the two sub-
branches are generated from the tip of the main branch, the width of the line used to draw
the branches, and a pointer to an SoGroup to which the generated branches are added.

A recursive function is a function that calls itself. It cannot do this indefinitely; instead
the recursion must stop at the base case. In our example, since we will arrange for the
branches to become smaller and smaller, we define the base case as the case in which the
branches are smaller than one unit. When this condition is detected, the recursion stops.
This is achieved in the recursive function, drawTree, by wrapping the implementation
in a conditional statement as follows:

void drawTree(float x, float y, float len, float angle,
float stroke, SoGroup* group)

{
if (len >= 1.) {

...
}

}

The function also sets a drawing style for the lines, creates a single line segment
to represent the main branch (using the DrawLine function) and creates two new
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SoSeparators to hold the sub-branches. The result is the scene graph shown
in Figure 10.13.

Listing 10.8: Drawing the recursive basic module of the fractal tree-like shape

1 // First, set up the line style...
2 SoDrawStyle* style = new SoDrawStyle();
3 style->lineWidth = std::max(0.5,stroke/2.0);
4 group->addChild(style);
5
6 // Draw the "mother branch" line in the current

separator
7 drawLine(x, y, x, y+len, group);
8
9 // Then, create two new separators,

10 // to host the transformations and the "children
branches"...

11 SoSeparator* trSep1 = new SoSeparator;
12 SoSeparator* trSep2 = new SoSeparator;
13 // ... and add them to the "mother" Separator
14 group->addChild(trSep1);
15 group->addChild(trSep2);

Two sub-branches are to be drawn in the x-y plane at a fixed angle from the
main branch, so we insert a geometry transformations into the scene graph for each

points pLineSet

style 

myTransform1 myTransform2

group

recursive
call

recursive
call

trSep1 trSep2sep

Figure 10.13 Graph of the base tree element used to draw the fractal tree-like figure. The base
element consists of a main branch, followed by two rotated sub-branches.
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sub-branch. The class SoTransform can be used for this; it implements the most
general kind of transforms, which includes rotations, translations, scale operations, and
all combinations of these. In order to build this rotation, we must use two operations:
first we set the center of rotation at the tip of the main branch, and second we set the
rotation axis and the rotation angle. Transformations in Coin are additive, which means
that their effects accumulate within the same SoSeparator. The transformation we set
will be applied to any object subsequently added to the separator.

Listing 10.9: Drawing the recursive basic module of the fractal tree-like shape
(continues from previous listing)

16 // length of sub branches = 2/3 of the main branch
17 float branch_len = len * 0.66;
18 // set the stroke width of the sub branch
19 stroke = stroke * 0.66;
20
21 // Recursive calls generate each sub-branch:
22 drawTree(x, y+len, branch_len, angle, stroke, trSep1);
23 drawTree(x, y+len, branch_len, -angle, stroke, trSep2);

Sub-branches in a real tree are smaller and thinner than the main branch, so we set
a shorter length and a smaller stroke weight for the sub-branches (Listing 10.9). As a
last step, we create the two sub-branches in a recursive call to drawTree. Figure 10.13
shows the resulting graph for a single “tree element”, consisting of a main branch plus
two rotated sub-branches.

The whole tree can now be generated by a single call to drawTree from main. At
each iteration, two new branches are recursively generated from the tip of the mother
branch. These new branches will be drawn with a line weight equal to half of the line
width of the mother branch and with a fraction of the length of the mother branch.

Figure 10.14(a) shows the output of our example code: a fractal-like tree shape has
been drawn. We can further develop this example to draw a random forest of fractal-trees
by using random angles while constructing the trees, as shown in Figure 10.14(b); the
interested reader can find example code in the directory

EXAMPLES/CH10/FRACTALS/DrawRandomForest

We can extend and generalize this example to draw the Cayley Tree, which was
introduced in Chapter 8. Recall that Cayley trees have all nodes connected to a number of
neighbors, z, where z is called the coordination number; moreover, all nodes are arranged
around a root node (the origin of the graph) in n shells, where n is called the generation
number. Figure 10.15 shows a Cayley tree generated with z = 3 (each node is connected
to exactly three neighbors) and n = 10 (ten shells of nodes have been computed and
drawn). The tree shape from our previous example (Figure 10.14(a)) is a special case of
Cayley Tree where the root node is connected only to one neighbour, as is the case for
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(a) A tree-like fractal shape (b) A forest of fractal trees

Figure 10.14 (a), A tree-shape created by using basic fractal rules; (b), A forest generated using
the previous fractal tree-shape.

Figure 10.15 Generation and visualization of a Cayley tree with coordination number z = 3 and
generation number n = 10.

ending nodes. The reader can find the code to generate and visualize a n-Cayley tree in
the directory

EXAMPLES/CH10/FRACTALS/CayleyTree

10.4.1 Shared nodes

So far we have built 3d objects and scene graphs by newing a separate instance of
every component of the scene; an alternative is to share instances representing identical
components, such as a branch of a Cayley tree. A shared node is instantiated only once,
and then its reference is used multiple times in the scene graph. Shared nodes are often
used to optimize the memory usage of the scene and permit more efficient code. We
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demonstrate their use by modifying the Cayley Tree example. A complete version of the
example can be found in the directory

EXAMPLES/CH10/FRACTALS/CayleyTree_sharedNodes

In our example we recursively draw tree branches using a straight line. The line is built
with only two nodes: a SoCoordinate3 to define the space coordinates of its ending
points and a SoLineSet to actually draw the line segment between them. The branch
assembly is simple, but it is created many times while building the scene: three new line
segments are built for each generation, and the only differences among the segments
are the coordinates of the ending points and the line length. We define a basic line
segment of unit length, then use it in the graph together with an SoTransform that
rescales the line segment, translates to the starting point coordinates, and rotates it into
position.

Listing 10.10 shows the code that builds the basic line and stores it in an SoGroup
node with global scope5. This function will be called by the main() function, once only,
to initialize the shared node.

Listing 10.10: Building a node that is used as shared node

1 // a global pointer for a shared node
2 SoGroup* branch = 0;
3
4 // build the shared node once
5 void buildBasicLine()
6 {
7 // Construct parts for single basic branch
8 SoCoordinate3* points = new SoCoordinate3;
9 // Setting two points: the start and the end of the line

10 const SbVec3f p1 = SbVec3f(0, 0, 0);
11 const SbVec3f p2 = SbVec3f(0, 1, 0);
12 //Using the two points as coordinates
13 points->point.set1Value(0, p1);
14 points->point.set1Value(1, p2);
15 // Declare a new LineSet, to draw our line
16 SoLineSet *pLineSet = new SoLineSet;
17
18 // Put branch parts together
19 branch = new SoGroup;

5 Global variables are not preferred in serious designs because they are completely un-encapsulated. In a
better design, a class is declared and a class variable is used. We use a global variable here to simplify the
example.
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20 branch->addChild(points);
21 branch->addChild(pLineSet);
22 }

Listing 10.11 shows the drawLine function modified to use the new shared node.
This function is called by the recursive function that draws the whole tree. It instantiates
a geometry transformation, translates the basic line to the appropriate location, scales it
along the y axis to set the length of the branch, and incorporates it into the scene graph.
Thus, instead of creating z line segments for n generations, we create only one line object
and we reuse it all over the scene graph, which is shown in Figure 10.16.

Comparing Figure 10.13 to Figure 10.16, one sees that the latter has been imple-
mented with fewer nodes. While the Cayley tree appears simple, you will find that a tree
with many generations can consume large amounts of memory—the number of branches
grows exponentially with the number of generations. Thus, node sharing is an important
technique.

Listing 10.11: Using a shared node

23 // draw the basic line
24 void drawLine(float x, float y, float len, SoGroup* group)
25 {
26 // Declare a new Separator to contain the line
27 SoSeparator *sep = new SoSeparator;
28
29 // A transformation for the main branch
30 SoTransform *mainBranchTransform = new SoTransform;
31 // translate the main branch to (x,y,0)
32 mainBranchTransform->translation = SbVec3f(x, y, 0);
33 // scale the branch line over the y axis, to match ’len’

length
34 mainBranchTransform->scaleFactor.setValue(1, len, 1);
35
36 // Draw the "mother branch" line in the current separator
37 sep->addChild(mainBranchTransform);
38 sep->addChild(branch); // here we use a shared node!!
39
40 // Add the line to the scene graph
41 group->addChild(sep);
42 }

We can, in fact, share even more nodes for additional optimization. The Cayley tree’s
self-similarity permits one to share entire tree segments, and at every level. Only z
copies of the first generation need to be instantiated. Then, only z copies of the second
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generation need to be instantiated. The self-similarity allows for a massive sharing of
nodes. Generating deep Cayley trees would be an intractable problem without the use of
shared nodes. See Exercise 7 for more on this point.

10.5 Animations

Until now we have only built static objects within a static scene: users are able to move the
camera around to see the scene from different angles, but the objects themselves are not
moving relative to their positions in the scene. Sometimes animating a scene is desirable;
fortunately, Coin has functionality for animation, which we describe briefly here.

In Coin, member data are generally stored in fields, which are like ordinary member
data except that a notification mechanism triggers re-rendering of the whole scene
whenever a field is modified. Therefore in order to animate a scene, we have only
to change the field of a scene object. If the field is part of a transformation, the
transformation is modified and affected objects move. If the field is part of a shape,
then the shape changes. Moreover, fields can be connected together.

Animation can be implemented in two ways: fields can be connected to a Coin engine,
which puts out a stream of changing numbers, or use can be made of aSoTimerSensor.
In the second approach one arranges for a callback function to be repeatedly invoked
during the program’s main loop. The callback function is used to change the value of
any field in the scene. The first mechanism is convenient for simple animations, while
the second is more powerful and general.

10.5.1 Coin engines: a rotating world

Programming animations with a Coin engine involves two steps: first one must build an
engine, then link the engine output to one of the fields of an object in the scene.

To illustrate a basic animation we shall modify the example code described in
Section 10.2.3 to make a rotating Earth. Listing 10.12 shows the relevant part of the
new code, which creates an SoSeparator containing an SoRotationXYZ and adds
to that a subgraph containing the Earth, which contains a textured sphere. The reader
can find a full working version in the directory

EXAMPLES/CH10/ANIMATIONS/ROTATING_EARTH

An SoRotationXYZ is used for the rotation, and the “Y” axis as is set as the rotation
axis6 We place the Earth object (whose code has been moved to a separate function
for convenience) and add it after the SoRotationXYZ. We now have an Earth object
preceded by a transformation node; this allows one to set the position of the Earth object
by changing the attributes of the transformation node. In particular, we can change its
rotation angle at a given rate to let the Earth rotate.

6 In Coin the y axis is along the vertical direction, the x axis is to the right, and the z axis is out of the screen.
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Listing 10.12: A transformation node to rotate the Earth

1 // A separator for the Earth
2 SoSeparator *earth = new SoSeparator;
3
4 // Create a rotation node
5 // and add it to the local ’earth’ separator
6 // *before* adding the Earth shape object
7 SoRotationXYZ *earthRotation = new SoRotationXYZ;
8 earthRotation->axis.setValue("Y"); // set the rotation axis
9 earth->addChild(earthRotation);

10
11 // Create the Earth object
12 // and add it to the local ’earth’ separator
13 earth->addChild( drawEarth() );

SoCalculator

SoInterpolateFloat
SoInterpolateRotation
SoInterpolateVec2f
SoInterpolateVec3f
SoInterpolateVec4f

SoEngine

SoCounter
SoTimeCounter
SoElapsedTime
SoOneShot
SoOneOff
SoInterpolate
SoSelectOne
SoTransformVec3f
SoTriggerAny
SoComposeVec2f
SoComposeVec3f
SoComposeVec4f
SoComposeRotation
SoComposeRotationFromTo
SoComposeMatrix
SoDecomposeVect2f
SoDecomposeVect3f
SoDecomposeVect4f
SoDecomposeRotation
SoDecomposeMatrix
SoElapsedTime
SoBoolOperation

Figure 10.17 Class tree of Coin “engine” nodes.

To animate the Earth one must create a counter object to create the time steps and to
trigger the animation. For that, we make use of SoTimeCounter, one of the engine nodes
provided by Coin. There are many engines, each of them with different characteristics;
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Figure 10.17 shows their class tree. The SoTimeCounter node is a programmable
integer counter, which can be customized through changing, for example, its max, step
and frequency attributes. The counter also has an attribute called outputwhose value
is updated according to the settings. Listing 10.13 shows how the counter node has been
set for our example: as we want a complete rotation of the Earth sphere, we set max
to 360 and step to 1 in order to mimic a rotation of 360 degrees, composed of steps
of 1 degree; also, we set the frequency value to 0.03, which means that the counter
performs 0.03 complete cycles (i.e. from 0 to 360) per second.

Listing 10.13: Setting the counter node which triggers the animation
(continues from previous listing)

14 SoTimeCounter *counterEngine = new SoTimeCounter;
15 counterEngine->max=360; // set max steps
16 counterEngine->step=1; // set step value
17 counterEngine->frequency=0.03; // set the frequency

At the moment we have an object, the Earth, which can be rotated by changing the
value of the rotation angle of its geometry transformation; and a counter that counts
from zero to 360, in degrees. The rotation transformation of the Earth handles angles in
radians, so the values from the counter must be converted. To do this we make use of
another Coin engine node, the SoCalculator. This node features 8 scalar inputs,
named from a to h, and 4 scalar outputs (besides other attributes) named from oa
to od; the values of the input attributes are used in custom formulas provided by the
programmer and the outcome placed in the output attributes. Listing 10.14 shows the
code. After having instantiated our calculator object, we connect the output attribute
of the counter—which is an integer between 0 and 360—to the input a of the calculator;
after that, the conversion formula is set using the values of the input attribute a and the
output attribute oa. For each time step the counter produces a value in degrees, which
is then converted to radians.

Listing 10.14: An engine node to convert from degrees to radians
(continues from previous listing)

18 SoCalculator *converterDegRad = new SoCalculator;
19 converterDegRad->a.connectFrom( &counterEngine->output );

// connect ’output’ of the counter engine to ’a’
20 converterDegRad->expression.set1Value(0,"oa=a/(2*M_PI)");

// set the (Deg->Rad) conversion formula

The next step is to rotate the Earth. In listing 10.15 the output of the calculator is first
connected to the angle attribute of the rotation node; then the whole earth separator
is added to the main scene graph. From now on, for each time step, the Earth is rotated
by an angle of 1 degree, resulting in an animated rotating globe.



338 Animations

Listing 10.15: Connecting the angles to the rotation transformation input
(continues from previous listing)

21 // Connect the converter output ’oa’ to the rotation
’angle’

22 earthRotation->angle.connectFrom( &converterDegRad->oa );
23
24 // Add the Earth node to the root node
25 root->addChild( earth );

10.5.2 Coin sensors: an orbiting planet

In the last example we used the Coin SoCalculator to convert degrees to radians.
If the calculations become difficult, as in Exercise 5, it is more straightforward and
less cumbersome to carry them out in more standard code rather than with engines
connected to fields. This is done by modifying the value of a field of an object in the
scene. In the directory

EXAMPLES/CH10/ANIMATIONS/ORBITS

the reader will find code that animates the motion of the Earth around the sun. In this
example a function called callback modifies an SoTranslation which controls the
position of the earth in its orbit:

SoTranslation *planetTranslation=NULL;
double tPhi=0.0;
void callback(void *, SoSensor *) {
static const double R=10;
planetTranslation->translation.setValue(R*cos(tPhi), R*sin(

tPhi), 0);
tPhi+=0.01;

}

The variable planetTranslation has global scope, though more heavily engineered
designs are possible. Two arguments to this function are anonymous and are not used.
They are necessary; however, because it’s important that this function has a specific
signature: a void function taking a void * and an SoSensor *.
SoSensors (class tree diagram in Figure 10.18) are scene objects that detect

a specific condition and invoke a callback function when the condition is detected.
The SoTimerSensor invokes the callback at specific programmable intervals. In the
following lines of code the callback function is scheduled and the update interval is set
to 10 ms:
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SoSensor

SoDelayQueueSensor
SoDataSensor

SoFieldSensor
SoNodeSensor
SoPathSensorSoldleSensor

SoOneShotSensor

SoAlarmSensor
SoTimerSensor

SoTimerQueueSensor

Figure 10.18 The class tree of SoSensor classes. Among them we can find the classes
SoTimerSensor used in the orbiting earth example.

// Schedule the update right here:
SoTimerSensor * timerSensor = new SoTimerSensor;
timerSensor->setFunction(callback);
timerSensor->setInterval(0.01);
timerSensor->schedule();

Note that the somewhat involved mechanism is necessary because the updates to the
position of the Earth must happen in the SoQt::mainLoop()function, during which the
program blocks. Callbacks are used in such contexts, among others, and are particularly
common in programs with graphical user interfaces. Another context in which callbacks
are used is to take action in response to the selection of objects (see the documentation
for SoSelection).

In this example the callback is repeatedly invoked and the position of the planet
updated. This occurs in the main loop while Coin renders the scene and handles
user interaction. This mechanism is preferred, particularly when the position, shape,
size, or attributes of several objects must be updated. Exercise 5 illustrates this with an
application that requires updating the positions of one thousand molecules.

10.6 The Inventor system

In this chapter we have briefly explored a small fraction of the classes of the Coin library.
Nevertheless, we have seen that it is possible to build reasonably powerful visualizations.
The Inventor class list contains many more classes than those introduced here and
the reader is invited to experiment with them in order to get a feeling of their potential
in terms of both graphics and user interaction. The most useful reference is Wernecke
(1994a). With the exception of SoSensors, all of the scene objects have a common
base class, SoNode, from which they inherit. A class tree diagram for the majority
of our scene objects is shown in Figure 10.19.

The practical consequences of the inheritance relationship have hopefully become
apparent by now. The primary advantage is the ability to use any specific type of
SoNode, representing a cone, a sphere, a material, a translation, etc., wherever an
SoNode is required; for example, when assembling such nodes under a SoGroup
or an SoSeparator. This feature is called polymorphism. A second advantage of
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SoBase

SoNode

SoBaseKit SoInteractionKit
SoDirectionalLightDragger
SoDragPointDragger
SoHandleBoxDragger
SoScale1Dragger
SoScale2Dragger...SoCoordinate3

SoGroup SoSeparator SoSelection

SoIndexedShape

SoNonIndexedShape

SoResetTransform
SoRotation
SoRotationXYZ
SoScale
SoTransform
SoTranslation

SoTransformManip

SoCenterballManip
SoHandleBoxManip
SoJackManip
SoTabBoxManip
SoTrackballManip
SoTransformBoxManip
SoTransformerManip

SoFaceSet
SoLineSet
SoPointSet
SoTriangleStripSet
SoQuadMesh

SoIndexedFaceSet
SoIndexedLineSet
SoIndexedPointSet
SoIndexedTriangleStripSet

SoAsciiText
SoCone
SoCube
SoCylinder
SoImage
SolndexedNurbsCurve
SolndexedNurbsSurface
SoNurbsCurve
SoSphere
SoText2
SoText3
SoVertexShape
SoVRMLGeometry

SoSwitch

SoShape

SoMaterial
SoTexture2

SoTransformation

SoBoolOperation
SoCalculator
SoGate

SoEngine

SoFieldContainer

Figure 10.19 The class tree of SoNode classes. Among them we can find the classes
SoCoordinate3 and SoTexture that have been used in the examples described in this chapter.

polymorphism, when properly executed, is a mechanism for acheiving flexibility and
extensibility of a software system; indeed, in the Inventor Toolmaker (Wernecke, 1994b),
one can find guidance on extending the Inventor system with custom SoShapes and
other objects in Inventor. A detailed discussion of inheritance and polymorphism is
deferred to Chapter 12.

10.7 Exercises

1. Using SoCone, draw a semi-transparent cone, and using SoFaceSet draw a plane
which intersects the cone. Do this in three ways, in order to generate the three conic
sections: parabola, ellipse, hyperbola. Calculate these curves and co-display them
with the cone using SoLineSet to check the calculation.

2. In Chapter 3, Exercise 13, you solved the problem of the motion of five massive balls
connected by springs of different strength. Revisit this problem, this time animating
the solution.
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3. Use a SoLineSet to animate standing waves of various frequencies on a string.

4. Drum Heads.
In two dimensions, the wave equation is

[
∇2 − 1

v2

∂2

∂t2

]
u(x, y) = 0 (10.2)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 . The equation describes waves on a membrane, such as

a drum head, where boundary conditions constrain u(x, y) = 0 at x2 + y2 = a2.
Solve the wave equation for this set of boundary conditions and animate standing
wave solutions for the first few modes of vibration. Use SoFaceSet to describe the
membrane.

5. [P] Gas in a Piston.
Simulate a confined volume of an ideal gas expanding against a piston. Keep track
of about 1000 molecules. Start the molecules at random positions and random
velocities distributed according to a Maxwell-Boltzman distribution. Each molecule
collides with fixed cylindrical walls, and one fixed “bottom” wall, but the top wall is
a piston free to move in the vertical direction. Collisions between gas molecules and
the piston are elastic. Keep track of the kinetic energy of the gas as well as that of
the piston.

6. A Solar System.
It is well known that planets move in ellipses around the sun. The speed at which they
move is less familiar, but can be obtained either by numerical inversion of Kepler’s
equation (see Goldstein, 2001), or by the application of Kepler’s law of orbits, law
of areas, and law of periods. Animate a toy solar system with two planets orbiting a
massive sun. The orbits of the two planets should have significant eccentricity.

7. Execute the Cayley tree example EXAMPLES/CH10/FRACTALS/CayleyTree
and determine the maximum number of generations that can be visualized without
the use of shared nodes. Then, optimize the code very heavily by sharing as many
branches and subtrees as is possible, and determine the maximum number of nodes
again.

8. Visualize a Cayley tree with a coordinate number z = 4. The tree should develop
symmetrically in all three dimensions, rather than being confined to a plane as with
the example in Section 10.4.1. Use shared nodes as in the preceding problem to
generate a deep tree.

9. From the depths of your subconscious mind, dream up a scene and capture it in
an animated or still scene using Coin. You may choose any topic you like: from the
world of science, the world of technology, the world of art, politics, sports, religion,
exoticism, cuisine culture, or whatever goes on inside your head.

10. [P] Now we examine the outside of your head. Obtain a profile gauge from a hardware
store (for about US $10). This is a device that can be pushed against any surface
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and retains the shape of the surface. Prefer the plastic to the metal variety since
the latter is too stiff and may cause pain or injury. Use the device to measure the
contours of your head, and transfer them to a graphics program. You can do this
with an SoFaceSet. Verify graphically that the shape looks right, then determine
the volume of your head using Monte Carlo integration.

..........................................................................................
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11.1 Introduction

Ordinary differential equations (ODEs) arise frequently in classical and quantum
physics. An ordinary differential equation involves one independent variable which
we call t, and one or more dependent variables which we might call x in the case
of a single dependent variable. These equations contain derivatives of x up to the
order of the ODE. A familiar example is the equation governing the damped harmonic
oscillator:

d2x
dt2 + 2ω0ζ

dx
dt

+ ω2
0x = 0 (11.1)

where ω0 is the undamped angular frequency of the oscillator and ζ is the damping
ratio. This is a second order ordinary differential equation, but it can be reduced to two
coupled first-order differential equations:

dx
dt

= v

dv
dt

= −2ω0ζv − ω2
0x. (11.2)

A similar reduction can be carried out on any set of nth-order differential equations.
Eq. 11.2 is called autonomous because it does not contain the independent variable t
on the right hand side. By contrast, if we add a harmonic driving force to the oscillator,
we obtain a different set:

dx
dt

= v

dv
dt

= −2ω0ζv − ω2
0x + F

m
cos(ωt) (11.3)

which is called nonautonomous because the right hand side contains the independent
variable t explicitly.

A nonautonomous set of equations can be trivially transformed into an autonomous
set by making the substitution t → T and adding the equation:

dT
dt

= 1
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to the set; for example Eq. 11.3 would become:

dx
dt

= v

dv
dt

= −2ω0ζ
dx
dt

− ω2
0x + F

m
cos(ωT)

dT
dt

= 1; (11.4)

and consequently an integration procedure designed for autonomous ODEs suffices to
integrate nonautonomous ODEs as well.

Finding a solution to a coupled set of ordinary differential equations usually amounts
to finding the time-dependence of the dependent variables, v and x in this case. For an
nth-order ODE, n constants of integration are required. These are usually the starting
values of the n variables, x0 ≡ x(0) and v0 ≡ v(0) in our example. For a system of
particles evolving according to the laws of classical dynamics the starting values could
be the initial values of the coordinates and the velocities of each particle in the system;
or, taking the more advanced view of Lagrangian mechanics, the generalized coordinates
and velocities. This type of problem is called an initial value problem. It is rare to find
initial value problems with a closed-form solution, thus computational methods become
vital. Problems that do possess closed-form solutions can be useful to check the accuracy
of the numerical integration.

One view of ordinary differential equations is that they define a family of curves in N
dimensions, N being the number of independent variables. The curves are parametrized
by the starting values of the coordinates and the velocities, and perhaps by other
constants, e.g., in Eq. 11.2, the natural frequency ω0. Object-oriented techniques make
it possible to endow objects with practically any type of interface, and ODEs are no
exception. We will demonstrate in this chapter a set of classes that can be used to
define functions through the differential equations that govern their time development.
The reward will be a mechanism to produce functions that can be used just like any
other function, like sin or exp, for plotting or data modeling. The techniques depend
on object-oriented features of the C++ programming language that will be developed
later in the chapter Polymorphism and are not fully explained here. The goal here is
to demonstrate the power of these techniques and to whet the reader’s appetite for
developments to come in later chapters.

Before developing a computational solution to ODEs, we give a few examples of
familiar situations in which they arise in classical and quantum mechanics.

11.2 Example applications

11.2.1 Projectile motion with air resistance

Air resistance may be modeled as a force proportional to a power of the velocity of
a body moving through a stationary fluid: �F = −γ v2v̂, where γ is a constant whose
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value depends on the shape of the object and the viscosity of the fluid.1 With a force of
Fg = −mgx̂1, and defining the horizontal direction as x0 and the vertical direction as x1,
the equation of motion of a projectile moving through viscous air is:

m
d2 �x
dt2 = −mgx̂1 − γ v2v̂

which is actually two second-order differential equations. Reducing these two equations
to four first-order differential equations gives:

dx0

dt
= v0

dx1

dt
= v1

dv0

dt
= − γ

m
v0

√
v2

0 + v2
1

dv1

dt
= −g − γ

m
v1

√
v2

0 + v2
1. (11.5)

In this set of coupled equations, nonlinear terms involving the dependent variables vi
for i ∈ {0, 1} occur on the right hand side, making this a system of nonlinear differential
equations. Nonlinear ODEs almost never have a closed-form solution, and computa-
tional methods play a dominant role in understanding the solutions.

11.2.2 Motion of a charged particle in a magnetic field

Figure 11.1 shows a system of elementary particles after a proton-antiproton colli-
sion, surrounded by a simple silicon tracking system. In actual particle detectors the
momentum analysis of these particles is an important ingredient in the study of such
collisions and is carried out with a magnetic field. Exceptionally uniform magnetic fields
are sometimes achieved, in which case the trajectory of a charged particle is known to
be a helix. When the fields are not uniform, trajectories are determined by the Lorentz
force law. Since particles are relativistic in high-energy particle-antiparticle collisions we
will use the relativistic form of the law (in CGS-Gaussian units), which is:

d �p
dτ

= q
m

(
�p × �B (�r)

)

1 The effects of fluid flow around objects are characterized by a dimensionless number known as the
Reynolds number Re = ρvL/η where ρ is the density of the fluid, η is its viscosity, L is a characteristic length
of the object, and v is its speed through the fluid. The quadratic drag described here is a good description in
situations with high Reynolds number, Re > 1000. A baseball thrown at 100 mph has Re = 2.3 × 105.
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Figure 11.1 Trajectories of charged particles in a (fictitious) particle detection system.

where �p = mc �βγ is the relativistic momentum and τ is the proper time of the particle,
τ = t/γ . It may be more useful to parametrize the momentum as a function of path
length s = vt = cβγ τ ,

d �p
ds

= d �p
dτ

· dτ
ds

= q
mcβγ

(
�p × �B (�r)

)
.

From the definition of momentum we have �p = mγ �v = mγ d�r
dt , again writing this in terms

of the path length covered gives:

d�r
ds

= d�r
dt

· dt
ds

= 1
mγ

�p · 1
v

= 1
mcβγ

�p.

In summary we have six first-order autonomous ordinary differential equations describ-
ing the path of a particle in a magnetic field, namely:

d�r
ds

= 1
mcβγ

�p
d �p
ds

= q
mcβγ

(
�p × �B (�r)

)
.

11.2.3 Simple nonlinear systems: the Lorenz model

A simple model for convection in the atmosphere, introduced by Edward Lorenz in 1963,
is described by the differential equations:

dx
dt

= σ(y − x) (11.6)
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dy
dt

= x(ρ − z)− y (11.7)

dz
dt

= xy − βz. (11.8)

This is another example of a system of nonlinear differential equations, owing to the
presence of the terms xy and xz on the right hand side. Such problems are treated in
detail in the following chapter. The parameters σ , ρ, and β are control parameters. For
certain values of the control parameters the Lorenz model exhibits chaotic behavior, with
a space-filling quality of the trajectories and a rapid divergence of nearby trajectories—a
feature that is discussed extensively in the next chapter.

11.2.4 The Lagrangian formulation of classical mechanics

The Lagrangian formulation of classical mechanics is an approach that every advanced
undergraduate and graduate student learns (Goldstein 2001; Thornton, 2004). It
provides a simple, uniform framework for solving mechanics problems in terms of
generalized coordinates that specify the configuration of the mechanical system. Many of
these problems would not be tractable with other methods. One identifies the generalized
coordinates qi , i = 0, 1, 2..n−1 of the system, which are any set of independent variables
fully characterizing the configuration of the system. Then, one expresses the potential
energy and the kinetic energy in terms of the generalized coordinates qi and their time
derivatives q̇i ≡ dq/dt. We denote the potential energy V = V (qi) and the kinetic energy
T = T(qi , q̇i). The Lagrangian is then L = T − V . The n equations of motion follow
from the Euler-Lagrange equations:

∂L
∂qi

− d
dt

∂L
∂ q̇i

= 0. (11.9)

While partial derivatives appear in the Euler-Lagrange equations, the equations they
generate are second-order differential equations2.

For the one-dimensional harmonic oscillator, for example, V = 1
2 kx2, T = 1

2 mẋ2,
so L = 1

2 mẋ2 − 1
2 kx2, and the Euler-Lagrange equation generates a single equation of

motion:

mẍ + kx = 0.

2 Usually the potential energy will be expressed only in terms of the coordinates V = V (qi), but a velocity-
dependent potential can also be introduced. The case of a charged particle in a magnetic field is particularly
important. Let the generalized coordinates of the system be the particle’s position �r ≡ {x, y, z}; its derivative
�v ≡ d�r/dt; the scalar potential is φ and the magnetic vector potential is �A. In this case, the velocity-dependent
magnetic forces can be incorporated by replacing the normal potential energy −qφ with an interaction term
q(�v · �A − φ).
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While it is easy to obtain second order differential equations in the Lagrangian
formulation it is usually highly nontrivial to solve them. We take the example of the heavy
symmetric top in a gravitational field with one point fixed. The mass of the top is M, the
center of gravity is a distance l from the fixed point along the symmetry axis, and the
inertia tensor is characterized by only two values I1and I3 since the symmetry imposes
I1 = I2. We sketch here the key points of the solution developed in Goldstein (2001).
The generalized coordinates are the Euler angles θ , φ, and ψ and the Lagrangian for the
system is:

L = 1
2

I1(θ̇
2 + φ̇2 sin2 θ)+ 1

2
I3(φ̇ cos θ + ψ̇)2 − Mgl cos θ . (11.10)

One obtains three equations of motion; the first is:

I3(φ̇ cos θ + ψ̇) = const

= I1a, (11.11)

which effectively defines a new constant a; the second is:

(I1 sin2 θ + I3 cos2 θ)φ̇ + I3ψ̇ cos θ = const

= I1b, (11.12)

which defines the constant b; and, using the conserved energy instead of the third Euler-
Lagrange equation,

1
2

I1(θ̇
2 + φ̇2 sin2 θ)+ 1

2
I3(φ̇ cos θ + ψ̇)2 + Mgl cos θ = const

= E. (11.13)

From Eqs. 11.11 and 11.12 we obtain:

φ̇ = b − a cos θ

sin2 θ
(11.14)

ψ̇ = I1a
I3

− cos θ
(

b − a cos θ

sin2 θ

)
. (11.15)

Define two more constants:

α ≡ 2E
I1

− I1

I3
a2 β = 2Mgl

I1
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and write Eq. 11.13 as:

α = θ̇2 +
(

b − a cos θ
sin θ

)2

+ β cos θ . (11.16)

Finally, with the substitution u = cos θ , Eqs. 11.14, 11.15, and 11.16 take the form:

du
dt

=
√
(1 − u2)(α − βu)− (b − au)2

dφ
dt

= b − au
1 − u2

dψ
dt

= I1a
I3

− u
(

b − au
1 − u2

)
.

You may be wondering why we are left with only three differential equations instead
of six. The answer is that we have already found three “first integrals” of the motion,
which were used to define the constants E, a, and b.

While you may not be familiar with this particular problem, the essential observation
is that the Euler-Lagrange equations produce a set of equations that typically require
numerical techniques to produce useful predictions.

11.2.5 The Hamiltonian formulation of classical mechanics

An alternate way of formulating classical mechanics is in terms of the Hamiltonian.
The Hamiltonian method is useful because the equations of motion, namely Hamilton’s
equations, are a set of first order differential equations. A Hamiltonian can be written as:

H(pi , qi) = T(pi , qi)+ V (qi), (11.17)

where

pi = ∂L
∂ q̇i

(11.18)

are the “generalized momenta”. Hamilton’s equations are:

ṗi = −∂H
∂qi

q̇i = ∂H
∂pi

. (11.19)

For example, the harmonic oscillator has the Hamiltonian:

H = p2

2m
+ 1

2
kx2, (11.20)
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so Hamilton’s equations read:

dp
dt

= −kx

dx
dt

= p
m

, (11.21)

which have the desired first order form.

11.2.6 The Schrödinger equation

In quantum mechanics, a particle is not described by a position or momentum, but
rather a wavefunction, which is a complex function of spatial coordinates and time.
All dynamical variables of the particle can take on a spectrum of values, which are
realized with a probability determined by the wavefunction. The time development of
the wavefunction itself is governed by the quantum mechanical Hamiltonian operator:

Hψ =
[

− h̄2

2m
∇2 + V (�r)

]

ψ(�r, t) (11.22)

such that:

ih̄
∂

∂t
ψ(�r, t) = Hψ(�r, t). (11.23)

This is called the time-dependent Schrödinger equation. By substituting a trial solution
ψ(�r, t) = φi(�r)e−iEi t/h̄ one accomplishes a separation of variables, removing the time
dependence and obtaining the time-independent Schrödinger equation:

Hφi( �r) = Eiφi( �r) (11.24)

or:
[

− h̄2

2m
∇2 + V (�r)

]

φi( �r) = Eiφi(�r). (11.25)

This is still a partial differential equation; however, in many situations the potential
is central, V (�r) = V (r), and a further separation can be accomplished. In this case the
solution breaks down into a universal angular part times a radial part:

φn,l,m(�r) = 1
r

Un,l(r)Y m
l (θ ,φ). (11.26)
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The function Un,l is the solution to the effective one-dimensional problem,

[

− h̄2

2m
d2

dr2 + V (r)+ h̄2l(l + 1)
2mr2

]

Un,l(r) = En,lUn,l(r) (11.27)

which we may write as:

d2Un,l(r)
dr2 =

[
2m

h̄2 (V (r)− En,l)+ l(l + 1)
r2

]
Un,l(r) (11.28)

or:

dUn,l(r)
dr

= U ′
n,l(r)

dU ′
n,l(r)

dr
=
[

2m

h̄2 (V (r)− En,l)+ l(l + 1)
r2

]
Un,l(r), (11.29)

which again has the desired form of a set of coupled first-order differential equations.
Moreover, the equations are linear.

This last point merits a small digression. Linear ordinary differential equations are
those which, when put into the canonical form:

d �y(t)
dt

= f (t, �y(t))

can be written as:

d �y(t)
dt

= A(t) · �y(t)+ �φ(t). (11.30)

Eq. 11.30 is said to be an inhomogeneous set of equations. The corresponding
homogeneous set of equations is:

d �y(t)
dt

= A(t) · �y(t). (11.31)

Linear ordinary differential equations satisfy a superposition principle. Given any two
solutions �y1(t) and �y2(t), a linear combination α �y1(t) + β �y2(t) is also a solution. To any
solution of the inhomogeneous set of equations we can add an arbitrary superposition
of solutions to the homogeneous set of equations; this result is also a solution to the
inhomogeneous set of equations. The vector space of solutions to a second-order linear
homogeneous equation such as Eq. 11.28, or two coupled first-order linear differential
equations such as Eq. 11.29 has a dimensionality of two – i.e., we will, in general, have
two linearly independent solutions.
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Eq 11.29 has the form of a second-order linear homogeneous equation that lends itself
readily to the treatment we are discussing. However the boundary conditions can add a
layer of complexity to the problem. For example, bound state solutions are constrained at
two spatially separated points rather than at the origin. Thus for a particle in a spherical
box centered at the origin with radius a the wavefunction must be zero at r = a and
finite at r = 0, which occurs only for quantized values of the energy E. This is a two-
point boundary value problem. However for positive-energy scattering states the radial
wavefunctions Un,l can be obtained by starting the function with an arbitrary value of
Un,l(r0) and U ′

n,l(r0) at some point r0 and evolving forward (or backward) with r. In
these circumstances we have an initial value problem, and the techniques we discuss
in this chapter are applicable. There are usually two independent solutions to the radial
Schrödinger equation; they can be obtained by taking the same starting value for Un,l(r0);
setting U ′

n,l(r0) = 0 in one case and U ′
n,l(r0) �= 0 in the other case. Once these functions

are obtained, one can construct the general solution by superposition.

11.3 A high-level look at an ODE solver

All of the problems in the previous section can be expressed as a set of first-order ordinary
differential equations of form:

d �y(x)
dx

= �f (x, �y) (11.32)

subject to constraints �y(x0) = �y0. Our first concern is to provide accurate solutions to the
problem at hand; as we will see, a fair amount of numerical sophistication is required. As
a result, we also concern ourselves with another objective: to hide the computational
complexity behind an interface that exposes only the features of the problem which
are important to the user. There are many imaginative ways to formulate an interface
that does the job; here we describe one way to do it. The resulting code is part of
QatGenericFunctions.

We take the view that the functions �f (x, �y(x)) together with the initial conditions �y0
define a set of functions �y(x). The design of our “integrator” is founded on the notion
that it is merely a procedure to manufacture these functions.

To let this idea sink in we’re going to interrupt the typical narrative in which numerical
algorithms are discussed in great detail, and instead give an example of an integrator
incorporating this notion into its design. The neglect of mathematical detail will be
quickly remedied, since we will discuss the important algorithms in Section 11.4. Some
of the object-oriented programming practices that enable this type of design have already
been discussed in previous chapters, others will be discussed later (see Chapter 12).

The functions are implemented as functors, specifically, as another type of function in
the Genfun namespace3. Because nonautonomous differential equations can be trivially

3 The classes are introduced and discussed in great detail in Chapter 3.
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transformed into autonomous differential equations (see Section 11.1), it is sufficient to
write an integrator that works with autonomous differential equations, i.e., those with
no explicit dependence on the independent variable so that �f (x, �y(x)) = �f (�y(x)) The
equations �f (�y(x)) may have control parameters, for example, σ , ρ, and β in Eq. 11.8.
We call these parameters �α and rewrite the functions as �f (�y(x)) = �f (�y(x); �α) in order
to show explicitly their dependence upon the control parameters. Any parameter of the
functions �f is automatically a parameter of the functions �y(x), as are the starting values
�y0; accordingly we may rewrite the solution as �y = �y(x; �α, �y0).

We discuss an integrator that returns this set of functions and gives access to their
controlling parameters �α and �y0. An advantage of this viewpoint is that the functions
become useful in the context of applications such data modeling, where functions change
their shape in response to changes of a parameter. Because the functions �y(x) are defined
as the solution to an ODE, a large amount of integration takes place “under the hood”
when the function is evaluated. In order to avoid repeating the calculation, the results are
cached. When a second evaluation is requested, the integration up to the requested point
can be carried out starting from a nearby, previously-evaluated point. Of course when
any parameter is changed the entire cache is invalid and must be cleared.

It should be clear that we are talking about a powerful but somewhat heavily engi-
neered piece of code. The first step in this engineering process is to decide what the user
should see, not how an object or objects should look internally. Therefore in the next
section we describe a simple program that uses the integrator to manufacture the required
functions. In software engineering one typically thinks the use cases through before
actually writing any code. The entities (classes) that represent the key abstractions in
the design are determined, then the protocol for interacting with the classes, namely the
class interface as expressed in the class declaration, is fixed. In the case of an integrator
one requires a mechanism to specify the differential equations to be integrated and the
starting values, a mechanism for returning the solution(s) to these equation(s), and access
to adjustable parameters. Additionally, management of a cache of previously-calculated
information to speed up future function evaluations is required; the cache is shared
information common to all of the functions but completely hidden from the user. Care
needs to be given to memory management so that the cache is deleted when the last client
object is destroyed.

The basic usage of our class is described with an example in the next section.

11.3.1 A simple integrator class

The example we discuss in this section integrates the equations of motion of a proje-
ctile in the presence of air resistance. The example code is included in the EXAMPLES/
CH11/PROJECTILE area. It uses an integrator class from QatGenericFunctions
called (RKIntegrator). This integrator employs a widely-used technique for inte-
grating differential equations called the Runge-Kutta method—actually a family of
related methods discussed in Section 11.4. The RKIntegrator is capable of handling
autonomous first-order differential equations in the form of Eq. 11.32.
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Our example code projectile.cpp first creates an instance of the integrator:

#include " QatGener icFunct ions / RKIntegrator . h "
using namespace Genfun;
.
.
.
RKIntegrator integrator;

And then defines the functions fi(y0, y1 . . .) (see Eqs. 11.5):

Variable X(0,4),Y(1,4),VX(2,4),VY(3,4);
double gamma=0.02;
double m =0.5; // kg
double g =9.8; // m/s/s

GENFUNCTION DXDT = VX;
GENFUNCTION DYDT = VY;
GENFUNCTION DVXDT = -gamma/m*VX*Sqrt()(VX*VX+VY*VY);
GENFUNCTION DVYDT = -g -gamma/m*VY*Sqrt()(VX*VX+VY*VY);

Notice that we are calling a new form of the constructor for Genfun::Variable in the
first line. The constructor with two integer arguments (1,4) creates a variable that is a
component of a four dimensional vector with index value 1 (the indices in this case run
from 0-3).

Our next step will be to add these differential equations to the integrator. The
integrator then takes these differential equations plus a starting value for each variable
being integrated and uses it to define the function.

integrator.addDiffEquation(&DXDT, "X", 0);
integrator.addDiffEquation(&DYDT, "Y", 0);
integrator.addDiffEquation(&DVXDT, "VX",50);
integrator.addDiffEquation(&DVYDT, "VY",50);

These lines tell the integrator that the quantity X governed by the differential equation
DXDT (defined above) has a starting value of 0. The quantity Y starts at 0, too. The
quantities VX and VY, representing the x- and y-components of the projectile’s velocity,
both start at 50 m/s.

That’s all the integrator needs to know. The fully integrated trajectory comes back
from the integrator like this:

GENFUNCTION x = *integrator.getFunction(X);
GENFUNCTION y = *integrator.getFunction(Y);
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Figure 11.2 The orbit of a projectile in the presence of air resistance for various values of the
parameter γ .

The resulting functions4 can be used like any other QatGenericFunctions functor.
In the example program projectile.cpp we have used these functions to make a
plot of an orbit. The actual work is done when the function is evaluated, since then
the integration is carried out, from t = 0 up to the specified value of the independent
variable t. The plot in Figure 11.2 shows y vs x, in other words, the orbit of the projectile.
Since the functions x and y are functions of t, we need to do a little work to get the
orbit equations. In Figure 11.2, we have evaluated x(t) and y(t) for various values of t
and then used the CubicSplineInterpolator (Chapter 4) to interpolate between
the points.

One can do a little more with the integrator than has been described. For one thing, we
know that we can regard the starting value of each variable as a parameter that governs the
shape of the function. The function RKIntegrator::addDiffEquation method
has the following signature

Parameter * addDiffEquation (
const AbsFunction * diffEquation,
const std::string & variableName= " anon ",
double defStartingValue=0.0,
double startingValueMin=0.0,
double startingValueMax=0.0);

so in the above example we have been throwing away the return value and taking most
of the defaults. If we wanted to, we could have set a range for the starting value and

4 You may be wondering about the memory management. The integrator allocates memory for the functions
and cleans these functions up when the integrator is destroyed. The shared cache is referenced by all of the
functions and any copies that may exist. It is freed when the last referencing function, original or copy, is
destroyed.
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held onto the parameter returned by the function. This would have allowed us to use the
starting value of the integrated quantity as a parameter to the function returned by the
integrator5. Another method is also available,

Parameter * createControlParameter (
const std::string & variableName= " anon ",
double defStartingValue=0.0,
double startingValueMin=0.0,
double startingValueMax=0.0);

which creates a control parameter that can be used in defining the differential equations
governing the evolution of the variables6. Thus, we achieve the goal of using the ordinary
differential equations to define a set of functions parametrized by their starting values
and other control parameters which appear in the differential equations.

11.3.2 Example: the harmonic oscillator

The harmonic oscillator in one dimension furnishes a simple example with a familiar
solution. We start with the Hamiltonian of the system, Eq. 11.20, and the first-order
differential equations that can be derived from the Hamiltonian, Eqs. 11.21. These equa-
tions are integrated in an example which you can find in EXAMPLES/CH11/HARMONIC;
the program is called harmonic.cpp. Here are some excerpts:

//
// Harmonic oscillator:
//

double K=1.0; // Newtons/m
double M=1.0; // Kg
Variable X(0,2),P(1,2);
GENFUNCTION DXDT=P/M;
GENFUNCTION DPDT=-K*X;
//
// Integrate the equations of motion:
//
RKIntegrator integrator;

integrator.addDiffEquation(&DXDT, "X", 0);
integrator.addDiffEquation(&DPDT, "P ",1.0);

5 Parameter is described in a previous chapter. The memory allocated for this operation is part of the cache
and is released when the cache is destroyed.

6 The memory is released when the cache is destroyed.
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Figure 11.3 Numerical solution to the harmonic oscillator problem, integrated up to t = 10. This
problem is discussed further in Section 11.7.

GENFUNCTION x=*integrator.getFunction(X);
GENFUNCTION p=*integrator.getFunction(P);

and then one can use the functions x and p in the usual way, for example plotting them
(vs. time) as in Figure 11.3. We return to this problem in Section 11.7 where it will be
used to illustrate problems with simpler algorithms.

11.4 Numerical methods for integrating ordinary
differential equations

We now turn to numerical methods for solving ordinary differential equations of the
form:

d �y(x)
dx

= �f (x, �y(x)) (11.33)

subject to the initial-value boundary conditions:

�y(x0) = �y0 (11.34)

where �y0 is a vector of known starting values. Solutions to this set of equations exist
and are unique under a set of general conditions. In the theory of ordinary differential
equations the most important characteristic of the functions �f (x, �y(x)) is a notion of
continuity called Lipshitz continuity, which is stronger than the usual type of continuity
and implies that the magnitude of the derivative remains bounded. A function of one
variable g(x) is Lipshitz continuous if there exists a constant L > 0 (called the Lipshitz
constant) such that ||g(x)− g(y)|| < L||x − y|| for any real numbers x and y. Most of the
theorems in the numerical analysis of ordinary differential equations are predicated on
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the requirement that �f (x, �y(x)) in Eq. 11.33 satisfy a Lipshitz condition on their second
variable:

|| �f (x, �y(x))− �f (x, �z(x))|| ≤ L||�y(x)− �z(x)|| (11.35)

for all values of x.
Numerical integration of Eq. 11.32 or 11.33 boils down to this: taking a presumed

starting point for all of the variables and using the equations to determine how they
evolve at each subsequent point in time. Temporal evolution is accomplished on a mesh
with (possible variable) spacing h.

A good integration algorithm has two components: a method for evolving the equation
at each step h, and a method for choosing (and even changing when required) the step
size h. The most important feature of the stepping algorithm is its order. Let the
numerical solution at the ith mesh point be designated as yi . An algorithm is said to
be of order p if the difference between the estimated solution �yi at the ith step and the
true solution �y(x0 + ih) satifies ||�yi − �y(x0 + ih)|| = O(hp+1).

This is referred to as the local error. Usually, one is more concerned with the global
error accumulated over all of the steps within a fixed interval of integration because
error can accumulate during temporal evolution.

In the following sections we introduce several techniques for integrating ordinary
differential equations. Like the integration formulae of Chapter 5, these methods are
expressed in simple formulae with different accuracy and stability properties. The
methods have been extensively investigated and are well understood. The analysis of
all but the simplest methods is however quite complicated, so we will summarize the
important results and refer the interested reader to the references (Butcher, 2003;
Hairer, 2008; Hairer, 2002). All the methods we discuss are convergent: the global error
approaches zero as h → 0, but the order of the convergence varies greatly from method
to method. The main theoretical requirement is that �f (x, �y) is continuous in the first
variable and Lipshitz continuous in the second.

11.4.1 The Euler method

The simplest method, called Euler’s method, dates from 1768 and steps according to the
formula:

�yn+1 = �yn + h�f (x, �yn(x)). (11.36)

A great deal is known about the numerical properties of this algorithm when it is
applied to a set of first-order differential equations (for which �f (x, �y(x)) satisfies the
conditions of the previous paragraph). It is known, for example, that the method is first-
order. This can be demonstrated by considering the Taylor series expansion:

�y(x0 + h) = �y(x0)+ h�y′(x0)+ O(h2)

= �y(x0)+ h�f (x0, �y(x0))+ O(h2)

= �y1 + O(h2) (11.37)
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implying:

||�y1 − �y(x0 + h)|| = O(h2) (11.38)

A more detailed treatment (Butcher, 2003) shows that the error in any component of �y
can be written7 as the corresponding component of:

1
2
�y′′(x0) · h2 + O(h3). (11.39)

These statements are concerned with the local error. When one wishes to integrate the
differential equation over some fixed interval in x, the global error decreases as h rather
than h2. The reason for this is clear: while the error committed in each step decreases
as h2, the number of steps grows as h. The first-order convergence of Eq. 11.36 as h → 0
was proven by Cauchy in 1824 and constitutes the mathematical foundation on which
these computational algorithms are based.

When Euler’s method is applied to a function of x that does not depend on y it reduces
to a classical integration formula. Let there be only one dependent variable y and assume
f (x, y) = f (x) so that we are solving:

dy
dx

= f (x)

starting from x = a and integrating over n steps of step size h = (b − a)/n, we obtain:

y(a) = 0

y(a + h) = hf (a)

y(a + 2h) = hf (a)+ hf (a + h)

.

.

y(a + nh) = h(f (a)+ f (a + h)+ . . . f (a + (n − 1)h)

The last expression is a quadrature formula (the rectangle rule) for:

∫ a+nh

a

dy
dx

dx

that one does not usually discuss because of its poor relative error, which is O(h)
(compare to the trapezoid rule, O(h2) or Simpson’s rule of order O(h4)). The abscissas of
this quadrature formula are the starting points of each interval. The reason for the poor

7 The proof follows from considering the truncated Taylor series with remainder (Lagrange form), or by
the method of Butcher (2004).
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behavior is the one-sided nature of the formula: only the derivative at the beginning of the
interval is used. The following subsections develop the topic of Runge-Kutta methods;
which generalize and improve the Euler method.

11.4.2 The midpoint method

An immediate improvement is to evaluate the derivative at the midpoint of the interval
[0, h]; in that case we use the slope at x0 to evaluate an approximation to y(x0+h/2), then
at this mid-point we re-evaluate the slope and use it to take a step over the full interval h;
thus there are two evaluations of the slope per step. The procedure can be summarized
in the formula:

�k1 = �f (x0, �y0)

�k2 = �f
(

x0 + h
2

, �y0 + h
2
�k1

)

�y1 = �y0 + h�k2. (11.40)

The midpoint method has order 2. In the case of a single variable and f (x, y) = f (x),
the midpoint method reduces to the midpoint quadrature rule, an example of an open
Newton-Cotes quadrature rule.

11.4.3 The trapezoid method

Another second order numerical integration method can be obtained with a slight
rearrangement of the formula in Section 11.4.2. This method is summarized in the
following way:

�k1 = �f (x0, �y0) (11.41)

�k2 = �f (x0 + h, �y0 + h�k1)

�y1 = �y0 + h
2
(�k1 + �k2) (11.42)

The formula is based on the trapezoid rule in the case of a single variable and
f (x, y) = f (x).

11.4.4 The 4th order Runge-Kutta method

A fourth order (error going like h5) formula is nearly as simple but at the price of needing
four evaluations of the derivative per step:

�k1 = h�f (x0, �y0)

�k2 = h�f
(

x0 + h
2

, �y0 + h
�k1

2

)
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�k3 = h�f
(

x0 + h
2

, �y0 + h
�k2

2

)

�k4 = h�f (x0 + h, �y0 + h�k3)

�y1 = �y0 + �k1

6
+ �k2

3
+ �k3

3
+ �k4

6
. (11.43)

Each piece of the final calculation is an estimate of the slope of �y(x), and each piece has its
own leading error. The final result can be viewed as an admixture of all of these estimates,
arranged in such a way that the leading errors cancel. The coefficients required for the
cancellation were found by kutta (1901).

11.4.5 Properties of nth order Runge-Kutta methods

A generic Runge-Kutta method is characterized by a multistep formula involving
coefficients ci , aij , and bi such that:

�k1 = �f (x0 + c1h, �y0) (11.44)

�k2 = �f (x0 + c2h, �y0 + ha21 �k1) (11.45)

�k3 = �f (x0 + c3h, �y0 + ha32 �k2 + ha31 �k1) (11.46)

. . .

�ks = �f (x0 + csh, �y0 + hass−1 �ks−1

+ hass−1 �ks−2 . . .+ has1 �k1) (11.47)

�y1 = �y0 + h
∑

i

bi �ki (11.48)

Nowadays, the construction of nth order Runge-Kutta methods is largely a mechanical
procedure. While the procedure itself is not easy to understand8, its consequences are
simple: a host of higher-order variants is known and fully characterized. This being the
case, the information you’ll need in order to implement a stepping routine is: what are
the coefficients? What order do we obtain with them?

The first question can be succinctly addressed by summarizing the coefficients in a
figure known as a Butcher tableau (Butcher, 2003) with the following form:

�c A

bT

8 The procedure for “discovering” higher order Runge-Kutta techniques starts with the creation of a
graphical representations called a rooted tree, which is a simply-connected, acyclic graph with a fixed number
of nodes corresponding to the desired order of the method. From the rooted trees one obtains a set of equations
called order conditions on the coefficients aij , bi and ci . Several sets of coefficients may satisfy the order
conditions (Butcher, 2003).
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where �b and �c are column-vectors of coefficients and A is a matrix of coefficients (for
the algorithms considered here, it is lower-diagonal).

We will address the second question by grouping the tableau according to the order
of the method so obtained. Here are a few of them:

First order methods

0

1
Euler method

Second order methods

0
1 1

1
2

1
2

trapezoidal rule method

0
1
2

1
2

0 1

midpoint method

Third order methods

Two possible third-order methods exist:

0
2
3

2
3

2
3

1
3

1
3

1
4 0 3

4

RK31

0
1
2

1
2

1 -1 2
1
6

2
3

1
6

RK32

Fourth order methods

There are many coefficient sets (or tableaux) which satisfy the order conditions for
a fourth-order Runge-Kutta Integrator. The first example is the Kutta’s formula,
Eq. 11.43, summarized as:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

RK4 or classical Runge-Kutta method
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The second example is a tableau that gives Simpson’s 3/8 rule in the special case of
f (x, y(x)) = f (x):

0
1
3

1
3

2
3 - 1

3 1
1 1 -1 1

1
8

3
8

3
8

1
8

“3/8 rule”

A Class for Butcher Tableaux

When building an integrator, why not arrange for maximum flexibility in the choice
of Runge-Kutta algorithm? Since the stepping algorithm is completely specified by the
Butcher tableau (and the order that it achieves), an easy way to do this is to invent a class
for such tableau; the class can then be used as input to the integrator in order to steer
the stepping component. A generic Butcher tableau has been encapsulated in the class
ButcherTableau (namespace Genfun). This class acts as an empty data structure
that can be filled with the elements (A, �b, and �c) of your favorite tableau. It has the
following public interface:

class ButcherTableau {

public:

// Constructor:
inline ButcherTableau(const std::string &name,

unsigned int order);

// Returns the name:
inline const std::string & name() const;

// Returns the order:
inline const unsigned int order() const;

// Returns the number of steps:
inline const unsigned int nSteps() const;

// Write access to elements:
inline double & A(unsigned int i, unsigned int j);
inline double & b(unsigned int i);
inline double & c(unsigned int i);

// Read access to elements (inline for speed)
inline const double & A(unsigned int i,

unsigned int j) const;
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inline const double & b(unsigned int i) const;
inline const double & c(unsigned int i) const;

}

Generally it will not be necessary for you to use this class directly since the header file
defines the following subclasses which preloaded coefficients:

• EulerTableau

• MidpointTableau

• TrapezoidTableau

• RK31Tableau

• RK32Tableau

• ClassicalRungeKuttaTableau

• ThreeEighthsRuleTableau

Fixed-step size Runge Kutta integration

In Section 11.3.1 we described a class for carrying out integration of functions. By
allowing you to specify an alternate “stepper” the class allows you to work with any of the
above integration schemes. By default it chooses a sophisticated stepper, of the kind we
will describe in Section 11.6, but if you need to you can change this in the following way.
First, you need to instantiate a Butcher tableau to describe the method you will apply. If
you choose one of the preloaded tableau you can do this with:

#include " QatGenericFunct ions / ButcherTableau . h "
ClassicalRungeKuttaTableau t;

Then you instantiate a SimpleRKStepper with the following code:

#include " QatGenericFunct ions / SimpleRKStepper . h "
SimpleRKStepper stepper(t, 0.001);

where the second argument is the fixed step size. Finally, you can use your stepper within
the integrator by changing the way the integrator is instantiated:

RKIntegrator integrator(&stepper);

and proceed as normal, as described in Section 11.3.1. The interface to SimpleRK
Stepper is here:

class SimpleRKStepper:public RKIntegrator::RKStepper{

public:
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// Constructor:
SimpleRKStepper(const ButcherTableau & tableau,

double stepsize);

// Destructor:
virtual ~SimpleRKStepper();

// Take a step:
virtual void step (const RKIntegrator::RKData *

data, // functions
const RKIntegrator::RKData::Data &

sdata, // start point
RKIntegrator::RKData::Data &

ddata, // end point
double

timeLimit // time limit
) const ;

// Clone:
virtual SimpleRKStepper *clone() const;

private:

ButcherTableau tableau;
double stepsize;

};

The main action routine is called step, shown below, which operates on two classes;
RKIntegrator::RKData,

which among other things holds the functions to be integrated and a cache of
RKIntegrator::RKData::Data

(the second class) which contains information about the solution at each mesh point:

class RKIntegrator {
class RKData {

struct Data{

std::vector<double> variable;
// solution

mutable std::vector<double> firstDerivative;
// it’s first derivative

double time; // time
...

}
}

};
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The actual work is done within the method step(...), which contains the key
numerical steps, carried out with the aid of a ButcherTableau, which is member
data of the SimpleRKStepper class. The method has two modes of operation: it can
integrate on a regular mesh point, or it can take a time-limited step to interpolate between
mesh points; in either case it implements Eqs. 11.44–11.48

void SimpleRKStepper::step(const RKIntegrator::RKData
* data,

const RKIntegrator::RKData::Data
& s,

RKIntegrator::RKData::Data
& d,

double
timeLimit ) const
{

const double h = timeLimit==0 ? stepsize : timeLimit -
s.time;

if (h<=0) throw std::runtime_error ( " SimpleRKStepper :
n e g a t i v e s t e p s i z e ");

const unsigned int nvar = s.variable.size();
// Compute all of the k’s..:
//
std::vector<std::vector<double> >k(tableau.nSteps());
for (unsigned int i=0;i<tableau.nSteps();i++) {
k[i].resize(nvar,0);
Argument arg(nvar);
for (unsigned int v=0;v<nvar;v++) arg[v]=s.variable[v];
for (unsigned int j=0;j<i;j++) {

for (unsigned int v=0;v<nvar;v++) {
arg[v] += h*tableau.A(i,j)*k[j][v];

}
}
for (unsigned int v=0;v<nvar;v++) {

k[i][v]=(*data->_diffEqn[v])(arg);
}

}
//
// Final result.
//
for (unsigned int v=0;v<nvar;v++) d.firstDerivative[v] =

0;
for (unsigned int i=0;i<tableau.nSteps();i++) {
for (unsigned int v=0;v<nvar;v++) {

d.firstDerivative[v] += tableau.b(i)*k[i][v];
}
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}
for (unsigned int v=0;v<nvar;v++) {
d.variable[v] =s.variable[v]+h*d.firstDerivative[v];

}
d.time = timeLimit==0 ? s.time + h : timeLimit;

}

Note that simple fixed-step size Runge-Kutta integrators solve one problem for us but
they create another: how to set the step size? One answer is to repeat the solution several
times and to decrease the step size; comparing the value of the function(s) at one or more
points and observing the order of the convergence. Then you can stop decreasing the
step size when the changes are below the desired tolerance. Notice however that in the
view we are taking of our solutions—they are just a set of functions parametrized by the
differential equations—a large amount of variation in the step size can be expected to
occur as we vary the parameters of the function, and even the argument of the function.
If our functions are really going to do their job over the full range of parameters and
arguments, we need an automatic way of setting the step size. This can be achieved
by estimating the error at each step of the integration and adjusting the step size
accordingly. We will return to this in Section 11.6. The default stepping behavior of
our RKIntegrator is based on this type of method. For now, however, we are going to
return to physics for a while.

11.5 Automated solution of classical problems

The Hamiltonian approach to classical dynamics requires taking a series of par-
tial derivatives to set up the equations of motion. Is it possible to automate this
procedure? The answer is “yes”!—it is possible to take derivatives symbolically in
QatGenericFunctions. This capability does not depend on numerical tricks but
rather on object-oriented programming tricks, and will produce for us something quite
powerful: a technique that allows one to solve a broad class of problems in classical
mechanics on the computer, which requires only the Hamiltonian as input. We will
restrict ourselves here to Hamiltonians that do not depend explicitly on time, since these
always generate autonomous first-order differential equations. In addition, they have the
property that the Hamiltonian function is conserved, i.e.:

dH(qi , pi)

dt
= 0. (11.49)

11.5.1 Taking partial derivatives with GENFUNCTIONs

The functors in QatGenericFunctions can be functions of more than one variable
in which case the variables are agglomerated with a class called Genfun::Argument.
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Specifically, the function call operator() takes a Genfun::Argument as input. For
example a function G can be made dependent on two variables, x(0) and x(1), as
follows:

Genfun::Argument x(2);
Genfun::BivariateGaussian G;
std::cout << G.dimensionality() << std::endl; //

output: ‘‘2’’

x[0]=0.5;
x[1]=1.2;

double y = G(x);

Each functor has a method called dimensionality() that returns the number of
arguments required by the function. The bivariate Gaussian distribution is intrinsically
a function of two variables �x = (x0, x1). Other functions can be made by associating
the n components of the variable list with a name and then combining the variables in
algebraic expressions like:

Variable X(0,2),P(1,2);
GENFUNCTION DXDT=P/M;
GENFUNCTION DPDT=-K*X;

which allows us to make functions of two variables (such as DXDT and DPDT) where we
symbolically refer to the first variable as X and the other as P. Now we will use this to
define the Hamiltonian, which is itself a function of the variables X and P:

Variable X(0,2),P(1,2);
GENFUNCTION Hamiltonian=P*P/2.0/M + 1/2.0*X*X;

It is finally time here to reveal the secret of how QatGenericFunctions work.
When doing any type of arithmetic on a QatGenericFunction, the result of the
operation is an object which keeps track of the operation to be performed as well as
the operand(s). The operation can be addition, subtraction, multiplication, division,
negation, or composition, and operands can be functions, parameters, or constants.
Repeated operations build up what is called a binary expression tree. The actual
evaluation of the function is deferred until the function is invoked, at which point
the expression tree is traversed. A limited amount of symbolic manipulation is avail-
able within the QatGenericFunctions package. Among this functionality is the
ability to calculate a derivative (or a partial derivative in case of a function of two
dimensions). Here for example we compute and evaluate the derivative of a sine
function:
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Genfun::Sin Sin;
Genfun::GENFUNCTION f=Sin.derivative();

double x = 1.0;
double y = f(x);

which assigns to the variable y the value of cos(1.0). Each primitive function in the
library can compute its derivative (a numerical derivative is taken in case the class does
not provide any overrider). Each operation node in the binary expression tree knows how
to compute its derivatives: the sum rule for the sum of functions, the product rule for
the product of functions, the chain rule for the composition of functions, and so forth.
The operation nodes call upon the functions that comprise their operand list during the
execution of this task. The end result is one binary expression tree representing a function
can produce another binary expression tree representing its derivative independently of
what the function actually is.

The same idea applies to functions of more than one variable with a slight modifi-
cation, namely the partial derivative with respect to the ithelement of the argument list
can be taken. In this example the partial derivative with respect to the 0th variable (X) is
taken:

Genfun::GENFUNCTION f = Hamiltonian.partial(0);

The partial derivative that is returned is also a function of two variables. A more readable
version of the same statement can also be written:

Genfun::GENFUNCTION f = Hamiltonian.partial(X.index());

or even better:

Genfun::GENFUNCTION f = Hamiltonian.partial(X);

We will let you work with these functions for a little while longer and in the chapter
Polymorphism we will show you how they are constructed—and how to extend them to
other functions that you may wish to implement.

11.5.2 Computing and solving the equations of motion

We put it all together in the following sample code for the harmonic oscillator.

//
// Harmonic oscillator:
//

double K=1.0; // Newtons/m
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double M=1.0; // Kg
Variable X(0,2),P(1,2);
GENFUNCTION Hamiltonian = 1/2.0/M*P*P + 1/2.0*K*X*X;
GENFUNCTION DXDT=+Hamiltonian.partial(P);
GENFUNCTION DPDT=-Hamiltonian.partial(X);
//
// Integrate the equations of motion:
//
RKIntegrator integrator;

integrator.addDiffEquation(&DXDT, "X", 0);
integrator.addDiffEquation(&DPDT, "P ",1.0);

GENFUNCTION x=*integrator.getFunction(X);
GENFUNCTION p=*integrator.getFunction(P);

The integrator works as before, except that here we specify the Hamiltonian rather
than the equations of motion deriving from the Hamiltonian. This is, of course, very
convenient. One could for example add a small perturbing potential to the Hamiltonian
and investigate the resulting anharmonicities.

11.5.3 A classical Hamiltonian solver

The preceding ideas are encapsulated in the class RungeKuttaSolver (namespace
Genfun). The solver is a fairly heavily engineered piece of software, which, since
the noble discipline of software engineering is not the focus of this book, we will not
describe here.

It uses the ideas of this section to solve problems in classical mechanics. The following
example is provided as an illustration in the area EXAMPLES/CH11/HAMILTONIAN.
Using the solver, it computes the orbits of a particle moving in two dimensions under a
force, central or otherwise, though in the illustration we have chosen a central force. The
program uses the class Classical::PhaseSpace to set up the phase space variables,
then allows the user to construct a Hamiltonian out of the phase space variables and
calls Classical::RungeKuttaSolver to obtain solutions. In this example both the
time development and the orbit are then plotted with the usual tools. Here is the code
(in hamiltonian.cpp)

#include " QatGenericFunct ions / RungeKut taClas s i ca lSo lve r . h "
#include " QatGenericFunct ions / PhaseSpace . h "
#include " QatGenericFunct ions / V a r i a b l e . h "
#include " QatGenericFunct ions / Power . h "
#include " o r b i t . h "
#include " p l o t . h "
using namespace Genfun;
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int main (int argc, char **argv) {

// r^N potential

int N=4;

// Phase Space:

Classical::PhaseSpace phaseSpace(2);

const Classical::PhaseSpace::Component
& q=phaseSpace.coordinates(),
& p=phaseSpace.momenta();

// The Hamiltonian:

GENFUNCTION H = (p[0]*p[0]+p[1]*p[1])/2.0 + Power(N/2)
(q[0]*q[0]+q[1]*q[1]);

// Starting value of q & p

phaseSpace.start(q[0],0.0);
phaseSpace.start(q[1],1.0);
phaseSpace.start(p[0],1.0);
phaseSpace.start(p[1],1.0);

Classical::RungeKuttaSolver solver(H, phaseSpace);

//------------------------------------------------------

QApplication app(argc,argv);
orbit(app,

solver.equationOf(q[0]), // We plot the orbit
solver.equationOf(q[1]));

plot (app,
solver.equationOf(q[0]), // We plot together q0

and p0
solver.equationOf(p[0]));

plot (app,
solver.equationOf(q[1]), // We plot together q1

and p1
solver.equationOf(p[1]));



Ordinary differential equations 373

–1.2 –0.8 –0.4 0 0.4 0.8 1.2
–1.2

–0.8

–0.4

0

0.4

0.8

1.2

Orbit of a particle in an r4 potential

x

y

–0.4 –0.2 0 0.2 0.4
–1.3

–0.8

–0.3

0.2

0.7

1.2

Orbit of a particle in an r2 potential

x
y

Figure 11.4 The figure on the left shows the orbit of a particle under the influence of an r4potential.
This is generated by the program EXAMPLES/CH11/HAMILTONIAN, right out of the box. On the
right, the potential is modified to an r2 central potential, which has a familiar elliptical orbit.

plot (app,
solver.energy()); // We plot the energy

}

Figure 11.4 shows the orbit for this example (on the left) and also the orbit for a slightly
modified Hamiltonian, where the r4 potential is changed to an r2 potential (i.e., a two
dimensional simple harmonic oscillator). The program is a good starting point for solving
other problems in classical mechanics.

11.6 Adaptive step size control

Numerical solutions to ordinary differential equations with fixed step size have two
drawbacks; first, they require experimentation to determine an appropriate value of
the step size; and second the step size will usually be smaller than required in some
regions of integration when it is adjusted to the appropriate value in others. In the Euler
method, for example, the error committed at each step is 1/2h2y′′, where y′′ is evaluated
at some unknown point in the interval [xi , xi + h]; so the error is proportional to the
second derivative. A similar analysis can be conducted for all of the methods in the
Runge-Kutta family.

The solution to this problem is to add adaptive step size (Butcher, 2003; Press,
2007) adjustment to the algorithm. This procedure requires, first, an estimate of the
error committed at each step of the integration, and second, knowledge of the order p of
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the integration. Typically the error will be estimated by integrating the function(s) in two
different ways at each step, either by step doubling (Section 11.6.1) or by the so-called
embedded Runge-Kutta methods (Section 11.6.2). Each of these techniques individually
provides two estimates of the integral, one which is propagated forward and one which
is taken as a control. Then, having obtained two different results �y1 and �y2, we take the
magnitude of the difference, δ = ||�y1 − �y2|| as an estimate of the error. Sometimes the
worst case deviation is used instead of the magnitude of the difference. In later sections
we will examine the step-doubling technique and embedded Runge-Kutta methods; here
we show how the error estimate is used to implement adaptive step size adjustment.

The idea is to fix the size of the error committed at each step to a user-specified
tolerance T . This tolerance does not directly translate to the desired accuracy in global
error; its purpose is to maintain the local error at each step of the integration at an
approximately constant value. Let δ be the error committed at each step; since the
stepping method is order p we can write that:

δ = Ahp+1

where A is the constant in the leading term of the local error. This expression can be
used to adjust the estimated error at each step to the tolerance by growing or shrinking
the size of the step. Let hT be the step size that gives the desired error, i.e. the tolerance T :

T = Ahp+1
T .

Dividing the two equations,

T
δ

=
(

hT

h

)p+1

.

or

hT = h
(

T
δ

) 1
p+1

. (11.50)

This prescription can be used at each step. Certain practical considerations lead to simple
modifications to the basic procedure.

In practice a step size that is too small will be adjusted up (for the next step), while a
step size that is too large will be adjusted down, and the step will have to be repeated. To
avoid this type of failure in the following step, any upward adjustment of the step size is
moderated by introducing a safety factor S with a typical value of 0.9, so that the ratio
r = hT/h in Eq. 11.50 is modified to:

r = S
(

T
δ

) 1
p+1

(11.51)



Ordinary differential equations 375

In addition, it is common practice to limit this factor to an interval [rmin, rmax], such as
[0.5, 2.0]. When the maximum upward adjustment rmax is reached, the observed error
δmax is:

δmax = T
(

S
rmax

)p+1

. (11.52)

The error is tested against this cutoff value; if it is less than the cutoff, then the ratio
r = R is applied in the step adjustment; and otherwise Eq. 11.51 is used. One must be
wary to avoid division by zero in this equation; this can be accomplished by adding a
small regularizing positive number to the denominator.

11.6.1 Step doubling

Let’s compare the value of a function at x0 + h with the numerical value y1 from a
discretized calculation of order p:

y(x0 + h) = y1 + O(hp+1)

= y1 + Ahp+1 + O(hp+2).

We can also take the result as two half-steps; we call the result y2 which is related to
y(x0 + h) in the following way.

y(x0 + h) = y2 + 2A · (h/2)p+1 + O(hp+2)

= y2 + 2−pAhp+1 + O(hp+2).

Obviously y2 is a better approximation to the solution than y1; the error term 2−pAhp+1

can be obtained (to order p − 1) from the two equations:

2−pAhp+1 = y1 − y2

2p − 1
. (11.53)

By correcting y2 for this error,

y2 → y2 − y1 − y2

2p − 1
, (11.54)

we are effectively extrapolating to a smaller step size, and gaining in precision. However,
the most valuable aspect of the step-doubling algorithm is that it generates an estimate
of its error at each step, namely:

δ = y1 − y2 (11.55)
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which can thus be used directly with the adaptive step size control algorithm
described in the previous paragraph. At the end of Section 11.4.5, we described the
SimpleRKStepper class which, together with one or more ButcherTableau classes
(for example EulerTableau, MidpointTableau, TrapezoidTableau) could
replace the default stepper of RKIntegrator with fixed-step size explicit Runge-Kutta
integration according to one of the stepping algorithms. Here we describe how you can
do the same, except with adaptive step size.

As usual you will choose the underlying stepping algorithm by instantiating a
ButcherTableau of your choice, for example:

#include " QatGenericFunct ions / ButcherTableau . h "
ThreeEightsRuleTableau t;

The StepDoublingRKStepper is a type of error-estimating stepper that implements
step doubling; you can instantiate it like this:

#include " QatGenericFunct ions / StepDoublingRKStepper . h "
StepDoublingRKStepper subStepper(t);

The StepDoublingRKStepper is not used directly in the RKIntegrator, instead it
is used internally by the AdaptiveRKStepper:

#include " QatGenericFunct ions / AdaptiveRKStepper . h "
AdaptiveRKStepper stepper(&subStepper);

and that can then be used in RKIntegrator:

RKIntegrator integrator(&stepper);

This gives a great deal of flexibility in combining the step-doubling technique. In
addition, a set of modifiers can be used to change the algorithmic parameters. For
example:

stepper.initialStepsize()=0.02;
stepper.tolerance()=2.0E-6;

The constructor in AdaptiveRKStepper does not need any arguments since it uses
the embedded RK algorithm (described in the next section) by default. An excerpt from
the header file of AdaptiveRKStepper is shown below (not shown are the signatures
for private functions and those functions which are not meant to be called by the user).

class AdaptiveRKStepper:public RKIntegrator::RKStepper {

public:
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class EEStepper;

// Constructor. A default stepper is created if none
// is specified--it is an Embedded Runge Kutta stepper
// using a Cash-Karp extended Butcher Tableau, which
// is fourth-order.
AdaptiveRKStepper(const EEStepper *eeStepper=NULL);

// Copy constructor:
AdaptiveRKStepper(const AdaptiveRKStepper & right);

// Destructor:
virtual ~AdaptiveRKStepper();

// Clone
virtual AdaptiveRKStepper *clone() const;

// Accessors and modifiers to algorithmic parameters.
// Roughly speaking these are ordered according to
// importance: the user will often wish to modify the
// tolerance and the starting step size, but rarely

should
// need to touch any of the others.

// The tolerance:
double & tolerance();
const double & tolerance() const;

// The starting step size:
double & startingStepsize();
const double & startingStepsize() const;

// The safety factor. Step size increases are moderated
// by this factor:
double & safetyFactor();
const double & safetyFactor() const;

// The minimum amount by which a step size is decreased:
double & rmin();
const double & rmin() const;

// The maximum amount by which a step size is increased:
double & rmax();
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const double & rmax() const;
}

The AdaptiveRKStepper’s main routine is called step, and is very similiar
to SimpleRKStepper::step, except that it uses an “error estimating” stepper,
EEStepper, at each meshpoint, and adjusts the step up or down accordingly.

void AdaptiveRKStepper::step(const RKIntegrator::RKData
* data,

const RKIntegrator::RKData::
Data & s,

RKIntegrator::RKData::Data
& d,

double
timeLimit) const
{

//
// Adaptive step size control
//
if (s.time==0.0) {
stepsize=sStepsize;

}
const unsigned int p = eeStepper->order();

// Order of the stepper
const double deltaMax = T*pow(S/Rmax, p+1);

// Maximum error 4 adjustment.
const double TINY = 1.0E-30;

// Denominator regularization
double hnext;
//
// Time limited step ?
//
d.time= timeLimit==0? s.time+stepsize : timeLimit;

//--------------------------------------//
// Take one step, from s to d: //
//--------------------------------------//
double h = d.time-s.time;
while (1) {
std::vector<double> errors;
eeStepper->step(data, s, d, errors);
if (timeLimit!=0.0) return;

// Take absolute value:
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for (size_t e=0;e<errors.size();e++) errors[e] =
fabs(errors[e]);

// Select the largest:
double delta = (*std::max_element(errors.begin(),

errors.end()));
if (delta > 1) {

//
// Bail out and try a smaller step.
//
h = std::max(S*h*pow(T/(delta + TINY), 1.0/(p+1)),

Rmin*h);
if (!(((float) s.time+h - (float) s.time) > 0) ) {
std::cerr << " Warning , RK I n t e g r a t o r s t ep underf low

" << std::endl;
}
d.time = s.time+h;
hnext=h;
continue;

}
else {

if (delta > deltaMax) {
hnext = S*h*pow(T/(delta + TINY),1.0/(p+1));

}
else {
hnext = Rmax*h;

}
}
break;

}
stepsize=hnext;
return;

}

11.6.2 Embedded Runge Kutta methods

Is it possible for a Runge-Kutta method to build up a set of k’s (slope estimates at various
points in the interval, Eq. 11.44–11.47) and then combine them as in Eq 11.48, but
forming two estimates of the y(x0 + h), each having its own order? The answer is yes.
Fehlberg (1968) found two tableaux with the same values of �A and �c but different values
of �b, i.e. those constants used for the final computation. One of these gives fourth-order
accuracy and the other gives fifth-order accuracy. We extend, our tableaux accordingly,
so as to express succinctly these so-called embedded Runge-Kutta algorithms:
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�c A

bT

b̂
T

where the vector �b is the usual output vector, and b̂ is the vector used in an alternate
computation used only for the error estimate. Typically the order of these algorithms
differs by one unit, and, while there is some choice about whether the result of the
higher- or lower-order algorithm is propagated forward to the next step, the higher-order
algorithm is usually chosen. From Eq. 11.48 we see that the error is:

�δ =
∑

i

(bi − b̂i)�ki . (11.56)

We list here a few of the extended Butcher tableaux for common embedded
algorithms:

The “Heun-Euler” method:

0
1 1

1/2 1/2 (order 2)
1 0 (order 1)

The “Bogacki-Shampine method”:

0
1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/3 4/9 0 (order 3)
7/24 1/4 1/3 1/8 (order 2)

One of the formulae appearing in Fehlberg’s original work (Fehlberg 1968),
a fifth-order method with an embedded fourth order method which Fehlberg
called RK4(5) is given below. Fehlberg also described embedded methods with
orders as high as 9 (Fehlberg 1968); the Butcher tableaux used in these works are
in a format similar to those used here. Unlike the other methods summarized in
this section, Fehlberg’s original formulation propagated the lower-order method
rather than the higher-order method, so in this instance our tableau adheres to
the original formulation:

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7020/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
25/216 0 1408/2565 2197/4104 −1/5 0 (order 4)
16/135 0 6656/12825 28561/56430 −9/50 2/55 (order 5)
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The “Cash-Karp” method (Cash 1990) is favored by the authors of the very
influential Numerical Recipes series (Press, 2007):

0
1/5 1/5

3/10 3/40 9/40
3/5 3/10 −9/10 6/5
1 −11/54 5/2 −70/27 35/27

7/8 1631/55296 175/512 575/13824 44275/110592 253/4096
37/378 0 250/621 125/594 0 512/1771 (order 5)

2825/27648 0 18575/48384 13525/55296 277/14336 1/4 (order 4)

Many more algorithms and their tableau can be found in the literature; see for example
(Butcher, 2003). A class ExtendedButcherTableau with an interface similar to that
of ButcherTableau has been included in our implementation:

class ExtendedButcherTableau {

public:

// Constructor:
inline ExtendedButcherTableau(const std::string &name,

unsigned int order,
unsigned int orderHat);

// Returns the name:
inline const std::string & name() const;

// Returns the order of the main formula
inline const unsigned int order() const;

// Returns the order of the controlling formula
inline const unsigned int orderHat() const;

// Returns the number of steps:
inline const unsigned int nSteps() const;

// Write access to elements:
inline double & A(unsigned int i, unsigned int j);
inline double & b(unsigned int i);
inline double & bHat(unsigned int i);
inline double & c(unsigned int i);

// Read access to elements (inline for speed)
inline const double & A(unsigned int i, unsigned int j)

const;
inline const double & b(unsigned int i) const;
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inline const double & bHat(unsigned int i) const;
inline const double & c(unsigned int i) const;
...

};

The following classes which preload the appropriate values:

• HeunEulerXtTableau

• BogackiShampineXtTableau

• FehlbergRK45F2XtTableau

• CashKarpXtTableau

Now, to use these methods with an AdaptiveRKStepper you proceed as follows.
First, instantiate an extended Butcher tableau:

#include " QatGenericFunct ions / ExtendedButcherTableau . h "
HeunEulerXtTableau t;

#include " QatGenericFunct ions / EmbeddedRKStepper . h "
EmbeddedRKStepper subStepper(t);

RKIntegrator::RKStepper
SimpleRKStepper

AdaptiveRKStepper

StepDoublingRKStepper

EmbeddedRKStepper

EulerTableau
MidpointTableau
TrapezoidTableau
RK31Tableau
RK32Tableau
ClassicalRungeKuttaTableau

AdaptiveRKStepper::EEStepper

Butcher Tableau

ExtendedButcherTableau HeunEulerXtTableau

BogackiShampineXtTableau

FehlbergRK45F2XtTableau

CashKarpXtTableau

Figure 11.5 A class tree diagram for the Runge-Kutta stepping classes described in this chapter.
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If you don’t specify any tableau in the constructor, Cash-Karp is taken by default. Use
this together with the AdaptiveRKStepper, which automatically adjusts the step size:

#include " QatGenericFunct ions / AdaptiveRKStepper . h "
AdaptiveRKStepper stepper(subStepper);

which can then be used in RKIntegrator:

RKIntegrator integrator(&stepper);

One can now use the integrator as previously outlined.
We end this discussion on Runge-Kutta integrators with a class tree diagram showing

the relationship between various classes discussed in this section (Figure 11.5). This tree
can be extended if need be; details will be given in Chapter 12.

11.7 Symplectic integration schemes

When applied to classical problems, Runge-Kutta integration techniques often exhibit
an inconvenient property known as energy drift. This is illustrated in Figure 11.3, which
shows the early solution to the simple harmonic oscillator, and Figure 11.6, which shows
the same solution for very long time. It is evident that the amplitude of the oscillations
has grown (the horizontal lines indicate the amplitude of the oscillations near t = 0), and
therefore the energy has increased. Since we know we are dealing with a conservative
system, the effect is obviously an artifact of our numerical integration technique. This
phenomenon is present in both lower-order and higher-order Runge-Kutta methods.
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Figure 11.6 The long term behavior of the harmonic oscillator integrated numerically with
Runge-Kutta integration, at around t = 106 (approximately 160k cycles). The plot reveals an obvious
drift in the energy of the system.
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Figure 11.7 A phase space diagram of motion in the harmonic oscillator problem. The arrow shows the
direction of a typical step in a first-order algorithm. The step always brings us to a point outside the true
trajectory resulting in an outward spiral of the phase space trajectory and a secular increase in energy.

The source of the problem is easily visualized in the phase-space diagram of
Figure 11.7. Whenever we take steps based upon the derivatives of q and p, we are
moving along the tangent line of the path through phase space. For the harmonic
oscillator problem our approximation will invariably take us to a point that lies outside
the actual path of the system—and one with a higher energy. Let us calculate the size of
the effect for the Euler method with a step size of τ :

q′ = q + τ
∂H
∂p

= q + p
m
τ

p′ = p − τ
∂H
∂q

= p − kqτ

and after one step the energy E ′ is:

E ′ = 1
2m

p′2 + 1
2

kq′2

=
(

1 + τ2ω2
)

E

where E is the energy before the step. We see that the energy increases at each step
quadratically with the step size τ .
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Instead of following the Euler algorithm, we try another way of advancing through
phase space that does not follow the tangent exactly. At each step we apply two small
linear transformations D = D2 · D1 where:

D2 =
(

1 0
− τ

q
∂H
∂q 1

)
D1 =

(
1 τ

p
∂H
∂p

0 1

)
. (11.57)

This form approximates (to order τ2) the first-order Euler step whenever the Hamilto-
nian separates, i.e., whenever one can write H(p, q) = T(p) + V (q). For the harmonic
oscillator these become:

D2 =
(

1 0
−τk 1

)
D1 =

(
1 τ

m
0 1

)
(11.58)

and now after one step we estimate q′ and p′ to be:

q′ = q + p
m
τ

p′ = p − kq′τ

= p − kqτ − kpτ2

m
.

The energy is estimated to be:

E ′ =
(

1 + τ2ω2
)

E − τ2ω2 p2

m
+ O(τ3).

Is this any better than before? The energy is still not conserved by the integration scheme
except on average and to order τ2 since 〈 p2

2m 〉 = E
2 for the harmonic oscillator. Thus 〈E ′〉 =

E + O(τ3). To get a better picture of what is going on we choose a somewhat large step
size (τ = T/16 and τ = T/64, where T = 2π/ω) and trace the orbit of a point in phase
space under a sequence of the transformations described by Eq. 11.58.

The estimated orbit does not approximate closely the actual orbit because we have
deliberately chosen a large step size τ to illustrate the interesting features of the
approximation. The true trajectories shown in Figure 11.8 start at the top of the plot and
move clockwise around the figure. The transformations in Eq. 11.58 applied repeatedly
to the point in the phase space move the system around in a distorted path. The orbit
of the point under the transformation (shown as points in Figure 11.8) is sometimes
inside the true orbit where we estimate a lower energy, sometimes outside, where we
estimate a higher energy. After one full cycle the point appears to comes around nearly
to its original position in phase space. By choosing a smaller step size the deviation of
this calculated orbit from the true particle’s orbit becomes smaller and can be made very
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Figure 11.8 Two plots comparing the phase space trajectory of the simple harmonic oscillator with
points along the trajectory computed with the transformation of Eq. 11.58, for two different values of the
step size, T/16 (left), and T/64 (right).

accurate—while conserving the energy. In the next section we will see where this behavior
comes from.

11.7.1 Symplectic transformations

Let us take the N canonical coordinates qi and the N canonical momenta pi that comprise
a 2N-dimensional phase space and make a vector �η = (q0, q1, q2 . . . qN ; p0,p1, p2 . . . pN ).
Define a 2N × 2N block diagonal matrix:

J =
(

0 I
−I 0

)
. (11.59)

This matrix defines a group of transformations on the 2N phase space variables in the
following way. Define a transformation from one set of phase space variables �η to a new
set �η′:

�η → �η′(�η)

which is continuous and differentiable and let M be the Jacobian matrix of the transfor-
mation:

(M)ij =
∂η′

i

∂ηj
.
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The transformation (and the matrix) is said to be symplectic if:

MT JM = J. (11.60)

The set of symplectic transformations satisfies all of the conditions of a mathematical
group, which is known as the symplectic group. In particular it satisfies the condition
of closure, which means the the composition of any two symplectic transformations is
again a symplectic transformation. It can easily be verified that the matrices D1 and D2,
each defining half of the modified step D = D2 ·D1 (step size τ , Eq. 11.57 and Eq. 11.58
above) are symplectic, and therefore so is their composition—the Jacobian matrix D of
the combined transformation itself.

Symplectic transformations play a special role in classical mechanics because of their
connection to canonical transformations, which are transformations of the phase
space that preserve the form of Hamilton’s equations. All canonical transformations can
be represented as symplectic matrices, and all symplectic matrices represent transforma-
tions that are canonical.

The initial state of a classical mechanical system can be represented by a point in phase
space. The evolution of the system with time is the phase space trajectory, governed
by the Hamiltonian of the system. Between the initial time t0 = 0 and a future time
t = τ , the time development can be represented as a matrix that is symplectic, and that
depends on the Hamiltonian in the following way. Hamilton’s equations in symplectic
notation read:

d �η
dt

= J
∂H
∂ �η ≡ G(�η) · �η (11.61)

(a definition of the operator G(�η)) which follows from Hamilton’s equations. If the system
is started from a point �η0 in the phase space at t0 = 0, then at a later time τ it will have
the value:

�η = exp(Gτ)�η0.

The matrix (Gτ) is easily seen to be symplectic (Goldstein 2001) and hence Uτ ≡
exp(Gτ), called the time development operator, is also symplectic.

We can now state why symplectic integrators work. At each integration step the
phase space variables are transformed by a symplectic map, which corresponds to a
Hamiltonian. While this Hamiltonian is not the Hamiltonian of the problem at hand, it
differs by only a slight perturbation. The perturbation gets smaller as the step size is
decreased, approaching the desired Hamiltonian as the step size goes to zero.

We will illustrate this by examining a first-order symplectic scheme for integrating the
harmonic oscillator problem9. Our goal will be to determine the effective Hamiltonian

9 This scheme is also called the symplectic Euler method or the Euler-Cromer method.
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that is being solved by the symplectic scheme by identifying the operator D with the
operator Uτ and then inverting Eq. 11.61. In other words we will:

1. Take the logarithm of the matrix which represents a step through a finite interval
τ to obtain G0τ .

2. Use J ∂H
∂ �η = G0�η to identify a set of differential equations for the Hamiltonian H(�η).

3. Integrate those equations.

Perturbed Hamiltonian of the harmonic oscillator

The operator D we are seeking is obtained from Eq. 11.58:

D = D2 · D1 =
(

1 0
−hk 1

)
·
(

1 h
m

0 1

)
=
(

1 h
m

−hk (1 − k
m h2)

)

which we will write as:

D =
(

1 τ
m−τω2m

(
1 − ω2τ2

)
)

The first step is to find the logarithm of this matrix.

Show that as τ → 0

ln(D) =
(

ω2τ2/2 τ/m

−mω2τ −ω2τ2/2

)

+ O(τ3).

From G = ln(D)/τ we have:

G�η =
(

ω2τ/2 1/m

−mω2 −ω2τ/2

)

·
(

q
p

)

=
(

ω2τq/2 p/m

−mqω2 −ω2τp/2

)

= d �η
dt

=
(

dq
dt
dp
dt

)

=
(

∂H
∂p

− ∂H
∂q

)

.

We can now integrate the following equations:

∂H
∂p

= p
m

+ 1
2
ω2τq

∂H
∂q

= mqω2 + 1
2
ω2τp
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to obtain:

H = p2

2m
+ 1

2
mω2q2 + τω2qp

2
. (11.62)

This is not quite the Hamiltonian of the problem we set out to solve (the harmonic
oscillator), but it is close, differing only by a “perturbation” term τω2qp/2, which is first-
order in the step size τ . We see that our symplectic Euler algorithm has been solving
some problem exactly, but not the harmonic oscillator. In Figure 11.9 we show that the
approximate solution (points) follows the exact phase space trajectory of this alternate
problem. In Figure 11.10 we show the long-term behavior of a symplectic Euler method,
which can be compared to the plot in Figure 11.3. The code that produces this plot can
be found in EXAMPLES/CH11/SYMPLECTIC.

Of course it is not necessary to determine the effective symplectic Hamiltonian to
integrate the equations of motion. In general there is always a Hamiltonian that describes
the orbit of our approximate solutions in a 2N dimensional phase space that differs
from the actual Hamiltonian at order τ . For proof we refer the reader to Yoshida
(1992).
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Figure 11.9 As in Figure 11.8 (left), we compare the approximate solution generated by a sequence of
steps generated by our symplectic stepper (τ = T/16) with the true trajectory (solid line) but also with
the trajectory of the associated perturbed Hamiltonian (dashed line). The approximate solution to the
harmonic oscillator problem which we have generated is the exact solution to another problem having a
slightly perturbed Hamiltonian.
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Figure 11.10 Long-term behavior of a symplectic Euler method, to be compared with the plot of
Figure 11.6. The solution shows no secular increase of the energy.

11.8 Symplectic integrators of first and higher order

The treatment we have applied to the harmonic oscillator is an example of a symplectic
integration algorithm. These are a family of integrators that are not in the Runge-Kutta
family, and are not based on Eqs. 11.44–11.48. These integrators are based on symplectic
transformations at each step and approach the true solution at each step at a given order
in the step size τ .

The techniques we describe in this section apply to systems evolving in a 2N
dimensional phase space, governed by a Hamiltonian:

H = H(q1, q2, . . . qN ; p1, p2, . . . pN ). (11.63)

We restrict ourselves to cases where the Hamiltonian does not depend explicitly on time;
thus:

dH
dt

= ∂H
∂t

= 0 (11.64)

and the system is conservative. We will further restrict ourselves to separable Hamilto-
nians, i.e., those which can expressed as:

H(�η) = T(�p)+ V (�q) (11.65)

where T(�p) is the kinetic energy, V (�q) is the potential energy, and:

�η = (q0, q1, q2 . . . qN ; p0,p1, p2 . . . pN ). (11.66)
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The harmonic oscillator in one dimension, as well as any central force problem, are clearly
separable. The torque-free motion of a rigid body is also separable (Piña 1997), though
not in generalized coordinates which are widely familiar.

Hamilton’s equation in symplectic form are:

d �η
dt

= J
∂H
∂ �η . (11.67)

A solution to these equations can be formulated in terms of the Poisson bracket. In
standard notation the Poisson bracket is:

{u, v} ≡ ∂u
∂qi

∂v
∂pi

− ∂u
∂pi

∂v
∂qi

. (11.68)

The temporal development of any dynamical variable not explicitly dependent on the
time can be expressed in terms of the Poisson bracket:

du
dt

= ∂u
∂qi

dqi

dt
+ ∂u

∂pi

dpi

dt

= ∂u
∂qi

∂H
∂pi

− ∂u
∂pi

∂H
∂qi

= {u, H}.

This applies to the canonical coordinates η as well:

d �η
dt

= {�η, H} ≡ DH �η. (11.69)

Formally the equation can be integrated from t = 0 to t = τ :

�η = exp(τDH )�η0. (11.70)

This solution has no practical value since the right hand side cannot be computed.
However an approximation due to Neri (1988) can be found:

�η =
k∏

i=1

exp(aiτDT ) exp(biτDV )�η0 +O(τ k+1), (11.71)

where:

DT ≡ {·, T(�p)} DV ≡ {·, V (�q)}, (11.72)
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and where the ai ’s and bi ’s obey:

∑

i

ai =
∑

i

bi = 1. (11.73)

The transformation can be practically calculated by applying sequentially two transfor-
mations at each step i in the expansion, Eq. 11.71. First the phase space variables are
updated according to:

( �q
�p
)

=
(

�q + aiτ
∂T
∂ �p

�p

)

; (11.74)

and then the new values are again updated according to:

( �q
�p
)

=
( �q

�p − biτ
∂V
∂ �q

)
. (11.75)

Verify that

exp(aiτDT )

( �q
�p
)

=
(

�q + aiτ
∂T
∂ �p

�p

)

(11.76)

and

exp(biτDV )

( �q
�p
)

=
( �q

�p − biτ
∂V
∂ �q

)
(11.77)

Why are these expressions calculable while Eq. 11.70 is not?

The constants ai and bi remain to be specified. It takes considerable ingenuity
to find these constants such that the leading errors cancel to some fixed order, and
their derivation is beyond the scope of this book. The simplest method, known as
the symplectic Euler equation (or Euler-Cromer method) is order k = 1; and has
a1 = b1 = 1. The Verlet method (Verlet, 1967) is order k = 2 and has a1 = a2 = 1/2,
b1 = 1, and b2 = 0. A third-order integrator with:

a1 = 2/3 a2 = −2/3 a3 = 1
b1 = 7/24 b2 = 3/4 b3 = −1/24
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was derived by Ruth (1983). Neri (1988) derives a fourth-order integrator with

a1 = a4 = 1
2(2 − 21/3)

a2 = a3 = 1 − 21/3

2(2 − 21/3)

b1 = b4 = 1
(2 − 21/3)

b2 = − 21/3

(2 − 21/3)
b3 = 0.

More symplectic integrators with orders up to 6 and 8 are given in (Yoshida, 1990),
together with an elegant technique for deriving the constants.

You may have noticed that the transformation equations, Eqs. 11.74 and 11.75, are
expressed in terms of derivatives of the kinetic energy T(�p) and the potential energy
V (�q). This feature can be combined with an automatic derivative system such as we have
discussed in Section 11.5.2 to produce an integrator that can apply symplectic integration
techniques to any separable, conservative classical system (of reasonable size) along the
same lines as the Hamiltonian solver discussed in Section 11.5.3. We do not go into detail
here to avoid repetition of those sections; instead the topic is explored in the exercises.

11.9 Algorithmic inadequacies

We have discussed two important properties of algorithms for solving differential
equations: accuracy and fidelity. The former is characterized by the order of the
discretization, while the latter refers to the ability of the discretization to retain global
features of the differential equation. An example of such a feature that we have already
discussed extensively is conservation of energy. Here we discuss other issues that can
arise when solving differential equations.

11.9.1 Stability

In general it is not possible to choose algorithmic parameters (such as the step size)
completely at will. This can be simply illustrated by considering the equation y′(x) =
−ky(x) with solution y ∝ exp(−kx). The Euler approximation to this equation is:

yn+1 = (1 − hk)yn (11.78)

and has solution:

yn = (1 − hk)ny0. (11.79)

Thus obtaining y(x) → 0 for large x can only be achieved if:

|1 − hk| < 1 (11.80)
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or h < 2/k. It is not possible to obtain a reasonable solution to the Euler difference
equation if too large a grid spacing is employed. Hence the Euler algorithm is termed
conditionally stable.

The problem can be avoided by using a sufficiently small step size or by employing a
more robust implicit solution method. For example, if one seeks to solve the stability
problem for an equation like y′ = f (x, y) one could discretize as:

yn+1 = yn + h
2
(f (xn, yn)+ f (xn+1, yn+1)) . (11.81)

The utility of this discretization can be seen by considering the simple exponential
problem f = −ky. In this case one can solve for yn+1:

yn+1 = 1 − hk
1 + hk

yn, (11.82)

which implies that the solution approaches zero if:

∣∣∣
1 − hk
1 + hk

∣∣∣ < 1. (11.83)

Since this is true for all step sizes, the implicit discretization of Eq. 11.81 is termed
unconditionally stable. Although this feature is desirable, the form of Eq. 11.81 makes
it clear that implementing it can be difficult since, in general, a nonlinear equation must
be solved at each time step. Furthermore, for the relatively simple equations generated by
typical explicit discretization schemes, it is not too computationally expensive to choose
step sizes sufficiently small to avoid stability problems.10

11.9.2 Solution mixing

Inaccuracies can arise in solving differential equations when numerical errors induce
spurious behavior in the solution. Consider, for example, the equation:

y′′ − k2y(x) = 0 (11.84)

with boundary condition y(0) = 1 and y′(0) = −k. The general solution is:

y = c1 exp(−kx)+ c2 exp(kx) (11.85)

10 We shall see that similar problems (and solutions) are present in the—much more expensive – algorithms
for partial differential equations.
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Figure 11.11 Numerical solution to y′′ = 100y in single precision (pluses) and double
precision (crosses).

and the boundary conditions pick out the specific solution y = exp(−kx). As a solution
algorithm is iterated, it necessarily ‘picks up’ a small contribution from the undesired
component proportional to exp(kx) and this eventually dominates the exact solution.

There is no good solution to this problem other than exercising care when one suspects
that spurious behavior is due to roundoff error. In such cases it would be prudent to
examine the stability of the solution under increases in numerical precision. This is
illustrated in Figure 11.11 for the case k = 10 with the Euler method with a step size of
h = 0.01. The appearance of the spurious solution is apparent at large x, as is the delayed
appearance when double precision reals are employed.

11.9.3 Multiscale problems

Real world problems are typically driven by physics on many scales that interact in
complex ways. For example, weather systems depend on spatial scales ranging from
meters to thousands of kilometers (describing, for example, water vapor exchange at the
surface of a wavy ocean to hurricanes). Chemical reactions that can depend on temporal
scales that differ by many orders of magnitude provide another example.

Multiscale problems introduce efficiency issues that are related to stability. Consider
the two-scale problem defined by:

y′′ + (k0 + k1)y′ + k1k0y = 0 (11.86)

with y(0) = 2 and y′(0) = −k0 − k1. The solution decays with two scales given by 1/k0
and 1/k1:

y = exp(−k0x)+ exp(−k1x). (11.87)
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If k1 � k0 and one is employing a simple Euler-type algorithm, then stability requires
that h < 2/k1. In this case the transient term exp(−k1x) will be reliably reproduced. The
problem is that for x larger than 1/k1 the solution is dominated by the first term, and
it is grossly inefficient to solve a problem with a scale of 1/k0 when using a step size
h ∼ 1/k1 � 1/k0.

Two approaches to solving stiff equations such as this are:

(i) to employ adaptive step size routines that are capable of stepping with size 1/k1
in the transient regime and 1/k0 in the slowly varying regime;

(ii) to employ implicit methods that do not place strict requirements on step sizes, as
discussed in Section 11.9.1.

11.10 Exercises

1. [T] Solution Mixing.
Demonstrate the solution mixing discussed in Section 11.9.2 by considering the
Euler solution to Eq. 11.84. Show that iteration of the initial condition (y, y′)0 =
(1,−k) smoothly approaches zero if one is in the stable region. Then show that a
small admixture, say (y, y′)0 = (1,−k + δ) induces a growing solution.

2. [T] Symplectic Algorithms.
Verify that the transformations of Eq. 11.76 and 11.77 are symplectic. Show that this
implies that the full time evolution of the approximation of Eq. 11.71 is symplectic
and exactly conserves some quantity, which differs from the Hamiltonian by terms
of O(τ k+1).

3. [T] Simple Pendulum.
A simple pendulum consists of a length a of massless string attached to a bob
of mass m. Choose, as the canonical coordinate, the angle θ between the pendu-
lum’s string and the vertical direction, and show that with these coordinates the
Hamiltonian is:

H = l2

2ma2 − mga cos θ

= E

(
1
2

(
l
λ

)2

− cos θ

)

(11.88)

where l is the angular momentum of the pendulum, E ≡ mga is a characteristic
energy for the system, and λ ≡ ma3/2g1/2 is a characteristic angular momentum.
Then plot the two-dimensional phase space trajectory for the system when the
pendulum is started from θ = 0 and

a) l0 = λ/4

b) l0 = λ/2
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c) l0 = λ

d) l0 = √
2λ

e) l0 = 2λ

f) l0 = 3λ.

4. Spherical Pendulum.
A spherical pendulum is a simple pendulum that is free to move in a manner consistent
with the constraint provided by the string. The pendulum is released from a position
θ0 with an angular velocity of magnitude l = λ (see the previous problem), and a
direction perpendicular both to the string and to the bob’s displacement from the
equilibrium point. Using spherical coordinates where θ is the angle between string
and the vertical direction, and φ is the azimuthal angle, taking φ0 = 0, integrate
the equations of motion numerically. Project the orbit into the horizontal plane (i.e.,
plot sin θ cosφ vs. sin θ sinφ) – notice that this takes the form of a precessing ellipse.
Compute the precession rate together with an estimate of its error (from numerical
accuracy).

5. Spinning Top.
Integrate the equation of the spinning top, Eq. 11.17. Plot the three variables u, ψ ,
and φ vs. time. If you prefer you can display your solution with a graphical animation.

6. Spinning Top ii.
As a variation of the previous problem determine the Hamiltonian from the Lag-
rangian of the heavy symmetric top. Using the techniques of Section 11.5.3, express
this Hamiltonian using the PhaseSpace class of the QatGeneric Functions
class library and let the solver integrate the equations. Display, or animate, the
solution.

7. Restricted Three Body Problem.
In the celebrated restricted three body problem, three bodies move under their mutual
gravitational attraction, but one of the bodies is far lighter than the other two, such
that its influence on the heavier bodies can be neglected. A small planet moving
in the gravitational field of two massive binary stars is a good example. Derive, and
integrate numerically, the equations of motion for the restricted three body problem.
Animate the solution. Try a set of initial conditions in which all three objects a)
remain coplanar, and b) are acoplanar.

8. Energy Conservation.
For the r2 and r4 central potential problems of Figure 11.4, plot the long-term
behavior of the total energy when integrated with a fixed-order Euler method
and compare with the symplectic Euler method with the same step size. Use a
nondimensionalized Hamiltonian in two dimensions:

H = p2/2 + rN N = 2 or 4 (11.89)

and start the motion from �r = (0, 1) and �p = (1, 1).
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9. [P] Separable Hamiltonians.
Write and test a symplectic integrator that will integrate any separable Hamilto-
nian, along the lines of Section 11.5.2. Use the automatic derivative system of
QatGenericFunctions.

10. Damped Harmonic Oscillator.
The damped harmonic oscillator, Eq. 11.2 can be rewritten as:

dx
dτ

= η

dη
dτ

= −2ζη − x (11.90)

with the substitution η ≡ v/ω0 and τ = ω0t.

a) Obtain the exact analytic solution for this equation in the case ζ = 1/2.

b) For each of the following numerical solutions, make a logarithmic plot of the
deviation between the numerical solution and the true solution at the point τ =
10 vs. the step size h: Euler, Midpoint, Trapezoid, Classical Runge-Kutta.

c) Combine each of the methods in part (b) with adaptive step size control and
make the same plot vs. the user-specified tolerance.

11. Radioactive Decay.
An initially pure sample containing N0 atoms of 213

83 Bi atoms decays according to:

213
83 Bi →209

81 Tl + α

with a half-life of 45.6 minutes. This is followed by the decay:

209
81 Tl →209

82 Pb + β

with a half-life of 132 seconds, then:

209
82 Pb →209

83 Bi + β

with a half-life of 195 minutes. The nuclide 209
83 Bi has a half-life so long

(1.9 × 1019 years) that it can be considered stable.
Obtain curves for the populations of 213

83 Bi, 209
81 Tl, 209

82 Pb, and 209
83 Bi. First derive

a set of coupled first-order differential equations for Ni , i = 1, 2, 3, 4 for each of the
four species; solve these numerically and then plot Ni/N0.
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12. [P] Nucleon Scattering.
A naive model for the interaction of nucleons in a nucleus is given by the Woods-
Saxon potential:

V (r) = V0

1 + e(r−R)/a

where R = r0A1/3, A is the atomic mass number, and r0 = 1.25 fm, V0 = 50 MeV,
and a = 0.5 fm.

For the unbound (scattering) states, determine the radial wavefunctions Uk,l

corresponding for neutron scattering from 12
6 C with energy Ek = h̄2k2

2m when k = 1
R ,

k = 1
2R , and k = 2

R . Do this for l = 0, l = 1, and l = 2.
Start at r = 0; there the function is constrained to have Uk,l(r = 0) = 0. The slope

U ′
k,l(r = 0) can be any arbitrary positive number – in the end the normalization

procedure will readjust the slope anyway—so take Uk,l(r = 0) = 1. Integrate |Uk,l |2
to determine a normalizing factor and normalize all of your plots.

13. Muon Detection.
A crude model for a muon detection system at the LHC assumes an empty drift
space measuring about 4.7 m that is surrounded by a toroidal magnetic field. The
field is approximated to be that of an ideal toroid with an inner radius of 4.25 m and
an outer radius of 11 m. Lastly, the magnetic field at the inner radius is 4.7 T.

Consider a charged particle that enters the magnet system in the plane perpen-
dicular to the axis of the toroid.

a) Determine numerically the amount by which the particle bends when the
particle’s momentum is 50 GeV/c; 100 GeV/c; 500 GeV/c; 1000 GeV/c.

b) A muon tracking system, roughly speaking, performs a momentum analysis
on charged particles passing through this field. Tracking algorithms require
a prediction of the bending through the field. Suppose that the experimental
resolution of the tracking detectors located just outside the toroid field at 11m is
80 μm. It is desirable to keep the error in the predicted impact point to within 1%
of this value. For each of the above listed track momenta, determine the smallest
reasonable step size appropriate for this calculation using one of the following
fixed step size algorithms

i. The Euler Method

ii. The Midpoint Method

iii. The Classical Runge-Kutta Method.

14. Double Pendulum.
The double pendulum consists of a simple pendulum (mass m1, string length l1)
connected by a massless rigid rod to another simple pendulum (mass m2, string
length l2).
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a) Determine the Lagrangian for this system. Use the signed angles made by each
string θ1 and θ2 as generalized coordinates.

b) Obtain the Hamiltonian.

c) From the Hamiltonian, obtain four first-order differential equations and identify
them as “linear” or “non-linear”.

d) Numerically integrate the equations of motion over a long period in order to
obtain the orbit, i.e. θ2 vs. θ1. Plot the orbit for two values of the starting
parameters:

i. θ1 = π/12, θ2 = π/12

ii. θ1 = π , θ2 = π .

15. The SEIR Disease Model.
The SEIR disease model simulates the spread of infectious disease through
a population. This model divides the population into the categories susceptible,
exposed, infectious, and recovered (hence the name). The rate at which the categories
change size is shown schematically in Figure 11.12. The incoming arrow represents
population increase due to births at the rate b. The outgoing arrows represent deaths
in each group, specified by the rate d (Rock et al., 2014).

a) Write the four rate equations that correspond to the schematic (neglect the
dashed line). This nearly trivial system is made more interesting when it is
realized that the force of infection λ is proportional to the infected population:

λ = β
I
N

.

The denominator is the total population, N = S + I + E + R.

b) If b = d is the population static?

c) What does the model assume about disease mortality?

d) Solve the resulting SEIR equations with the following input parameters:
β = 0.2, γ = 0.1, b = 10−4, d = 10−4, α = 0.1, and ν = 10−3. Initial
conditions are I0 = 10−6, N = 1, and S0 = N − I0. Plot the infected population
ratio on a log scale as a function of time assuming that the constants carry units
of people/day where appropriate. Integrate for several thousand days.

S E I R

d ddd

b a

infection

γλ

ν

Figure 11.12 Populations dynamics according to the SEIR model.
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One of the more useful features of modern programming languages, for both scientific
and nonscientific applications, is the ability to write functions that accept as their input
entire categories of classes having some degree of commonality. Broadly speaking there
are two mechanisms in C++ that can be employed to achieve this feature: templates and
polymorphism. Both have already been encountered in previous chapters and both are
important tools that can provide major benefits when employed within the appropriate
context.

The reader is already familiar with templates, of which std::vector is the
archetype. Templates are examined in more detail in Chapter 17. The reader has also
seen class tree diagrams (e.g. Figures 5.4, 5.7, 6.7, 10.19, and 11.5), which indicate
how certain classes representing a specific type of object can be substituted for other
classes in routines that require a more general type of object. A partial list of previously
encountered examples is

• the std::ostream classes (std::cout, std::ofstream,std::
ostringstream),

• the Genfun::AbsFunction classes of Section 3.8,

• Graphics classes (like SoNode) from the Open Inventor library,

• Classes used in the integration of ordinary differential equations,ButcherTableau
and ExtendedButcherTableau classes, among others.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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Polymorphism, the mechanism by which objects of different types share a common
interface, is the topic of this chapter. We hope that the previous exposure has amply
illustrated the utility and power of this technique and given the reader a clear idea
of the flexibility that it engenders. In this chapter we will focus on how one achieves
polymorphism in practice.

But first, a remark about when one uses templates vs. polymorphism. The answer
to this question depends to a large extent on the degree of commonality in the classes.
When little is required of the class, templates may be appropriate; indeed std::vector
and other collection classes require little more than a default constructor and a copy
constructor. Since many datatypes (including built-in datatypes) will satisfy such a
simple set of conditions, templates are the method of choice. Another example is
std::complex, which is used to complexify different types of floating point datatypes.
It requires a little more in the way of specific behavior than std::vector from the
datatypes it complexifies: they must, for example, implement essential operations like
+,-,/,*.

If the requirements are more complicated, polymorphism is the technique of choice.
Polymorphism organizes classes having specific common behavior into a set of more
general classes. The ability to provide a derivative, for example, is a common feature
of all functions of a real variable, though each function may implement that differently:
a sine function would return a cosine, a sinh function would return a cosh function,
etc. In polymorphism the classes are organized hierarchically, the hierarchy guarantees
that the subclasses obey a certain protocol that is explicit in the definition of the
superclass. It also guarantees that all interactions possible for the superclass are defined
and implemented in the subclasses.

Since the set of interactions defines in some sense the abstraction represented by the
class, one can put another spin on polymorphism:

• It is the way in which a programmer can abstract common features of related classes
into generalizations.

• It is also the way that generalizations are refined and made more specific.

Among its benefits are that it:

• Allows one to save vast amounts of programming time by writing functions
accepting whole categories of classes.

• Provides flexibility by allowing these functions to work on classes that have not yet
been invented.

• Provides, when skillfully executed, an intuitive programming interface and a
manageable way to organize complicated coding projects.

C++ and other languages supporting the Object Oriented programming paradigm
provide mechanisms for implementing polymorphism in C++ classes. These mecha-
nisms allow one to override the behavior of the superclass when necessary, or use the
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«interface»
Animal

«interface»
Mammal

Fish

WhaleRabbit

Figure 12.1 A simplified taxonomy of animals.

default behavior if appropriate. They can be easily applied when the designer has a clear
idea about the fundamental abstractions that are represented in the classes and how they
are related. We will refer to a primitive taxonomy of certain animals, shown in Figure 12.1,
to illustrate how abstractions are classified.

Often the main challenge in implementing a complicated project is defining the
abstractions required for the project and organizing them into a conceptual hierarchy.
Figure 12.1 is intuitive to most students, but of course it was a major intellectual feat at
the time of Carolus Linnaeus (1707–1778) who invented the classification scheme; a feat
which indeed has something in common with software design. The process by which one
develops code (either a specific application or an application library) usually follows sev-
eral steps. First, the key abstractions needed for the project are identified. Then, the com-
monality in these abstractions is discovered. The abstractions are encapsulated in a set of
classes and the classes organized in a hierarchy (like chimeric animals that exist only in the
imagination). Then the software designer begins to bring these to life: the protocol for the
full set of classes is refined; usually the interfaces (header files) are created before imple-
menting any actual functions. When the design of the project is complete, the implemen-
tation can finally start. The design can be reviewed and updated as real-life complications
arise during implementation. Finally one proceeds to debug, test, and tune the code.

This chapter describes how to implement a known design. Some of our illustrative
examples are based upon the animal kingdom, with a “design” known well to every
reader.

12.1 Example: output streams

Make a small change to your first C++ program helloWorld.cpp and you can begin
to see what polymorphism is all about. The original program looks like this:
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#include <iostream>
main() {

std::cout << " Hel lo , world " << std::endl;
}

You can modify this in the following way:

#include <fstream>
main() {

std::ofstream file( " output . t x t ");
file << " Hel lo , World " << std::endl;

}

The first version uses the free subroutine std::ostream& operator<< (std::
ostream&, const char* ) to echo a character string to the terminal. The second
version uses exactly the same subroutine. There is no need to write a separate subroutine
for the std::ofstream, because a std::ofstream is a std::ostream.

Exercise: write a simple class which writes itself to an std::ostream using the left
shift operator, or reuse one of your existing classes (eg. stack) after endowing it with
the left shift operator. Test that the same routine works with std::cout and with
std::ofstream.

There are several ways to represent the “is-a” relationship graphically. One of the
simplest is the class tree diagram. UML, or universal modeling language, notation is
another way to describe code graphically, many programmers use UML to visualize the
relationships between classes, and a few even use graphical tools to program. Figures 12.1
and 12.2 are UML diagrams, generated with the StarUMLTM program.

ostream

ofstream

cout

files
ostringstream

strings

Figure 12.2 Class diagram showing the relationship between std::ofstream,
std::ostringstream, and std::ostream classes.
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12.2 Inheritance

A mammal is an animal. A rabbit is a mammal. Inheritance is used to establish an
“is-a” relationship between the superclass or base class (Mammal for instance) and
the subclass or derived class (Rabbit). Once an inheritance relation is established, the
subclass can be used anywhere the superclass is required. To establish this relationship,
one declares the subclass like this:

class Rabbit:public Mammal {
...
};

This is called public inheritance to distinguish from private inheritance, which is
rarely used (by most designers, anyway) and will not be discussed in this book. This
means that one class (Mammal) generalizes another class (Rabbit); that a Rabbit will do
anything that a mammal does, lactating for example, and maybe more.

The inheritance relationship is often misused. At first glance it may appear to be
a coding shortcut, a way of reusing an implementation that has already been written.
That is not the primary purpose of inheritance. Inheritance is used to establish an “is-a”
relationship between two classes and enables polymorphism in client code. If this is not
your purpose, do not use inheritance; you can re-use a class within another class in other
ways, either by simply using it or by holding an instance as private member data. These
are called “using” and “has” relationships, respectively.

Imagine that we are designing a class library to describe rotations and their actions
on vectors in a three dimensional Euclidean space. We already have a class for matrices,
implementing all of the operations of matrices. The question is:

should Rotation inherit from Matrix?

To answer this, ask first whether a rotation is a matrix. You can see that while matrices
may be added and subtracted, rotations cannot—only the operation of composition
applies to rotations. So a Rotation is not a Matrix and should not inherit from
one. In a better design, a Rotation has a Matrix. Thus a Rotation class would be
implemented as:

class Rotation {
public:
...
private:

Matrix rep;

};
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12.3 Constructors and destructors

The memory required for an instance of a subclass is all of the memory for the
superclass member data, plus the additional memory of the subclass’s member data.
In the constructor call, this memory is allocated and should be properly initialized. The
superclass will be initialized first, with a call to a constructor, then the subclass. Since the
superclass may have more than one constructor, the superclass initializes the subclass
within its own constructor. Let’s look in detail at a part of the hierarchy Animal >
Mammal > Whale. The interface to Animal has a constructor used to name the
Animal, a few methods representing the Animal’s usual duties, and private member
data to store the name of the animal.

#include <string>
class Animal {
public:

// constructor:
Animal (const std::string & name);

// get the name:
const std::string & getName() const;

// daily activities:
void wakeUp();
void eat();
void sleep();
void haveTypicalDay();

private:
std::string _name;

};

The class Mammal inherits from Animal; here is it’s interface:

#include "ZOO/ Animal . h "
class Mammal: public Animal {

public:

// Constructor:
Mammal(const std::string & name);
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// What is a mammal after all?
void lactate();

};

We can see that a Mammal does everything that a generic animal does, and in addition
lactates. A Whale is a sea creature which—despite appearances—is not a fish but a
Mammal that does everything that Mammal does, and therefore by extension everything
that an Animal does. It also does its own thing:

#include "ZOO/Mammal . h "
class Whale: public Mammal {
public:

// Constructor:
Whale(const std::string & name);

// Exhale through the blow-hole:
void spout();

};

We are now going to concern ourselves with the constructor calls. The constructor to
Whale calls the constructor to Mammal, which calls the constructor to Animal. All of
these require a name, which is ultimately going to be held in the private member data of
Animal and be made accessible through the interface to Animal. Providing a name in
the constructor call ensures that the Animal is properly initialized and ready for action.
Constructor calls to base classes must be explicit in the derived classes. In the class Whale
the constructor is implemented as follows:

Whale::Whale(const std::string & name):Mammal(name) {
}

i.e., using the initialization syntax. In the class Mammal it is similar:

Mammal::Mammal(const std::string & name):Animal(name) {
}

When the base class constructor requires arguments, this syntax is the mechanism by
which the arguments are passed to the base class. When the base class has more than one
overloaded constructor, it provides a way to select the proper one. Explicit calls to the
base class constructors are required in copy constructors as well as ordinary constructors,
when they exist.
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When an object is destroyed (by going out of scope or by an explicit call to delete),
the sequence of events we have just described is reversed. First the destructor of the
most derived class is called, then destructor of the next most derived class is called, and
so forth down to the destructor in the base class. All actions, such as memory clean-up,
should be carried out in the destructor code. Since each class has only one destructor,
never taking any arguments and therefore never overloaded (as constructors are), the
compiler itself insures that the destructors are called when an object goes out of scope
or is deleted through an explicit delete call. Certain pitfalls; however, may arise, their
origin and cure is discussed in the following sections.

12.4 Virtual functions

It may occur to you that while all animals eat and sleep, they may all happen to carry out
these activities in unique ways. A programmer seeking to capture their complex behavior
needs to do more than keep adding to the list of behaviors as derived classes are added
to the hierarchy, (s)he also needs to customize some of the behavior. If we admit that all
animals eat and sleep, then we should at least allow that these activities can be carried
out differently for each species. Whales, for example, can not simply doze off for the
night, since they need to breathe every thirty minutes or so, so they take short snoozes,
punctuated by occasional bouts of spouting. In addition, whales feast on krill, which they
round up and engulf in large numbers. To deal with this challenge, C++ introduces
virtual functions, which are essentially functions that are intended to be overridden in
derived classes.

The following piece of code (EXAMPLES/POLYMORPHIC-ZOO/src/zookeeper.
cpp) illustrates an attempt to manage three animals, Stuart the Whale, Lisa the Rabbit,
and Bob the Fish.

#include "ZOO/ Whale . h "
#include "ZOO/ Fish . h "
#include "ZOO/ Rabbit . h "
#include <vector>

void typicalDayAtTheZoo(const std::vector<Animal *> & aVect)
{

for (int i=0;i<aVect.size();i++) {
aVect[i]->haveTypicalDay();

}
}

int main() {
std::vector<Animal *> aVect;
aVect.push_back(new Whale( " s t u a r t "));
aVect.push_back(new Rabbit( " l i s a "));
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aVect.push_back(new Fish( " bob "));

typicalDayAtTheZoo(aVect);

return 0;
}

The program loads up an std::vector with pointers to these animals and then sends
them the message haveTypicalDay(), defined in the class Animal as follows:

void Animal::haveTypicalDay() {
eat();
sleep();

}

For the moment we are going to redesign our code to allow “custom” versions of eat
and sleep to be defined for animals, and then customize these versions in the case of the
whale. There are two steps:

1. Define the functions eat and sleep to be virtual in the base class, Animal.

2. Override those functions in the derived class, Whale.

To declare a function virtual, simply add the keyword virtual to the declaration (but
not the definition) of the function; for instance, change these declarations:

void eat();
void sleep();

to

virtual void eat();
virtual void sleep();

When a function is declared virtual in the base class, it means that subclasses may
override the implementation of that function with their own implementation. While
nothing will stop you from overriding a common function, it is almost always a mistake
to do so, particularly when you are aiming to achieve polymorphism in your class design.
We can go ahead now and modify the declarations of Animal, Mammal, and Whale so
that they now have the following interfaces:

class Animal {

public:



Polymorphism 411

// constructor:
Animal (const std::string & name);

// get the name:
const std::string & getName() const;

// daily activities:
virtual void wakeUp();
virtual void eat();
virtual void sleep();
void haveTypicalDay();

private:

std::string _name;
};

class Mammal: public Animal {
public:

// Constructor:
Mammal(const std::string & name);

// Lactate
void lactate();

};

class Whale: public Mammal {
public:

// constructor:
Whale(const std::string & name);

// daily activites:
void spout();
virtual void eat();
virtual void sleep();

void haveTypicalDay();
};

In the class Whale, the methods eat and sleep are again defined as virtual functions.
This is in fact not necessary since they inherit their virtuality from the base class, however
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it is useful to include this with the definition so that the function type is apparent to
anyone reading the header file.

Now we will implement the four functions Animal::eat, Animal::sleep,
Whale::eat, and Whale::sleep:

void Animal::eat() {
std::cout << " Animal " << _name << " e a t i n g "

<< std::endl;
}
void Animal::sleep() {
std::cout << " Animal " << _name << " s l e e p i n g "

<< std::endl;
}
void Whale::eat() {
std::cout << " Whale " << getName() << " FEASTING ON KRILL"

<< std::endl;
}
void Whale::sleep() {
std::cout << " Whale " << getName() << " TAKING A SHORT

SNOOZE" << std::endl;
}

Executing the example program, zookeeper.cpp, gives the following output, which
shows that we have successfully overridden the methods eat and sleep for the whale,
and kept the default methods for the other other animals:

Whale stuart FEASTING ON KRILL
Whale stuart TAKING A SHORT SNOOZE
Animal lisa eating
Animal lisa sleeping
Animal bob eating
Animal bob sleeping

The main distinction between virtual functions and common functions is (Meyers,
2015):

• In a common function the subclass inherits both the interface and the
implementation.

• In a virtual function the subclass inherits the interfaces and may inherit the
implementation.

An object can be allocated on the heap, like this:

Animal *a =new Whale( " s t u a r t ");
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The object pointed to by a is said to have three datatypes (Animal, Mammal, and
Whale). The same holds when an object constructed on the stack is handled through its
base class, as follows:

const Animal & a = Whale( " s t u a r t ");

Animal is referred to as the static type of the object, while Whale is the dynamic type
of the object.

Think back to the various examples in which polymorphism has been used so far
in this book, and you will see that the normal behavior that one should expect when
a message is sent to an object is that the function should be resolved according to the
dynamic type. A message is sent to an Animal, but it is received by a Whale. The client
code is then able to handle the object(s) by pointer (or reference) to the base class. This
is the mechanism by which polymorphism is achieved.

If on the other hand the function eat is a common function rather than a virtual
function, this mechanism is not enabled, and the function is resolved according to
the static type—usually this situation is unintended and produces illogical behavior.
Therefore you should (essentially) never override a common function. If you are writing
a C++ class library, you should also anticipate two kinds of clients; first, those who will
simply use your classes (as we have been doing in most of the examples), and second,
those who will extend them by further subclassing (Meyers, 2015). If your classes are
designed for extension, then all of the functions that may be overridden in derived classes
should be declared virtual.

It is important to master inheritance and polymorphism when writing any
project of significant size and scope, and virtual functions are an important part of
implementing polymorphism properly. It is very common to observe neophytes leaving
out virtual functions from their design, simply because they have not taken the time to
understand them.

12.5 Virtual destructors

Recall that there are two ways to allocate objects, “on the stack” and “on the heap”.
Object allocation on the stack is done simply by initializing the object with a call to one
of the available constructors. Object allocation on the heap is achieved with operator
new. An object allocated on the stack is destroyed when it goes out of scope; when
that happens the destructor for the most-derived class (e.g. Whale) is called first, then
the next-to-most derived class (e.g. Mammal), all the way back to the base class (e.g.
Animal). The destructor call gives the doomed object the opportunity to carry out any
actions that need to be taken at the end of its life-cycle, such as cleaning up any memory
that it has allocated.

A problem can arise when a subclass is allocated on the heap. Imagine that the class
Whale contains a pointer to some some memory which it allocates each time it feasts
on krill:
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class Whale {

public:
...
// destructor:
~Whale() { delete [] someMemory;}

private:

// some memory allocated by the whale
int *someMemory;

The memory is to be cleaned up eventually in the destructor call. Also, imagine that a
whale has been allocated on the heap:

Animal *a = new Whale( " s t u a r t ");

When we call delete a (unless further measures are taken as discussed below) the
destructor call is resolved according to the static type,Animal. The destructor in Whale
should have been called first, but it is never invoked at all, and the memory pointed to by
the pointer someMemory is never freed: we have created a memory leak.

However, the destructor like any member function may be declared to be virtual in
the base class, and this brings an easy solution to the problem. By declaring a virtual
destructor

class Animal {

public:

...
virtual ~Animal();

...
};

we ensure that the destructor is resolved according to the dynamic type, Whale. We do
not need to take any further action to insure that destructors for Mammal and Animal
are subsequently called, since C++ does that automatically. The takeaway message from
this discussion is the simple rule:

• Declare destructors to be virtual in base classes (Meyers, 2015).

There is no need to declare destructors virtual in subclasses. The virtuality propagates,
anyway. However it does no harm and is good practice, since the virtuality is then
manifest in the header file.
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Since C++11, two specifiers final and override are available; final “de-
virtualizes” a virtual member function, such that it cannot be further overridden, and
override causes the compiler to check that the overridden function is indeed virtual
(and otherwise complain). The use of these specifiers is optional. For more information,
see Meyers (2015).

12.6 Pure virtual functions and abstract base classes

In our discussion of virtual functions (Section 12.4), we identified two possibilities for
member functions: for common functions, the subclass inherits the interface and the
implementation, while for virtual functions the subclass inherits the interface and may
inherit (or override) the implementation.

There is also a third possibility: by declaring a pure virtual function in the base
class, we can ensure that the subclasses must provide an implementation. Why is this
useful? Well, consider the case of an animal again. What is a “typical day”? It may occur
to you that this is an absurd notion; that in animals ranging from intestinal bacteria to
birds, fish, tubeworms, land mammals, and finally water mammals, no generic typical
day can possibly be conceived. Jumping to the more relevant example of functions of
one variable, we can say that functions should be able to return their value (given an
argument), but that there is no such thing as a typical value returned by a function.

The way to implement a pure virtual function is to declare it in the following way:

class Animal {

virtual void haveTypicalDay()=0; // note the syntax "=0"

};

With this declaration no function definition is required in the base class.
Any base class that defines such a function becomes, as a result, an abstract base

class (ABC). An ABC has the property, which may seem bizzare at first, that no
instances of the class can ever be created, i.e., the compiler insures that one cannot simply
write:

Animal a;

In fact is is not so illogical: the class does not know how to handle the message
haveTypicalDay(). On the other hand, subclasses (at least those which do provide a
definition of haveTypicalDay()) can readily be instantiated, and they can be handled
through pointers or references to the base class, i.e., as Animals.

Consider again the following function which dispatches messages to a collection of
Animals:
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void typicalDayAtTheZoo( const std::vector<Animal *> & aVect)
{

for (int i=0;i<aVect.size();i++) {
aVect[i]->haveTypicalDay();

}
}

In Chapter 2 we drew an analogy between a properly encapsulated C++ class and an
integrated circuit, which exposes its interface while hiding its implementation. We can
draw another analogy between an abstract base class and a socket which is designed to
hold specific types of integrated circuits (Figure 12.3). Into this socket one can place an
entire family of circuits, providing that they adhere to the same protocol. The protocol
puts a number of restrictions on the sockets, such as number of pins, the location of the
pins, the assignment of pins to power input, ground, signal input, signal output, perhaps
clock input as well. Whenever a device that adheres to the protocol is inserted into the
socket the device handles the request in its own manner.

Abstract base classes function as a computer-science equivalent to a socket. They
completely specify a protocol. An extreme example is a pure interface class, which
only contains pure virtual functions and no member data or implementations. Such a
class exists only to specify a protocol, i.e., an interface. Functions can then be written
to the interface, rather than to the implementation (Meyers, 2015): the interface class
serves as a kind of socket into which concrete implementations may be plugged. This
permits efficiency and flexibility, since it allows for additional concrete instances of the
basic generalization to be added at a later time.

The main difference between abstract base classes and pure interface classes is
that pure interface classes provide no services while in general abstract base classes
provide some services. The choice of which type of class to use is a software design
decision.

12.7 Real example: extending the GenericFunctions
package

To show that these principles apply beyond our fictional little world consisting of
spouting whales, sleeping rabbits, and lactating mammals, we now turn our attention
to a more realistic application.

The QatGenericFunctions library lacks certain trigonometric functions, namely
sec x, csc x, and cot x. We seek to provide classes for each of these functions that are styled
after the function sin x.

The base class of all functions in the GenericFunction library is Genfun::
AbsFunction. It provides a number of virtual functions—these are functions which
we may overload—and a number of pure virtual functions, functions which we must
overload. The pure virtual functions are:
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Figure 12.3 In Chapter 2 we drew an analogy between C++ classes and integrated circuits, where
a clear separation occurs between the inner workings of the circuit and the interface. In this way of
thinking we can identify abstract base classes with sockets. By writing code to the interface of an
abstract base class we are creating a type of socket into which we can “plug” any subclass.

virtual double operator() (double argument)
const=0;
virtual double operator() (const Argument &argument)
const=0;

The first is straightforward: it evaluates the function at the value given by the argument,
and returns its value. The second is foreseen for functions of more than one variable.
For functions of one variable, the second function can be implemented in terms of the
first function.

The virtual functions are those that we may override. Here is a list:

virtual ~AbsFunction();
virtual unsigned int dimensionality() const; // returns 1;
virtual bool hasAnalyticDerivative() const {return false;}
virtual Derivative partial(unsigned int) const;
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If you look at the header file QatGenericFunctions/AbsFunction.h, you will
see that other virtual functions also appear, for example virtual AbsFunction *
clone() const=0 which happens to allocate a new AbsFunction on the heap. This
function is what is known in the jargon as boilerplate; a piece of code which is rewritten
again and again in nearly orginal form. To save the subclasser (you) from the routine
work of rewriting this boilerplate each time you derive a class, two macros are avaiable
to do it automatically. The macro FUNCTION_OBJECT_DEF should be included in the
header file, with the class name (e.g. Sec, Csc, Cot) as an argument. The macro
FUNCTION_OBJECT_IMP, also taking the class name as an argument, should appear
in the implementation (.cc or .cpp) file. For GenericFunctions, this suffices to
ensure that a certain number of standard virtual methods are automatically overridden
in the derived classes.

Now returning to the four virtual methods listed above, a custom destructor is,
strictly speaking, only required if the function dynamically allocates memory, but we
generally provide one anyway, as a matter of course, even if it is empty. The function
dimensionality() returns the number of arguments to the function, and is one by
default. The default implementation will be fine for the new classes Sec, Csc, and Cot,
so we do not override it.

The virtual function partial (unsigned int) takes the partial derivative of the
function (or the total derivative in case it is a function of one variable). partial returns
a Derivative object, which is another AbsFunction in the GenericFunction
library used explicitly for this purpose. If functions of more than one dimension are used,
the argument to differentiate is the index of the variable with respect to which the partial
derivative is to be taken. In case we are dealing with a function of only one dimension,
partial should check that the index is zero. The default implementation will return a
class computing the derivative numerically from the orginal function. When possible, it
is highly desirable to return an analytic form of the derivative. In that case:

• override the function virtual bool hasAnalyticDerivative() const
so that it returns true.

• override the function virtual Derivative partial(unsigned int)
const so that it provides the analytic derivative.

To complete the example, we give below the declaration and implementation of
Genfun::Csc. The header file defines, in addition to its own version of the virtual
functions discussed above, a constructor and copy constructor. Assignment of a Csc
object has been disabled by a trick—we make the assignment operator private and do not
provide any implementation. The reason for making it illegal is, first, it is of little value
to assign one Csc object to another, and second, while assigning an arbitrary function to
another would indeed be useful, it is hardly a feasible possibility. So we simply rule it out.

#ifndef Csc_h
#define Csc_h 1
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#include " QatGenericFunct ions / AbsFunction . h "
namespace Genfun {

class Csc : public AbsFunction {

FUNCTION_OBJECT_DEF(Csc)

public:

// Constructor
Csc();

// Destructor
virtual ~Csc();

// Copy constructor
Csc(const Csc &right);

// Retreive function value
virtual double operator ()(double argument) const;
virtual double operator ()(const Argument & a) const

{return operator() (a[0 ]);}

// Derivative.
Derivative partial (unsigned int) const;

// Does this function have an analytic derivative?
virtual bool hasAnalyticDerivative() const {return true;}

private:

// It is illegal to assign a Csc
const Csc & operator=(const Csc &right);

};
} // namespace Genfun
#endif

The implementation is fairly straightforward:

#include " Csc . h "
#include " QatGenericFunct ions / Tan . h "
#include <cassert>
#include <cmath>
namespace Genfun {
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FUNCTION_OBJECT_IMP(Csc)

Csc::Csc() {}

Csc::~Csc() { }

Csc::Csc(const Csc & right) : AbsFunction(right) { }

double Csc::operator() (double x) const { return
1.0/sin(x); }

Derivative Csc::partial(unsigned int index) const {
assert(index==0);
const AbsFunction & fPrime = -Csc()/Tan();
return Derivative(& fPrime);

}

} // namespace Genfun

The function needs to be compiled and then linked to the client code. It will then behave
like any other GenericFunction. You can plot it, use it in expressions with other
functions, integrate it, etc.

Incidentally what exactly is this data type Genfun::GENFUNCTION that we have
been using for some time now? The function we have just introduced derives from
Genfun::AbsFunction. It turns out that many kinds of manipulations like addition,
subtraction, multiplication, division, and composition return various different subclasses
of Genfun::AbsFunction. It’s possible to handle all of these through the interface
to the base class, namely Genfun::AbsFunction, but the syntax for that is not often
used and little known. For addition it is:

const Genfun::AbsFunction & h = f+g;

Normally the result of the addition operator returns a reference to a temporary and
the temporary disappears when the operation is complete. However, there is a special
clause in the C++ standard stipulating that the temporary is to be destroyed when the
reference to it, h, goes out of scope. The unnatural look has been somewhat improved
by the type definition:

typedef const AbsFunction & GENFUNCTION;

allowing one to write instead

Genfun::GENFUNCTION h = f+g;
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Object oriented software libraries (such as QatGenericFunctions) can typi-
cally be used in two ways; the classes they contain can be created within programs
and used, or they can be extended. The above example illustrates how to extend
QatGenericFunctions. Should you ever need to extend the Open Inventor Toolkit,
detailed instructions can be found in a volume called The Inventor Toolmaker (Wernecke,
1994).

12.8 Object-oriented analysis and design

Decisions, decisions, decisions! How does one possibly get around to actual problem
solving with such a complicated set of rules and an impossibly large set of possibilities
to choose from?

In any type of algorithm, numerical or otherwise, a certain investment in planning
is always made at the outset of the problem-solving cycle. You break the problem up
into a series of steps and define the data structures appropriate for storing the result of
each step, including input, solution, iteration to convergence (if applicable), and output.
Inevitably, we iterate the design process as our real-life experience shows us the weak
spots. This is essentially the entire process in procedural programming.

In object-oriented programming there are other dimensions to code planning that are
equally critical, since the code will now consist of objects which can handle a variety
of tasks in an autonomous way. When the coding is to be carried out with an existing
set of classes specifically intended for the relevant type of problem, life is simple. Often,
though, you will have to design not only the procedures that apply to the problem but
also the classes that you use within those procedures.

In these circumstances a variety of issues arise: what are the basic tasks? Which classes
need to be invented to carry them out? What other classes are needed by these classes?
How should the classes interact with one another? How can common functionality be
identified and generalizations extracted? The questions that arise are not unique to
numerical and/or scientific computing, and entire books have been written on the topic
of object-oriented analysis and design, or OOAD. As soon as you find yourself spending
a lot of time pondering this type of question, we suggest taking a week or so out of your
busy schedule and reading a book like Booch (2007), which focuses on how to go about
answering them. The topic is vast, and we will not address it further.

12.9 Exercises

1. Subclassing.
Revisit examples 7, 8 and/or 14 of Chapter 3, this time subclassing Genfun::
AbsFunction to eliminate any need for global variables.

2. Quadrature.
Write and test your own classical quadrature rule, inheriting from Genfun::
QuadratureRule and test it on the functions in Chapter 5, Exercise 1. Your
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quadrature rule does not need to have a specific order-of-convergence, but the weights
should sum to unity. Try making both an open and a closed quadrature rule. Make a
plot of the convergence rate.

3. Special Functions.
Choose a special function that is not implemented in QatGenericFunctions.
Write your own class which extends Genfun::AbsFunction and implements
this function. Plot the function and its derivative. You may, if you wish, take the
implementation from the gnu scientific library and just write a wrapper.

4. Inherited Geometry.
Write an abstract base class for simple geometrical shapes, and concrete implemen-
tations of sphere, cube, tetragon, and cylinder. These objects should all respond to a
method that takes a vector in three dimensions as input and returns a boolean value
indicating whether the vector lies inside the volume of the object. Choose your own
conventions for the placement of the origin and orientation of the shape. Then, write
a Monte Carlo integrator that handles each of the subclasses through the interface of
the base class. Test it with the objects you have implemented.

5. [P] Plugins.
It is possible to add functionality to an existing program without even recompiling
the program using plugins, which are becoming ubiquitous in modern commercial
software. The procedure to dynamically load a plugin describing a cone is as
follows:

• Inherit a subclass (call it Cone) inheriting from a superclass (call it
SimpleGeoObject).

• Write a function called

extern "C" Cone *createCone() {
return new Cone();

}

The extern “C” qualifier turns off name-mangling in C++.

• Compile the function and the class definition into a shared object file, call it
libCone.so, and put that shared object file in a directory which you dedicate
to plugins.

• Write another program to load and use the plugins. For this, you will need to
scan your directory, and when you find a file named libCone.so, arrange to
dynamically load the library, call the routine createCone(), and cast the return
value to a Cone *. To do this you will need to use the dlopen, dlsym, and
dlclose system calls. Documentation is in the unix manual pages.

Carry out this procedure for an new Cone, and then revisit the previous exercise
such that all of the geometrical shapes are loaded from plugins prior to volume
integration.



Polymorphism 423

..........................................................................................

BIBLIOGRAPHY

Booch, G. (2007). Object Oriented Analysis and Design. 3rd ed., Benjamin Cummings.
Meyers, S. (2015). Effective Modern C++. O’Reilly.
Wernecke, J. (1994). The Inventor Toolmaker. Addison-Wesley.



13

Nonlinear dynamics and chaos

13.1 Introduction 424
13.2 Nonlinear ordinary differential equations 426
13.3 Iterative maps 429

13.3.1 The logistic map 430
13.3.2 The Hénon map 435
13.3.3 The quadratic map 436

13.4 The nonlinear oscillator 438
13.4.1 The Lyapunov exponent 440

13.5 Hamiltonian systems 443
13.5.1 The KAM theorem 444
13.5.2 The Hénon-Heiles model 445
13.5.3 Billiard models 447

13.6 Epilogue 449
13.7 Exercises 450
Bibliography 453

In the following sections we will use some of the techniques of the past chapters to
explore simple systems that exhibit complex behavior. After categorizing some of the
possible behaviors of second order nonlinear equations we examine the logistic map,
which is a seemingly trivial one dimensional iterative mapping of the interval (0, 1) onto
itself. Slight generalizations are also considered. The study of topics such as these lead
directly to the concepts of attractors, fixed points, limit cycles, Lyapunov exponents,
and period doubling. The same features are revealed again in a study of the damped,
driven nonlinear pendulum. The chapter closes with a discussion of chaos in conservative
systems and the KAM theorem. The FPU problem, the van der Pol and Duffing
oscillators, and many other iterative maps will be visited in the exercises.

13.1 Introduction

A vague idea of ‘chaos’ or ‘complexity’ has enjoyed a burgeoning vogue in recent
popular culture, propelled in part by compelling visual representations of objects such

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001



Nonlinear dynamics and chaos 425

as the Mandelbrot set or the Lorenz attractor. There is no doubt that the advent
of computers has advanced the field, since it was essentially impossible to solve the
intricate and nonlinear equations that often seem to underpin chaotic processes. Briefly
and informally: chaotic dynamics can be thought of as motion that appears random.
Alternatively, chaos is motion that depends sensitively on initial conditions. Although
the realization that such behavior is possible came as something of a shock, it has more
recently been recognized that it is a pervasive and important facet of physical reality.

It is possible to push the genesis of the field right back to Newton’s Principia without
too much overstatement. Newton fully recognized that Jupiter must exert a noticeable
and perhaps important influence on Earth’s orbit. This is the famed three body problem
that tormented theoretical astronomers for three centuries. Newton’s concern was that
perturbations caused by other bodies in the solar system could cause Earth’s orbit to be
unstable. A standard perturbative approach to the three body problem suffers from a
‘small denominator’ problem wherein putatively small orbital corrections can become
large due to small denominators. Although many of history’s eminent astronomer-
mathematicians tackled the problem, none were able to evade it. Eventually King Oscar of
Sweden and Norway offered a prize to anyone who could resolve the issue. The challenge
was taken up, and won, by Poincaré in 1887.1 But Poincaré realized that his analysis
contained a deep and damaging error just as he was about to publish his winning essay.
It was in correcting this error that Poincaré discovered mathematical chaos (Barrow-
Green, 1996).

A new facet of chaos theory was revealed in the early 20th century in the work
of French mathematicians Pierre Fatou and Gaston Julia. These men investigated
‘holomorphic dynamics’ dealing with iteration of analytic functions and introduced the
concept of sensitivity to initial conditions that was to figure so prominently in subsequent
developments. At the same time a diverse group of physicists and engineers explored
chaotic behavior in nonlinear oscillators. The eminent physicist Hermann Helmholtz
added a nonlinear term to the equation of motion for a harmonically forced undamped
oscillator to serve as a model for the eardrum (Helmholtz, 1895). Some decades after
this, the engineer Georg Duffing considered a forced anharmonic oscillator as a model
of vibrations in industrial machinery (Duffing, 1918). The exploitation of new fields
of science merely served to illustrate the ubiquity of nonlinear dynamics, for example,
Balthasar van der Pol discovered chaotic behavior in electric circuits containing vacuum
tubes (van der Pol and van der Mark, 1927).

It is perhaps not surprising that one of the earliest uses of computers was in an
investigation of chaotic dynamics, even if it was accidental. The availability of newly
built computers to the scientists of the famed Manhatten Project led Fermi to ponder
using one to examine the issue of thermalization.2 Fermi, John Pasta, and Stanisław Ulam

1 Henri Poincaré (1854 – 1912) was a French mathematician, theoretical physicist, engineer, and philosopher
of science who made seminal contributions to an astonishing array of topics, including the discovery of
deterministic chaos.

2 Enrico Fermi (1901 – 1954), Italian-American physicist known for building the first nuclear reactor and
for extensive contributions to quantum theory, statistical mechanics, and nuclear physics.
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(FPU) were eventually able to use the Los Alamos machine MANIAC-I to tackle the
issue in 1953. The model FPU tackled was a system of one-dimensional linear oscillators
with an additional nonlinear interaction. In the absence of the nonlinearity the vibrational
modes of the system completely decouple from each other. However the nonlinear term
couples modes and Fermi expected energy in one mode to gradually transfer to all other
modes, in keeping with traditional concepts of ergodicity and equipartition. In fact, this
is precisely what happened over short time scales, but running the simulations longer
revealed, almost surreally, that the energy gradually left all the higher modes and returned
to the original mode. It was several decades before this behavior was understood (Ford,
1992).

At about the same time, population biologists studied simple difference equations as
models for a variety of population dynamics (May, 1987). But the biologists did not
focus their attention on the chaotic solutions they were finding, perhaps out of distrust
of their (mechanical) calculations. Thus no effort was made to search for generic features
in the ‘noise’ of chaotic dynamics. Again, computers were required before such searches
could be reasonably undertaken .

Attitudes had changed by the 1960s and academe was ready for developments that
emerged from computational meteorology. In 1961, Edward Lorenz3 was investigating
the behavior of a numerical model of the atmosphere when he input a three digit
truncation of a six digit initial condition. To his surprise the results were entirely different.
Subsequent investigation led him believe that this was an actual and quite general
occurrence, which came to be known as the butterfly effect.4 Since this time the field
has exploded, with applications found in dozens of fields and throughout nature.

13.2 Nonlinear ordinary differential equations

Much of physics can be described with second order differential equations. We therefore
begin our study of nonlinear differential equations by considering the general coupled
system

ẋ = P(x, y)

ẏ = Q(x, y). (13.1)

A visualization of the solution to this equation can be made by making the parametric
plot of the trajectories (x(t), y(t)). Notice that trajectories can never cross since this implies
that it is possible for one initial condition to have multiple solutions.

Unfortunately, little can be done analytically (in general) with nonlinear equations, but
some understanding may be gained by linearizing the system and determining solutions

3 Edward Norton Lorenz (1917–2008) was an American mathematician and meteorologist, and a pioneer
of chaos theory.

4 For a brief history of the idea in science and in fiction see Hilborn (2004).
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to the equations P(a, b) = Q(a, b) = 0. These fixed points5 define places where the
solution becomes stationary. The behavior near the critical points can be obtained by
expanding about (a, b):

d
dt

(
x
y

)
=
(

Px(a, b) Py(a, b)
Q x(a, b) Qy(a, b)

) (
x
y

)
, (13.2)

where Px ≡ ∂P/∂x, etc. This equation is most easily solved by diagonalizing. If the
eigenvalues are denoted λ1 and λ2 then x and y are linear combinations of exp(λ1t) and
exp(λ2t). Linearized solutions are categorized according to the nature of the eigenvalues:
if they both have negative real parts, then the fixed point is stable. If both have
positive real points the fixed point is unstable. A positive and negative eigenvalue give
rise to a saddle point. If the eigenvalues are purely imaginary then the trajectories
are ellipses around the fixed point, while non-zero real parts will lead to spirals. The
separatrix divides the regions between the fixed points. As an example, consider the
simple pendulum defined by (g is the acceleration due to gravity while � is the length of
the pendulum):

θ̈ + g
�

sin θ = 0. (13.3)

The coupled equations, θ̇ = ω and ω̇ = − g
�

sin θ have fixed points at (θ ,ω) = (nπ , 0).
Linearizing about even values of n yields eigenvalues λ = ±i

√
g/�, hence elliptical

trajectories surround the even fixed points. Alternatively, one obtains:

ω̇

θ̇
≈ −g

�

θ

ω
⇒ ωdω + g

�
θdθ = 0 ⇒ ω2 + g

�
θ2 = const. (13.4)

Linearizing about the odd fixed points yields λ = ±√
g/� and hence a saddle point

behavior. In more detail:

ω̇

θ̇
≈ g

�

θ

ω
⇒ ωdω − g

�
θdθ = 0 ⇒ ω2 − g

�
θ2 = const. (13.5)

Putting this information together yields the phase portrait shown in Figure 13.1.
Interesting things can happen as one moves away from the fixed points. For example,

it is possible for trajectories to converge to a limit cycle regardless of their starting point
within a basin of attraction. A well known example is provided by the van der Pol
oscillator (mentioned in the introduction). This is defined by the equation:

ẍ − μ(1 − x2)ẋ + x = 0. (13.6)

5 Fixed points are also called equilibrium, critical, or singular points.
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Figure 13.1 Phase portrait for the simple pendulum.
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Figure 13.2 Trajectories for the van der Pol equation, showing a limit cycle attractor. (μ = 2.5).

If one sets ẏ = μ(1 − x2)y − x and ẋ = y then the limit cycle shown in Figure 13.2 is
obtained. Notice that since a limit cycle is closed and since trajectories cannot cross, a
limit cycle must enclose a fixed point.

The question of the stability of a limit cycle remains. In principle one can consider
linearizing around the limit cycle manifold but this is somewhat awkward, and is not
necessary since Poincaré has suggested a simpler method. Cut the limit cycle along
any line (say the +y-axis)6 and keep track of the position of the intersection with the

6 This line is called a Poincaré section.
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trajectory in question as a function of intersection number. If the ith intersection is called
Pi then these are related by some function f that propagates the intersection forward in
time until the next intersection: Pi+1 = f (Pi). This is an example of an iterative map
that will be the subject of the next section. If the trajectory is the limit cycle one must
have P = f (P ), where P is a one-dimensional example of a fixed point. For trajectories
that pass close to P one can expand on the Poincaré section and obtain:

(Pi+1 − P ) ≈ r(Pi − P ) (13.7)

where:

r = df
dP

∣∣∣
 

. (13.8)

Iterating this equation reveals that trajectories are repelled from the limit cycle if r > 1
and are attracted to it if r < 1. A graph of the points Pi is called a Poincaré map. Finally,
a variant Poincaré map that is useful for simplifying chaotic phase space diagrams is
obtained by plotting phase space points at certain ‘stroboscopic’ times, typically chosen
to be an integral multiple of the frequency of the driving force (if present). An example
of such a map is given in Section 13.4.

Prove that r cannot be negative. Thus one can write r = exp(λ) where λ is real. This
form of r will be re-visited below.

13.3 Iterative maps

The numerical methods presented in Chapter 11 center on the idea that differential
equations can be thought of as a mapping from one configuration to another that is
iterated in time. It is a small step to imagine this procedure without the backdrop of
differential calculus: one simply considers the general mapping:

�xn+1 = �f (�xn) (13.9)

As one might expect, an enormous variety of iterative maps have found application
in many areas. A famous example comes from population studies initiated by Pierre-
François Verhulst in 1838. Verhulst was interested in the Malthusian problem of
population growth with limited resources. His equation for a population P(t) is:

Ṗ = rP − r
K

P2 (13.10)

where r is the reproduction rate and K is called the carrying capacity. The terminology
is understood by determining the condition for a stable population, namely P(∞) = K .
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Performing an Euler discretization, defining μ = 1 + hr and setting Pn = (Kμ)/(hr)xn
gives the logistic map:

xn+1 = μxn(1 − xn). (13.11)

This simple nonlinear iterative map contains a wealth of features which we will explore
now.

13.3.1 The logistic map

Let’s start by examining the sequence of xn produced for a variety of couplings, μ.
As with differential equations, these sequences are called trajectories. Trajectories for
different starting positions and μ = 0.5 are shown in Figure 13.3. It is pretty clear that
the trajectories approach zero regardless of the starting point. Again, in analogy to the
continuum case, the value to which the trajectories converge is called a fixed point of the
trajectory (denoted x in the following). In this case x = 0. The existence of a fixed
point means xn = xn+1 = x for sufficiently large n and hence:

x = 0 or x = 1 − 1
μ

. (13.12)

Note that this behavior is the antithesis of ergodic dynamics—the system’s phase space is
not being uniformly sampled. The logistic map is not a Hamiltonian system. The subset of
possible states that the system evolves to under iteration (in ‘time’) is called an attractor.
In this case the attractor is two (or as we shall see, one) real numbers. In more complicated
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situations an attractor can have a rich geometry, and need not even have a well-defined
dimensionality (we refer to the fractals of Chapter 8).

Prove that trajectories are confined to the region:

(f (μ/4),μ/4).

Figure 13.3 clearly agrees with the prediction x = 0, but where is the second solution
(Eq. 13.12)? A hint is provided by the large number of steps that is required for the
trajectory that starts at x0 = −0.999 to converge to zero. Indeed, starting at x0 = −1
would yield a trajectory that remains at xn = −1 for all n (recall that these statements are
for the case μ = 0.5).

What is going on is revealed with a one-dimensional version of the stability analysis
performed in Section 13.2. Consider the general map xn+1 = f (xn) in the neighborhood
of a fixed point. Setting xn = x + δn and expanding yields:

δn+1 = f ′(x )δn (13.13)

from which we conclude that the trajectory moves towards x if:

|f ′(x )| < 1 (13.14)

and away from it if the magnitude of the derivative is greater than unity. The former
situation refers to a stable fixed point wheres the latter is an unstable fixed point.
Thus x = 0 is stable as long as |μ| < 1. Alternatively, at the nonzero fixed point one
has f ′(x ) = 2 − μ and hence this fixed point is stable when μ ∈ (1, 3) and it is unstable
everywhere else.

So far we have established that all trajectories will approach a single value at x = 0
if μ < 1 and x = 1 − 1/μ if 1 < μ < 3. What happens when μ is larger than 3? The
answer is shown in Figure 13.4 where we see a new type of behavior when μ = 3.1 or
3.5. After a short transient period, the trajectories oscillate between two (μ = 3.1) or
four (μ = 3.5) values of x. These are called period-two or period-four trajectories of the
logistic map.

What is happening can be illustrated by plotting f (f (x)) as shown in Figure 13.5. We
see that f (f (x)) = x at three points. Two of these are the upper and lower points seen
in Figure 13.4 and are stable. The central point is unstable and does not feature in the
trajectory. The difference between the period-two and -four trajectories is illustrated by
plotting f (f (f (f (x)))), where it is revealed that the trajectory for μ = 3.1 only has two
stable fixed points, while that for μ = 3.5 has four.

Show that trajectories are period two for 3 < μ < 1 +√
6.
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Figure 13.4 Logistic map trajectories for μ = 3.5, 3.1, 2.5, 1.5, 1.0 and 0.5.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(
f(

x)
)

x

Figure 13.5 The iterated logistic map f (f (x)) for μ = 3.5.

So far we know that there is one fixed point when μ < 3, two for 3 < μ < 1 + √
6,

and four for higher coupling. What happens in general? The answer can be determined
numerically by evaluating long trajectories and plotting the resulting fixed points. For
those who have not seen it before, the result is a stunning verification of the onset
of complexity in a seemingly trivial system (Figure 13.6). We see a general pattern of
period doubling where the trajectory period visibly doubles at certain couplings and
then degenerates into a richly patterned and complex region above a critical coupling
of μ ≈ 3.56. This is termed the period doubling approach to chaos, and the graph
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Figure 13.6 Bifurcation diagram for the logistic map.
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Figure 13.7 A trajectory of the logistic map in the chaotic regime (μ = 3.8).

is called a bifurcation plot. That large coupling is indeed “chaotic” is illustrated in
Figure 13.7 where one sees seemingly random behavior7 in a trajectory at μ = 3.8

The rich structure seen in the bifurcation plot can be better understood by considering
a quantity called the invariant density. The density, ρ(x), is defined as the distribution
that reproduces the average of some function of xn over a trajectory:

7 At this point the reader is encouraged to ponder the relationship of this model to the linear congruence
method for generating pseudo-random numbers in Chapter 10.
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∫ 1

0
dx g(x)ρ(x) ≡ 1

N

N∑

n

g(xn). (13.15)

Thus ρ(x)dx is the probability that a point on a long trajectory is in the interval (x, x+dx).
For μ < 3 we then have ρ(x) = δ(x ) and with period n orbits the density is given by
a sum over n delta functions. Things get more complicated in the chaotic regime. For
example, at μ = 4 the interval (0, 1) is filled with probability density ρ ∝ (x(1 − x))−1/2.

A more interesting example, obtained by making a histogram of a long trajectory for
μ = 3.8, is shown in Figure 13.8. Notice that the density is riven with cusp features.
It is these cusps that show up as boundary lines in the bifurcation plot (Figure 13.6).
Intersections of boundary lines signify the existence of a fixed point or periodic orbit at
the intersection point (Jensen and Myers, 1977).

The bifurcation plot (Figure 13.6) indicates that period doublings occur at specific
values of the coupling. We call the nth such coupling μ (n). Evidently μ (1) ≈ 3.0,
μ (2) ≈ 3.5; furthermore the spacing between critical couplings gets smaller as the
chaotic regime is approached. Is it possible that the difference of critical couplings
approaches a fixed number? Surprisingly, the answer is yes. If one forms the ratio:

�n = μ (n − 1)− μ (n − 2)
μ (n)− μ (n − 1)

(13.16)
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Figure 13.8 Invariant density for logistic map for μ = 3.8.
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Table 13.1 Feigenbaum ratios.

n Period μ� �n

1 2 3 –

2 4 3.4494897 –

3 8 3.5440903 4.7514

4 16 3.5644073 4.6562

5 32 3.5687594 4.6683

6 64 3.5696916 4.6686

7 128 3.5698913 4.6692

8 256 3.5699340 4.6694

and considers it for large n one discovers (see Table 13.1) that it approaches a fixed
constant:

lim
n→∞�n = 4.669201 . . . . (13.17)

This number is called the Feigenbaum constant, after its discoverer, Mitchell Feigen-
baum (1978). Remarkably, all one-dimensional iterative maps with a single quadratic
maximum bifurcate at the same asymptotic rate. This is an example of universality,
where certain features of classes of models are shared. We have previously seen similar
behavior in percolation models, in which certain critical exponents are independent of
the geometry of the underlying percolation network.8

Use the table entries and the methods of Section 4.4 to obtain an accurate estimate
of the critical coupling, μ (∞).

13.3.2 The Hénon map

The logistic map can be thought of as a discrete analogue of a nonlinear first order
ordinary differential equation. What happens with higher order differential equations?
As you know, an Nth order equation can be written as a system of N first order equations.
Thus our analogue is found in an N-dimensional iterative map:

�xn+1 = �f (�xn). (13.18)

8 More examples of universality are discussed in Chapter 8.
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Figure 13.9 Bifurcation plot for the Hénon model with b = 0.3. (Figure courtesy of Jordan Pierce).

A famous example of a two-dimensional map was created by Michel Hénon as a
simplified model of a Poincaré section of the Lorenz model. In contrast with the logistic
map, attractors of the Hénon map cannot be described in a simple fashion.

The Hénon map is defined by:

xn+1 = 1 − ax2
n + yn

yn+1 = bxn. (13.19)

Note that this is equivalent to xn+1 = 1 − ax2
n + bxn−1. This map creates an intricate

bifurcation plot, as shown in Figure 13.9.
The attractors of the map depend on the parameters; choosing a = 1.4 and b = 0.3

yields chaotic motion that is similar to that of Figure 13.7. Similar behavior is exhibited
by yn. An interesting simplification of the trajectory is obtained if one plots the phase
diagram (interpreting y as a speed) for the chaotic motion. The result, shown in
Figure 13.10 is an attractor of compelling simplicity. However, closer inspection shows
that the attractor is riddled with gaps in random places, revealing that it is fractal. Fractal
attractors are called strange attractors to distinguish them from the simpler geometrical
sets that are often seen.

13.3.3 The quadratic map

A variant of the Hénon and logistic maps is simply given by:

zn+1 = f (zn) ≡ z2
n + c (13.20)

where z and c are complex numbers. A simple example is provided by the case c = 0.
Setting z = r exp(iθ) then reveals that the initial point rotates and either moves away
from the unit circle to infinity if |z0| > 1 or towards the origin if |z0| < 1. Alternatively, a
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Figure 13.10 Strange attractor for the Hénon map; a = 1.4, b = 0.3.

trajectory that starts at |z0| = 1 remains on the unit circle. The unit circle is an example
of a Julia set, whereas the other points in the complex plane form two Fatou sets. The
Fatou set is informally defined as the union of the domains of points that iterate to a
given termination set; the Julia set is the complement. Thus the Julia set consists of the
values of z0 in which small perturbations can lead to large differences in the behavior
of the trajectories. This matches our intuitive definition of chaoticity. In this case, two
nearby points that start on the unit circle can swing in wildly different trajectories.

The following properties of Julia and Fatou sets are perhaps intuitive:

(i) they are complements of each other

(ii) they are invariant under the mapping: f (J) = J and f (F) = F

(iii) trajectories within a Julia set are chaotic.

A numerical determination of the Julia and Fatou sets can be tricky, fortunately
another theorem provides a simpler method: if f is a polynomial, then the Julia set is
the boundary of the finite Fatou set; namely the set of z0 with bounded trajectories. Thus
an approximation to the Julia set can be made simply by iterating the quadratic map a
certain number of times, N , and declaring an initial point in the set if |zN | < R where R
is some scale chosen by the programmer. An example obtained for c = 0.4− i0.231 and
R = 10 is displayed in Figure 13.11. The white region indicates the set {z0} that iterate
far from the origin. The central dark region remains bounded under iteration and forms
the finite Fatou set, whose boundary is the Julia set. Notice that the finite Fatou set is
apparently fractal in nature.

It is interesting to consider the complementary problem to determining the Julia set
for a given map, namely determine the set of parameters c for which iterations of z0 = 0
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Figure 13.11 The finite Fatou region for the quadratic map (c = 0.4 − i0.231).

remain bounded. This is the Mandelbrot set famously associated with fractals, self-
similarity, and complexity.

13.4 The nonlinear oscillator

Iterative maps provide a fascinating introduction to the concepts of chaotic dynamics, but
they typically do not represent continuum systems. Can chaos be observed in physically
relevant systems? The answer is yes—in fact many of the features we have already
explored will appear again.

Perhaps the simplest chaotic physical system is represented by the damped, driven
pendulum. The equation describing the system is:

θ̈ = −g
�

sin θ − bθ̇ + F cos(�t). (13.21)

Here we consider a simple pendulum of length � in a uniform gravitational field, with no
stretching, and no other external forces. The driving force is taken to be periodic with
period � and strength F and the friction is modeled with the term −bθ̇ .

We choose units such that ω2 = g/� = 1, set b = 0.5 and � = 2/3 and integrate
numerically. Because we are interested in long-time solutions, numerical accuracy is
important and the Euler method is inappropriate. The trajectories for F = 0, F = 0.5,
and F = 1.2 shown in Figure 13.12 have been obtained with the Euler-Cromer method.9

The first two trajectories have been offset so that the plot is less cluttered. The solution
for F = 0 displays damping with an initial transient, as is expected for a system with
a strong frictional force and no external forcing. The second solution (F = 0.5) again
displays a transient for t < 10 and then settles into simple periodic motion. Finally,
increasing F beyond a critical value10 of F (∞) ≈ 1.15 yields the chaotic motion seen in

9 The Euler-Cromer method is discussed in Section 11.7.
10 The bifurcation plot for the damped oscillator actually alternates between chaotic and periodic regions

as F varies.
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Figure 13.12 The damped driven pendulum for b = 0.5, F = 0, F = 0.5 and F = 1.2.
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Figure 13.13 Phase diagram for the damped, driven pendulum in the chaotic regime (F = 1.2).

the top trace. Note that the frequent excursions to θ = ±π indicate that the pendulum
is swinging in complete circles many times during this trajectory. The pendulum also
reverses direction 16 times during its evolution.

Some order can be brought to the chaos by considering the phase diagram for the
different trajectories. As expected, the phase diagram for the case F = 0.5 is a circle
in the (θ ,ω = θ̇ ) plane (after an initial transient). However the phase diagram for the
chaotic case is quite different (Figure 13.13). As with the Hénon attractor, the pattern is
certainly not simple, but it is also certainly not random either.

It is possible to simplify the representation of the trajectories further by plotting the
phase diagram at times that are integral multiples of the driving frequency (tn = 2πn/�).
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Figure 13.14 Strange attractor for the damped, driven pendulum in the chaotic regime (F = 1.15).

The resulting plot is a Poincaré map, mentioned in Section 13.2. Of course, the periodic
trajectory will appear as a single point representing the value of θ and ω at tn (this
is because the system oscillates at the driving frequency). Alternatively, the chaotic
trajectory will be some subset of the full trajectory of Figure 13.13. The result, seen
in Figure 13.14 as a polar plot with θ mapped to the angular variable and ω mapped to
the radial variable, is reminiscent of the Hénon phase space plot and is a strange attractor.

13.4.1 The Lyapunov exponent

As we have learned in the case of the quadratic map, the Julia set can be thought of as
the set of points that do not evolve smoothly with respect to each other under iteration.
It is possible to formalize this concept with the aid of the Lyapunov exponent.11 The
idea is to trace two nearby trajectories over time keeping track of the distance between
them. If the distance is denoted δθ(t) then one has:

δθ(t) = eλt δθ(0) (13.22)

where λ is the Lyapunov exponent. Clearly, if the exponent is greater than zero,
two trajectories that were initially close can be driven very far apart under system
evolution.

Notice that the factor r that appeared in the discussion of the stability of limit
cycles can be interpreted as the exponential of a Lyapunov exponent. In fact, with a

11 Named after the Russian mathematician, Aleksandr Mikhailovich Lyapunov (1857–1918), who worked
on stability of dynamical systems.
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one-dimensional differential equation of the form ẋ = g(x) expanding nearby trajectories,
x1(t) and x0(t) yields12

λ = dg
dx

∣∣∣
x0

. (13.23)

In a D-dimensional state (phase) space there are D Lyapunov exponents given by the
eigenvalues of the Jacobean matrix at the point of interest.

Notice that in general Lyapunov exponents depend on the starting position and vary
in time. It is thus useful to recast the definition in terms of an average over a trajectory:

λ = lim
N→∞

1
N

N−1∑

n=0

log |f ′(xn)|. (13.24)

(This expression is for an iterative map.) In this way the Lyapunov exponent has been
conveniently divorced from initial points. The large ‘time’ limit in this expression is
important: unstable fixed points initiate trajectories that also diverge exponentially, but
only for a short time. Unfortunately, the definition of ‘short’ is difficult to quantify, and
appropriate care must be taken by the practitioner.

Show that Eq. 13.24 follows from xn+1 = f (xn). See (Earnshaw, 1993) if you are
having trouble.

We are finally in a position to define chaos. If ‘chaotic’ is taken to mean ‘extreme
dependence on initial conditions’, then chaos can be quantified as follows:

A choatic system has at least one positive average Lyapunov exponent.

All continuous chaotic systems must contain at least three degrees of freedom13.
Indeed, the nonlinear oscillator being studied here has three degrees of freedom (t, θ ,ω)
because it is nonautonomous (see Section 11.1). You can convince yourself that three
degrees of freedom are required for chaos by considering a rank two equation. In this case
if the trajectories are bounded they must either be attracted to a fixed point or be trapped
by a limit cycle—there is no possibility for chaotic behavior to develop. Thus one must
consider the spectrum of at least three Lyapunov exponents. If the system is dissipative
then the sum of all the Lyapunov exponents must be negative (so that trajectories collapse
to a fixed point). For systems without fixed points, one of the Lyapunov exponents must
be negative (Haken, 1983). We are thus able to generalize the classification scheme given

12 The differential equation ẋ = g(x) is quite different from the iterative equation xn+1 = f (xn), hence the
difference in the expressions for the Lyapunov exponents.

13 Unfortunately the term ‘degrees of freedom’ is used differently in different fields. Here we mean the
number of variables needed to define the coupled first order description of a system.
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Table 13.2 Lyapunov spectra and attractors for
dissipative systems.

Spectrum signs Attractor

(−,−,−) fixed point

(0,−,−) limit cycle

(0, 0,−) quasi-periodic torus

(+, 0,−) chaotic
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Figure 13.15 Evolution of nearby trajectories for F = 0.5. The dips correspond to crossings of the
trajectories.

in Section 13.2 for two-dimensional systems to dissipative three-dimensional systems as
shown in Table 13.2. The ‘quasi-periodic torus’ mentioned in the table will be discussed
in Section 13.5.

Let us return to the nonlinear oscillator and examine its Lyapunov exponent in the θ

coordinate. We employ the ‘naive’ definition of Eq. 13.22 and simply plot the deviation
of two nearby trajectories, δθ(t) = |θ1(t) − θ2(t)|, as a function of time. One might
expect that in the periodic regime δθ stays constant, however this is not the case—nearby
trajectories are rapidly driven toward each other. This is illustrated in Figure 13.15, which
was generated for the periodic case F = 0.5 and an initial separation of δθ(0) = 0.001.
A fit to a simple exponential is shown as a dotted line and yields λ = −0.35.

The behavior of δθ , shown in Figure 13.16, is completely different in the chaotic
regime. Notice that the maximum separation (in our convention) is δθ = π so the
separation must eventually saturate. This makes extracting the Lyapunov exponent
difficult. A rough fit is shown as the dotted line and yields λ ≈ 0.15.
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Figure 13.16 Evolution of nearby trajectories for F = 1.2.

It is evident that chaotic systems possess fractal properties, as we have seen in
percolation. Are other aspects of percolation, such as self-similarity and the existence
of critical scaling, manifested in chaotic systems? The answer is yes—see the exercises
for an examination of self-similarity in the logistic map. Critical scaling can also be
demonstrated for systems exhibiting the period doubling route to chaos. For example, in
the logistic map it is found that just above μc the Lyapunov exponent behaves as:

λ(μ) = λ0(μ− μc)
τ , (13.25)

where τ is a critical exponent with a value of approximately 0.4498.

13.5 Hamiltonian systems

The continuous systems studied so far have required nonlinearity, dissipation, and
forcing to see chaotic behavior. What happens with systems that conserve energy such
as the three-body or FPU problems? Such systems are called conservative systems or
Hamiltonian systems.14

Recall that Liouville’s theorem says that the phase space density is a constant of the
motion:

dρ
dt

= {ρ, H} + ∂ρ

∂t
= 0. (13.26)

14 Undergraduate physics students might be under the impression that most physics systems of interest
are conservative. However, this is an idealization that is rarely achieved in actuality. All models must truncate
degrees of freedom somewhere. The neglected degrees of freedom form a heat bath that influences energy flow
in the subsystem of interest.
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Thus volumes in phase space cannot change size and chaotic behavior cannot arise in
the phase space density. Alternatively, the temporal evolution of ρ is linear and hence
cannot be chaotic. This implies that averages over trajectories cannot be chaotic (since
these can be used to define the phase space density)—only individual trajectories can
show chaotic behavior.

Show that dρ/dt = −bρ for the nonlinear oscillator of Section 13.4.

If a Hamiltonian with N degrees of freedom15 has N constants of motion it is said to
be integrable. This class of Hamiltonians will form a central concept in the following
discussion. If these constants of motion are called Ji(q, p) then it is possible to find a
canonical transformation such that H = H( J) and hence J̇i = 0. We note that:

(i) all Hamiltonians with one degree of freedom are integrable since the energy is
always a constant of the motion. (However, H must be an analytic function of q
and p);

(ii) if Hamilton’s equations are linear in q and p, the Hamiltonian is integrable;

(iii) if a Hamiltonian can be separated into systems with one degree of freedom it is
integrable (Helleman, 1980).

An integrable system with N degrees of freedom generates trajectories that reside on
an N-dimensional torus in the 2N-dimensional phase space. The trajectories traverse the
tori with characteristic frequencies,ωi , in each of the tori dimensions. If these frequencies
are incommensurate (not simple multiples of each other) then the trajectory eventually
visits all parts of the torus surface and the system is said to be ergodic. The trajectories
in this case are called quasi-periodic and the tori are called KAM tori. Alternatively,
tori with frequencies that are simple multiples of each other (i.e., there exist integers such
that

∑
niωi = 0) are called resonant tori. Finally, since integrable systems display only

periodic or quasi-periodic trajectories, they are not chaotic.

Show that the Lyapunov spectrum can be determined by integrating the eigenvalues
of the system’s Jacobean matrix (defined by generalizing Eq. 13.23) down a trajectory.

13.5.1 The KAM theorem

We now consider systems that are ‘nearly’ integrable. For the moment we restrict atten-
tion to systems with N = 2. If the system were integrable, trajectories would be restricted
to a 2-dimensional torus in a four-dimensional space. If the system is nonintegrable, the
trajectories can move in a three-dimensional region of phase space, and hence chaotic

15 Here N is the total number of spatial coordinates for the system.
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behavior is possible. Now add a small perturbation to the integrable system that destroys
integrability. In the right coordinates we can write the new Hamiltonian as:

H ′(p, q) = H(p)+ εV (p, q). (13.27)

Poincaré was the first to show that resonant tori are destroyed by arbitrarily small
perturbations (Pöschel, 2001).16 Since resonant tori form a dense set, the future stability
of the solar system looked rather grim!

However, the future of humanity was saved by Kolmogorov in 1954, when he showed
that the majority of tori survive the perturbation. This celebrated result is now called the
KAM theorem.17

The KAM theorem states that if the system is subjected to a weak nonlinear pertur-
bation, some of the KAM tori are deformed and survive, while others are destroyed.
As stated above, resonant tori are destroyed, but tori with irrational ratios of tori
frequencies survive. More rigorously, only strongly nonresonant tori—those with
frequencies that obey:

∑

i

niωi ≥ α
(∑

i |ni|
)τ (13.28)

for some α and τ and for all {n} ∈ Z will survive the perturbation. As the strength of the
perturbation is increased more tori dissolve, with those with frequency ratios closest to a
rational number going first.

In these systems chaotic behavior is associated with the breakup of resonant tori.
However for N = 2 the associated chaotic trajectories are constrained to small regions
in phase space by the surviving KAM tori. As the perturbation grows larger more KAM
tori dissolve and the region of phase space that is chaotic begins to dominate. Notice that
if N > 2 KAM tori are no longer capable of constraining chaotic trajectories and they
can diffuse throughout phase space.

13.5.2 The Hénon-Heiles model

The preceding discussion has been rather abstract; here we seek to flesh it out with a
simple model invented by Hénon and Heiles (1964) to describe the motion of a star in a
galaxy. As (minimally) required for chaotic behavior, the Hamiltonian has N = 2 and is
nonintegrable:

H = 1
2
(p2

x + p2
y)+

1
2
(x2 + y2)+ x2y − 1

3
y3. (13.29)

16 This is the famous incident referred to in the introduction.
17 Named after Soviet mathematicians Andrei Nikolaevich Kolmogorov(1903 – 1987) and Vladimir

Igorevich Arnold (1937 – 2010) and the German-American mathematician Jürgen Kurt Moser (1928 – 1999).
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Figure 13.17 Poincaré maps for the Hénon-Heiles model obtained on the section x = 0. Top left:
E = 0.06, top right: E = 0.10, lower left: E = 0.14, lower right: E = 0.16.

The potential has a local minimum at (x, y) = (0, 0). Notice that the system is unbound
in the directions (x, y) → (0,∞) and (x, y) → (±∞,−∞) and that it has fixed points at
(x, y) = (0, 0), (0, 1), and (±√

3/2,−1/2).
For energies less than 1/6 the system stays near the origin and approximates a 2d

simple harmonic oscillator. For larger energy the nonintegrability of the model becomes
important, KAM tori break up, and chaotic behavior becomes evident. This is displayed
in a series of plots in Figure 13.17.

The plots show py vs. y on the section x = 0. At low energies the Poincaré map
generated by a single trajectory is quite simple and the full map must be generated
from many starting points sharing the same energy. The KAM theorem states that these
trajectories must be quasiperiodic if they are not chaotic. Thus each trajectory (if not
chaotic) should produce lines that fill in as the system is followed in time. These plots
were generated with approximately 1/2 million time steps so that the lines are nearly filled
in at this resolution.

As the energy of the system is increased (lower plots) chaotic behavior becomes
evident—the plot becomes dense with points and only a few trajectories are required
to fill in the figure. As expected, KAM tori are dissolving and contributing to chaotic
behavior. In fact, chaoticity is also present at lower energy but is much less evident since
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they are constrained by intact KAM tori. For example, the chaotic region in the case
E = 0.06 is confined near the crossing points at (py, y) ≈ (±0.25, 0.15).

As indicated above, one can follow a trajectory in the chaotic regime and evaluate the
Lyapunov spectrum. For systems with N = 2 there are four exponents and the sum of
these must equal zero because of Liouville’s theorem. In this case two eigenvalues are
zero and thus the signs of the Lyapunov eigenvalues are (+, 0, 0,−) (Hilborn, 1994).

13.5.3 Billiard models

Some Hamiltonians do not exhibit chaos because of nonintegrability but because the
Hamiltonian is not an analytic function of the phase space variables. A simple example
is the billiard model where pointlike balls undergo elastic collisions with a fixed
closed surface.

One could consider solving this problem via, say, Euler’s method. The problem is that
scattering off of a wall occurs at a specific time which may not be on the temporal grid.
To correct for this one can

(i) step forward in time

(ii) check to see if a boundary has been passed

(iii) interpolate backward to the time the boundary is hit

(iv) reflect and continue.

Although workable, there is an onerous catch: it is quite possible that the particle has
run into a corner and has made two reflections during the time dt. In D dimensions up
to D reflections can be made. It is awkward to check for these!

Another approach would be to abandon the, rather pedantic, attempt to track the
particle at all times. Indeed we know its motion is linear between collisions. Thus one
can simply solve equations to determine the time and location of the nth collision.
For a simple concave bounding surface, the location of a collision can be uniquely
specified by the angle of the event with respect to the origin (placed at the center of the
billiard region). Furthermore, if we are not interested in the precise temporal evolution
of the system it is sufficient to label these by the collision number. Thus the goal is to
find a map:

θn+1 = f (θn, . . .). (13.30)

We recognize an iterative map and thus the possibility of all of the fascinating chaotic
behavior that accompanies such maps.

Let us take motion in a region bounded by a circular wall of unit radius as our first
example. We label the angle of reflection at the nth collision point ψn. Then it can be
shown that any path is given by the map (Chernov and Markarian, 2006):

θn+1 = θn + 2ψn (mod) 2π

ψn+1 = ψn (13.31)
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Establish the previous equations and then show:

θn = θ0 + 2nψ0 (mod) 2π ,

hence motion in a circle is not chaotic.

Note that the angle of reflection never changes and that the distance between collision
points is constant. Trajectories also never approach closer that cosψ0 to the origin
(forming a caustic at this radius). Finally, trajectories with ψ0/π rational will follow
periodic orbits while those with an irrational ratio will be quasiperiodic, slowly filling in
the space between r = 1 and r = cosψ0.

In an effort to create chaoticity, we consider placing a disk of radius r < 1 at the center
of the circular billiard. Trajectories with cosψ0 > r will not collide with the disk and will
remain either periodic or quasiperiodic. However those with cosψ0 < r will reflect from
the disk and move in wildly different directions than those with cosψ0 slightly greater
than r. Although this sounds like chaotic behavior, the system is integrable because it is
rotationally invariant and hence cannot be chaotic.

This issue can be simply avoided by considering a square billiard. In this case
reflections from a wall reverse the component of the particle velocity that is perpendicular
to the wall. All four possibilities, (±vx,±vy), will appear infinitely often in a given
trajectory. Whether the system is chaotic can be easily analyzed with a trick: instead
of reflecting at a wall, we permit the trajectory to pass into an image square. The original
trajectory can be recovered by mapping the image square back to the original. It is
now fairly easy to establish that a trajectory with rational vx/vy will be periodic, while
an irrational ratio of velocity components gives rise to a quasiperiodic trajectory that
fills the square. Furthermore, two trajectories that differ by a small angle will simply
continue through the image squares, diverging as δθ · t. Thus dynamics in a square is
also not chaotic.

This time, however, if a disk is placed in the center of the square, dramatically
different behavior ensues. Such a configuration, called a Sinai billiard18, exhibits
chaotic dynamics. It is tempting to imagine that this is due to the disk, since some
trajectories will just graze it, while nearby trajectories will hit it and experience large
changes. However, we have already seen that this is not sufficient to cause chaos for
a disk in a circle. In fact, it appears that the necessary ingredient is a combination of
nondispersing (i.e., flat) surfaces with dispersing (curved) surfaces. Thus a square
in a square is non-chaotic but a circle that has been stretched into a stadium shape by
inserting two straight edges is chaotic.

18 Named after Yakov Grigorevich Sinai, Russian mathematician (1935 –).
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Billiard models of chaotic dynamics are of interest because of their simplicity. This
makes them especially useful to examine when considering quantum chaos (which will
not be discussed here). As a final point we note that if a disk can cause chaotic motion
then a moving disk must also; thus a system consisting of two mobile hard disks in a
box must also be chaotic. It is therefore perhaps no surprise that many-body systems are
ergodic.

13.6 Epilogue

It is valid to ask what is being learned by studying chaos. When one discovers universal
behavior in physical systems it is inevitably found to be due to something fundamental in
natural laws. But this cannot be the case for chaotic behavior since it applies to so many
different phenomena over so many different scales. Rather, it is due to common features
in abstract state space. It appears that studying chaos does nothing for the reductionist
approach to science—yet one cannot avoid feeling that it does teach us about Nature.

Perhaps the reader feels a lingering unease with the concept of exponential sensitivity
to initial conditions. Is it indeed possible that a butterfly in Brazil can cause a tornado
in Texas? To be clear, a butterfly cannot insert enough energy into the atmosphere to
cause anything of importance, but the changed initial conditions can (in principle) cause
a redistribution of energy that leads to tornados. It is, of course, impossible to have com-
plete knowledge of initial conditions; hence our ability to predict into the future must be
limited by the magnitude of the relevant Lyapunov exponents. This raises several issues:

An increasingly accurate knowledge of initial conditions must eventually bring one to
the quantum realm, which has its own set of fundamental limitations. How does quantum
reality affect the chaotic world? Does quantum indeterminacy invalidate classical chaotic
dynamics? If so, how does the classical realm emerge from the quantum? We refer the
interested reader to (Rudnick, 2008).

Exponential sensitivity appears to cast doubt on many of our carefully constructed
numerical techniques. For example, it is unlikely that symplectic approximations to
a Hamiltonian will preserve all of the symmetries of that Hamiltonian. It is thus
possible that an integrable Hamiltonian would be approximated by nonintegrable (and
hence chaotic) numerical time evolution. More simply, roundoff error necessarily limits
our ability to specify initial conditions. Could all of our numerical conclusions be
computational artifacts? Fortunately, things are not quite as dire as this apocalyptic
scenario indicates. First, we have already seen that the KAM theorem provides some
succor. Second, although a computed trajectory may not be what you thought it was,
it is close to some trajectory of the system (Sauer et al., 1997). This is useful because
one is often interested in quantities averaged over trajectories, and it does not matter
which particular set is used. But it would be premature to assume that all computational
issues are under control; for example Lai and Grebogi (1999) have argued that any
nonlinear model of a physical system will not be able to reproduce a physical trajectory
of the system. As usual, care is required when relying on computers to lend insight into
complex problems.
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13.7 Exercises

1. [T] Logistic Map Invariant Density.
Show analytically that the invariant density is given by:

ρ = 1

π
√

x(1 − x)

in the case μ = 4.

2. [T] Murphy’s Eyeballs.
Determine the phase portrait for a centrifugal governor by linearizing about the
fixed points. Model this as a massless rigid rod of length � with point mass m at the
free end which is attached via a swivel to a vertically oriented uniformly rotating
shaft. The result is called Murphy’s eyeballs.

3. Chaotic Magnet.
Derive the equation of motion for a magnetic needle in the presence of an oscillating
magnetic field that is perpendicular to the axis of rotation of the needle. You
should find:

θ̈ = −μB
I

cos(ωt) sin(θ)

Determine the dimensionless control parameter for this equation. Verify that chaotic
behavior sets in above a critical value of the control parameter. Make phase space
and Poincaré map plots in the nonchaotic and chaotic regimes.

4. The Duffing Oscillator.
Consider the dynamics of a one-dimensional damped driven oscillator in a double
well potential: U (x) = −1

2 kx2 + 1
4 bx4. Choose units so that m = k = b = 1 and

introduce a damping γ . Obtain ẋ = v, v̇ = x − x3 − γ v + F cos(�t).

a) Verify that the period for small oscillations is
√

2π .

b) The minima of the potential correspond to attractors centered on x = 1 and
x = −1. Determine the basins of attraction of the minima. Take F = 0.25,
γ = 0.25, and ω = 1. Such complexly interleaved basins of attraction are called
riddled basins.

5. [T] Bernoulli Shift Map.
Consider the iterative map:

xn+1 = 2xn (mod 1), xn ∈ (0, 1). (13.32)

This map is called a shift because if one applies it to binary numbers less than unity it
shifts all digits to the left and drops the digit that appears before the decimal point.
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a) Prove that the map is chaotic. Hint: what happens to trajectories starting from
rational numbers, x0 = n/m? What happens to trajectories that start from
irrational numbers? How are the rational and irrational numbers distributed over
the real axis? Notice that the sequence of 1’s and 0’s generated from an irrational
number is indistinguishable from a random sequence generated by coin tosses.
For this reason some authors consider ‘deterministic chaos’ to be a misnomer
for random.

b) Prove that the Lyapunov exponent is log 2.

c) Show that the Bernoulli shift map is equivalent to the logistic map when μ = 4.

6. Hénon Map Attractors.
Map out the behavior of the attractors of the Hénon map as a function of
parameters. Take a ∈ (−4, 1) and b ∈ (−2, 2). You should find periodic, fixed
point, and chaotic behavior. Much of the parameter region will yield unbounded
trajectories.

7. Lagged Logistics Map.
Explore the properties of the logistic map with lag:

xn+1 = μxn(1 − xn−1).

Try making ‘phase space’ plots of (xn, yn) where yn+1 = xn.

8. Julia Sets.
Determine the Julia sets for the quadratic map for a variety of parameters c. Consider
making a movie showing the evolution of the sets as one moves around in the
parameter space.

9. Mandelbrot Set.
Implement an escape time algorithm for rendering the Mandelbrot set. Hint: if the
real or imaginary part of zn exceeds 2 then that trajectory cannot be part of the
Mandelbrot set. Thus one can iterate through trajectories and use |z| > 2 as a
termination criterion. A nice step is to set the color of the point to the number of
iterations required to terminate.

10. Logistic Map Lyapunov Exponent.
Use Eq. 13.24 to plot the Lyapunov exponent for the logistic map as a function of
the coupling. Try to get an decent estimate of the critical coupling.

11. Damped Driven Oscillator.
Compute the bifurcation plot for the damped driven pendulum. Use RK4 or the
Euler-Cromer method. Take g/� = 1, b = 0.5, � = 2/3. Use a time step around
h = 0.04 and evolve past the transient to about 300 T (T = 2π/�). Then run
up to 4000 T and determine the period of motion as a function of F ∈ (1.35, 1.5).
You should find F (1) ≈ 1.424 and F (2) ≈ 1.459. See if you can estimate the
Feigenbaum constant.
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12. The Lorenz Attractor.
Solve the Lorenz equations:

ẋ = σ(y − x)

ẏ = x(τ − z)− y

ż = xy − βz

Take σ = 10 and β = 8/3. The parameter τ is analogous to the driving force in the
driven pendulum. The system is chaotic for τ > 470/19. Plot the projection of the
phase diagram in the xz plane for τ = 10 and τ = 28. The latter should look like a
butterfly. Show that the attractor is simpler in the Poincaré section defined by y = 0
(you should obtain a V shape).

13. Recurrence Plots.
A recurrence plot is a two-dimensional representation of a trajectory that is defined
by the density:

ρ(i, j) = H(ε − ||x(i)− x(j)||)

where H is the Heaviside step function, x is the trajectory of interest, and ε is a
parameter used to define how close the trajectory points must be to register a point
in the plot. Explore the utility of this concept by making plots for the logistic map
in the periodic and chaotic regimes. Compare to a random walk trajectory.

14. Feigenbaum’s α.
There are in general many universal properties of chaotic dynamics. Define dn as the
largest distance between values of x in the logistic map at which a bifurcation occurs
(thus, d1 is determined at μ (1) and is about 0.42). Determine α ≡ limn→∞ dn/dn+1.
You should find α ≈ 2.5029.

15. Self-similarity.
Examine the bifurcation plot of the logistic map carefully to see if it is self-
similar. You should find that it becomes more exactly self-similar as the number
of bifurcations gets larger.

16. [P] The FPU Problem.
Consider the Hamiltonian for N coupled one-dimensional nonlinear oscillators:

H = 1
2m

∑
p2

k + K
2

N−1∑

k=0

(qk+1 − qk)
2

+ α

N−1∑

k=0

(qk+1 − qk)
3.

Choose units such that m = 1 and K = 1, used fixed boundary conditions and
implement the Verlet algorithm. The transformation to the mode A� is given by:
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A� =
√

2
N

N−1∑

k=1

qk sin
(

k�π
N

)
.

a) Choose initial conditions so that the first mode is excited and follow the energy
of the first three odd modes as a function of time to confirm the observations of
FPU. Recall that:

E� = 1
2

Ȧ�
2 + 1

2
ω2
�A2

�

with:

ω� = 2 sin
(

�π

2(N + 1)

)
.

b) Make a Poincaré map of Ȧ1 versus A1 on the Poincaré section defined by A3 = 0.
You should find a hexagonal attractor for α = 0.3, a six-lobed spiral for α = 1.0,
and chaotic behavior for α = 3.0.

c) Check Lyapunov exponents to determine if the system is indeed chaotic for
large α.

..........................................................................................
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14.1 Introduction

Among the higher mathematical objects appearing in the vocabulary of physics are
vectors and tensors, which are first encountered in classical mechanics; spinors, which
appear in quantum mechanics; four-vectors, which appear in relativistic classical
mechanics; and Dirac or Weyl spinors, which appear in relativistic quantum theory.
The dynamics of particles and fields unfolds in a four-dimensional relativistic manifold
called spacetime. Nevertheless, when the velocities of particles are small we can ignore
the synthesis of space and time and work instead in Cartesian three-space.

The reader probably regards rotations as a group of transformations, acting upon
vectors in a three-dimensional space, having the property that the norm

√
x2 + y2 + z2

of the vector is preserved. In fact, other objects besides vectors are also acted upon

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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by rotations: for example Pauli spinors, the coefficients of an expansion in spherical
harmonics, stress tensors, multipole tensors, and others.

Likewise, the reader probably thinks of Lorentz transformations as transformations
on four-vectors in spacetime that preserve the invariant interval

√
(ct)2 − x2 − y2 − z2.

But again, after a closer look, one realizes that objects like Dirac and Weyl spinors also
have transformation properties under Lorentz transformations. Indeed the existence of
such objects can even be inferred from the structure of the Lorentz group.

The main reason for studying rotations is that we live in a three dimensional world; we
therefore need tools to study the behavior of systems like a precessing top or a precessing
electron spin. On the more practical side, we frequently deal with instrumentation that
has a specific orientation in space that should be properly described. Alternatively,
the main reason for studying Lorentz transformations is that they are useful in the
computation of fundamental processes.

There are a variety of ways to represent rotations and Lorentz transformations, which
are described in a vast literature. Rotations alone can be represented as:

• An axis of rotation and a rotation angle.

• Real orthogonal matrices of dimension 3 × 3.

• Complex matrices of dimension 2 × 2.

• Unit quaternions.

• A triplet of Euler angles. There are several distinct conventions.

• Four Euler parameters.

• Cayley-Klein parameters.

Thanks to representation theory, we know how to represent all possible rotatable
objects as a vector of complex numbers and rotation operators as complex matrices. We
adopt this approach here because it is universal: a vector in Hilbert space is transformed
in the same way (and with the same code) as an ordinary vector in Cartesian 3-space. As
a bonus we will see that Lorentz transformations can implemented easily by forming the
tensor product of two representations of the rotation group. More on that in a moment.

14.2 Rotations

A rotation can be specified by giving the axis of rotation n̂ and an angle of rotation θ . In
code we can represent these two in a single vector �n = θ n̂ having a length θ and pointing
along the axis of rotation. We view rotations as active, i.e. they change the orientation of
the object—in contrast to passive rotations, in which the coordinate axes change their
orientation. The direction of a positive rotation is given by the right-hand rule. If the
thumb of the right hand points along the n̂ direction, the rotation turns the object in
the direction of the fingers. Thus a positive rotation along the z axis carries x into the y
direction, and y into the −x direction.
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Having specified the rotation, our next goal is to obtain a matrix representation. If we
want to rotate a vector, this will be a 3×3 matrix; a Pauli spinor will require a 2×2 matrix.
The matrices which interest us are called irreducible representations of the rotation
group, SU(2). Irreducible means that they cannot be decomposed into a direct product
of smaller matrices. The irreducible representations describe simple physics objects like
the spin of a particle. We may also want to rotate two electrons—this is more complicated;
however, composite systems like this can be built out of simpler ones, so let’s start with
the rotation of simple systems. These are characterized by the spin j, which is a number
that can take integral or half-integral values 0, 1/2, 1, 3/2 . . .Corresponding to j is the
dimensionality of D = 2j + 1 of the representation. Vectors, for example, are three
dimensional objects with j = 1.

14.2.1 Generators

The required rotation matrices can be made from three matrix generators,�J≡{Jx, Jy, Jz},
which depend on the number j. To be specific we list the generators for j = 1/2:

J(1/2)
x ≡

(
0 1/2

1/2 0

)
J(1/2)
y ≡

(
0 −i/2

i/2 0

)
J(1/2)
z ≡

(
1/2 0
0 −1/2

)
,

for j = 1:

J(1)x ≡
⎛

⎝
0

√
2/2 0√

2/2 0
√

2/2
0

√
2/2 0

⎞

⎠ J(1)y ≡
⎛

⎝
0 −i

√
2/2 0

i
√

2/2 0 −i
√

2/2
0 i

√
2/2 0

⎞

⎠

J(1)z ≡
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ ,

and for j = 3/2:

J(3/2)
x ≡

⎛

⎜⎜
⎝

0
√

3/2 0 0√
3/2 0 1 0
0 1 0

√
3/2

0 0
√

3/2 0

⎞

⎟⎟
⎠ J(3/2)

y ≡

⎛

⎜⎜
⎝

0 −i
√

3/2 0 0
i
√

3/2 0 −i 0
0 i 0 −i

√
3/2

0 0 i
√

3/2 0

⎞

⎟⎟
⎠

J(3/2)
z ≡

⎛

⎜⎜
⎝

3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2

⎞

⎟⎟
⎠ .
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For arbitrary j, the generators can be obtained from these formulae:

( J(j)x )ik = 1
2

√
k(2j − k + 1)δi,k−1 + 1

2

√
(2j − k)(k + 1)δi,k+1

( J(j)y )ik = −i
2

√
k(2j − k + 1)δi,k−1 + i

2

√
(2j − k)(k + 1)δi,k+1

( J(j)z )ik = ( j − i)δi,k. (14.1)

The indices i and k run from 0 to 2j = D−1. In the case of j = 1/2 the generators �J(1/2)

can be related to the Pauli matrices.

σx ≡
(

0 1
1 0

)
σy ≡

(
0 −i
i 0

)
σz ≡

(
1 0
0 −1

)
,

through �J(1/2) = 1
2 �σ ; for higher spin, the generators can be viewed as a generalization of

the rescaled Pauli matrices, since they obey the same commutation relations.

14.2.2 Rotation matrices

A rotation matrix is constructed from the generators through matrix exponentiation:

R = exp
(
−iθ n̂ · �J

)
. (14.2)

Computationally, the exponentiation of square matrices is a difficult problem which is
still the subject of considerable research (Moler and Van Loan, 2003). An approach that
works well in the present case takes advantage of the identity:

exp (A · D · AT ) = A · exp (D) · AT . (14.3)

When D is a diagonal matrix, e D is trivial to compute. If:

D =

⎛

⎜⎜
⎝

λ0 0 0 ...
0 λ1 0 ...
0 0 λ2 ...
. . . ...

⎞

⎟⎟
⎠

then:

exp D =

⎛

⎜⎜
⎝

exp (λ0) 0 0 ...
0 exp (λ1) 0 ...
0 0 exp (λ2) ...
. . . ...

⎞

⎟⎟
⎠ .
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This method is prone to failure in the case of degenerate or nearly degenerate eigenvalues;
however this not the case here because the eigenvalues of the generators are evenly
spaced: −j,−j + 1, . . . j − 1, j.

The composition of rotations can be computed by multiplying together the matrices
of any representation and then extracting the rotation axis and angle. The most efficient
is the lowest dimensional non-trivial representation, in other words, j = 1/2 (or D = 2).
One can show that the vector representing the rotation axis and angle is given by:

�n = (−4 Im (log λ1)) a†
1 · �σ · a1

where λ1 and a1 are the maximal eigenvalue of the 2 × 2 rotation matrix and its
corresponding eigenspinor.

Implementation

The classes and algorithms described in this chapter are implemented in a class library
called Spacetime, which can be downloaded and installed from the companion site:

http://www.oup.co.uk/companion/acp

The class called Rotation implements rotations. The main challenge in implementing
rotations as described in this section is efficiency; in particular we do not want to
needlessly repeat calculations. The generators of SU(2) must be computed upon
demand, and then held in case they are needed later. Since these are constant matrices,
they can be computed once per job. We cache them in static std::map which associates
the integral dimensionality D with the complex-valued D × D matrix. Moreover, each
rotation computes a matrix in an arbitrary representation and then holds that matrix in
case it is required again later. Matrix diagonalization is handled by the Eigen library’s
ComplexEigenSolver class. An excerpt from the header file that implements this
appears below:

class Rotation {

// Describes an active rotation. Has a law of composition.
Can

// return the irreducible representation of a rotation
matrix in

// D dimensions (D=2j+1; j=1/2, j=1, j=3/2, j=2...)

public:

http://www.oup.co.uk/companion/acp
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// Constructor. By default it will make an identity
element.

Rotation();

// Constructor. Takes the rotation vector as input;
explicit Rotation(const ThreeVector & nVector);

// Composition:
Rotation operator * (const Rotation & source);

// Get the dim-dimensional representation
const Eigen::MatrixXcd & rep(unsigned int dim) const;

// Get the rotation vector.
const ThreeVector getRotationVector() const;

// Gets the inverse rotation
Rotation inverse() const;

...
};

The rep method provides any D dimensional representation of the rotation group. The
class may appear paltry because it does not rotate anything yet (besides other rotations),
but we will get to that later. The class ThreeVector which appears in the interface to
Rotation is discussed in Section 14.4.1.

14.3 Lorentz transformations

Lorentz transformations encompass both rotations and boosts. As fortune would have
it, the rotation generators discussed in Section 14.2.1 can also be used to build up irre-
ducible representations of the proper, orthochronous Lorentz group1. Representations
of the rotation group SU(2) are characterized by a half integer j, as previously discussed.
Lorentz transformations are, by contrast, characterized by two half integers which we
will call j1 and j2. These representations are denoted by (j1, j2): for example we have the
trivial (0, 0) representation, the so-called right-handed (1/2, 0) representation, the left-
handed (0, 1/2) representation, the (1/2, 1/2) representation, and so forth. The meaning
of these numbers will become clear in a moment.

The rotation part of a Lorentz transformation can be specified as before by a vector in
the direction of the rotation, with a length set equal to the rotation angle. The boost vector

1 “Proper” means that the determinant of the Lorentz transformation is positive. “Orthochronous” means
that the 00 component of the transformation is positive. These restrictions specify a continuous subgroup of
the Lorentz transformations; the other subgroups can be obtained with parity or time-reversal transformations.
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�η points in the direction of the (active) boost and has a magnitude equal to η = tanh−1 β,
where β = v/c.

Two matrices are then constructed, the first matrix R(j1)
1 has dimension D1×D1 where

D1 = 2j1 + 1; the second R(j2)
2 has dimension D2 × D2 where D2 = 2j2 + 1. These are

obtained by matrix exponentiation:

R(j1)
1 = exp

(
−i (�n + i�η) · �J(j1)

)

R(j2)
2 = exp

(
−i (�n − i�η) · �J(j2)

)
. (14.4)

We anticipate that the same instance of a Lorentz transformation could be applied to
different types of objects, (e.g. four-vectors, relativistic spinors, or tensors) and therefore
require that the class build the matrices upon demand, caching them in a map for later
use. Clients can then obtain a representation of the Lorentz group by requesting a pair
of matrices corresponding to chosen values of j1 or j2. In code, we prefer to search by the
integers D1 or D2 rather than j1 and j2 since there is no built-in datatype for half-integers.

Composition of Lorentz transformations is accomplished in the following way. First,
one obtains the j = 1/2 representation of R(1/2)

i for each of the two operands; these
are 2 × 2 complex matrices. Then, one multiplies the two matrices to obtain R, another
two-by two matrix. To recover the boost, one can invert the relation

R = exp
(−i �n + �η

2
· �σ
)

yielding

(−i �n + �η) · �σ = 2 log R

or
( −inz + ηz −inx + ηx − ny − iηy
−inx + ηx + ny + iηy inz − ηz

)
= 2 log R.

Linear combinations of the matrix elements of 2 log R can be taken to obtain the
components of �n and �η.

Implementation

The class LorentzTransformation in the Spacetime library implements Lorentz
transformations. The class is initialized with a rapidity vector �η and a rotation vector �n,
and has a law of composition. It returns two matrices, the return values from the methods
rep1 and rep2, which, as we shall outline later, can be used to transform any objects;
but if either of the dimensionalities D1 or D2 is one, then the representation is trivial and
the “matrix” is just the constant 1.0. An excerpt from the header file is shown below.
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class LorentzTransformation {

// Describes an active Lorentz Transformation. Has a law
of composition.

// Lorentz transformations act on rank-2 tensors, in
general:

//
// Weyl spinors: 1/2
// Dirac spinors 1/2 + 1/2
// Four-vectors 1/2 x 1/2.
// AntiSymmetric 4-Tensors 1 + 1
//
// It up to these objects to transcribe themselves into the

proper
// representation and apply the Lorentz Transformation,

which
// furnishes two matrices acting on the each piece of the

rank 2 tensor.

public:

// Constructor. By default it will make an identity
element.

LorentzTransformation();

// Constructor. Takes the rapidity vector and the rotation
vector:

LorentzTransformation(const ThreeVector & rapVector,
const ThreeVector & rotVector=

ThreeVector(0,0,0));

// Copy Constructor:
LorentzTransformation(const LorentzTransformation &

source);

// Composition:
LorentzTransformation operator *

(const LorentzTransformation & source);

// Get the dim-dimensional representation, matrix 1 and
matrix 2

const Eigen::MatrixXcd & rep1(unsigned int dim) const;



Rotations and Lorentz transformations 463

const Eigen::MatrixXcd & rep2(unsigned int dim) const;

// Get the rotation vector and the rapidity vector:
const ThreeVector getRotationVector() const;
const ThreeVector getRapidityVector() const;

// Gets the inverse rotation
LorentzTransformation inverse() const;

// Assignment operator
LorentzTransformation & operator=(const

LorentzTransformation & source);
...
};

Because the representation of the Lorentz group consists of two rotation matrices, we
foresee two methods rep1 and rep2, each taking a single parameter which is the
dimensionality of the matrix. In subsequent sections we will demonstrate some uses of
this class.

14.4 Rotations of vectors and other objects

In this section we will see how to apply rotations to various objects, starting with vectors.
Rotating other objects, particularly those that live in Hilbert space, will also be explored.

14.4.1 Vectors

The first and most obvious object upon which rotations must act are vectors. Our rotation
class can furnish 3 × 3 matrices; and while these matrices are not constructed to act on
the three-component vector directly, they are homomorphic to matrices which do. This
means, in practical terms, that we reassign the components x, y, z of an ordinary vector
to construct2

⎛

⎜
⎝

−x+iy√
2

z
x+iy√

2

⎞

⎟
⎠ .

We can rotate this three-component object using our matrices, and then take linear
combinations to extract the coordinates of the rotated object, x′, y′, z′. The class
ThreeVector implements vectors in Cartesian 3-space; these possess all of the familiar

2 If this looks peculiar consult Appendix C.V of (Messiah, 2014).
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operations (access to the coordinates, dot product, cross product, addition, subtraction,
scaling, unary minus, plus compound operations +=,-=,*=, and /=). Rotation of vectors
is implemented in the following function:

ThreeVector operator * (const Rotation & R, const ThreeVector
& v) {

typedef std::complex<double> Complex;
static const double sqrt2=sqrt(2.0);
// Fill a complex vector:
Eigen::Vector3cd

X(Complex(-v(0), +v(1))/sqrt2,
Complex(+v(2)),
Complex(+v(0), +v(1))/sqrt2);

// Rotate the complex vector:
Eigen::Vector3cd XPrime=R.rep(3)*X;

// Re-extract x,y,z values from the rotated complex vector.
return ThreeVector((XPrime(2)-XPrime(0)).real()/sqrt2,

(XPrime(0)+XPrime(2)).imag()/sqrt2,
XPrime(1).real());

}

Note that we do not define the operation of matrices upon ThreeVectors, which are
considered to be geometric rather than algebraic objects—in contrast to spinors which
are discussed next.

14.4.2 Spinors

Spinors are algebraic objects upon which rotations can act. They are complex two-
component column vectors representing the state of spin-1/2 particles in quantum
mechanics. The two basic states are:

| ↑〉 =
(

1
0

)
| ↓〉 =

(
0
1

)
.

Other orientations are possible, too: they are linear combinations α| ↑〉 + β| ↓〉, where α

and β are complex coefficients such that |α|2 + |β|2 = 1.
One possible implementation of spinors is to make them a subclass of Eigen::

Vector2cd. To rotate the spinor, one could directly apply the matrices of the j = 1/2
(D = 2) representation to the complex two-component vector:

Spinor operator * (const Rotation & R, const Spinor & X) {
return R.rep(2)*X;

}
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Note now that the generators of Section 14.2.1 do double duty. In addition to generating
the rotation, they serve as operators which act upon the spinors and which determine
the spin vector �vs representing the magnitude and direction of the spin. Specifically, for
spin 1/2, this is obtained from the spinor in the following way:

�vs = 〈s|�J(1/2)|s〉. (14.5)

This is implemented as follows:

ThreeVector spin(const Spinor & s) {
return ThreeVector((s.adjoint()*SU2Generator::JX(2)*s)(0,0)

.real(),
(s.adjoint()*SU2Generator::JY(2)*s)(0,0)

.real(),
(s.adjoint()*SU2Generator::JZ(2)*s)(0,0)

.real());
}

Before describing our implementation, we consider yet another category of objects that
are subject to rotations, namely generalizations of two-component spinors to objects of
higher dimension.

14.4.3 Higher dimensional representations

Spinors describe the quantum state of spin 1/2 particles. To describe states of angular
momentum beyond j = 1/2, we must employ higher dimensional representations of
the angular momentum group SU(2). The state of a spin-j system can be represented
as a vector in a 2j + 1 dimensional complex vector space. Physics has not bestowed a
great name to this object—some call it (improperly) a “representation of SU(2)”, others
overload the name “spinor” to refer to these higher dimensional complex vectors. We will
follow the latter tradition and refer to them as spinors. Matrices of the j representation,
of dimension D = 2j + 1, can be used to affect a rotation of these objects.

Let us require a class for all spinors, general enough to support the “normal” spin 1/2
spinors of dimension two as well as higher dimensional spinor representations. We can
do this by implementing Spinor as a template class, taking the dimensionality of the
representation, D, as a template parameter with a default value of 2, as follows:

template <unsigned int D=2>
class Spinor : public Eigen::Matrix<std::complex<double>,

D,1>

One can then instantiate a Spinor<2>, a Spinor<3>, and so forth. Our Spinor class,
declared in the file Spacetime/Spinor.h, has a default constructor and an initializer-
list constructor which one can use like this:
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Spinor<> s {1/sqrt(2),1/sqrt(2)};

The angle brackets are necessary and if no value is enclosed then the default value
D = 2 is taken. Spinors inherit all the basic functionality of Eigen::VectorXcd, i.e.,
of complex column vectors.

The implementation of rotations for the general D-dimensional spinor is straightforward:

template<unsigned int D>
inline Spinor<D> operator * (const Rotation & R, const Spinor

<D> & X) {
return R.rep(D)*X;

}

as is the implementation of the spin function:

template<unsigned int D>
inline ThreeVector spin(const Spinor<D> & s) {
return ThreeVector((s.adjoint()*SU2Generator::JX(D)*s)(0,0)

.real(),
(s.adjoint()*SU2Generator::JY(D)*s)(0,0)

.real(),
(s.adjoint()*SU2Generator::JZ(D)*s)(0,0)

.real());
}

Related objects: wavefunctions and spherical tensors

When j is an integer, the Spinor class can be used to represent other objects and
the effect of rotations upon them. In the central force problem, particular solutions to
the time-independent Schrödinger equation take the form of Eq. 11.26. The full, time-
dependent solution is in general a superposition of these solutions (eigenstates), together
with their time dependence, i.e.:

�(�r, t) =
∑

n

∑

l

l∑

m=−l

anlm
1
r

Unl(r)Y m
l (θ ,φ)e−iEnlmt/h̄. (14.6)

The shape of the wavefunction is encoded in the complex coefficients anlm. To rotate the
wavefunction we can act upon the coefficients: we arrange, for every value of n and l,
the 2l + 1 coefficients anl(m) into a Spinor of dimension D = 2l + 1. This can then be
rotated as any other spinor.

In Section 5.1.5 we discussed the multipole moments qlm of a charge distribution.
This is an example of a spherical tensor; for l = 2 it is the quadrupole tensor, for l = 3
the sextupole tensor, etc. Note that in general the moments are complex-valued. The
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components of a spherical tensor for a fixed value of l can be rotated by organizing the
coefficients qlm into a D = 2l + 1 spinor. Rotations are made as with any other spinor.

14.5 Lorentz transformations of four-vectors
and other objects

In this section we investigate objects that transform covariantly under Lorentz transfor-
mations. Some of these, like four-vectors and Weyl spinors correspond to irreducible
representations of the proper orthochronous Lorentz group, and others like Dirac
spinors correspond to reducible representations. A lot of mathematical jargon can be
thrown at the reader at this point, but we assume that you have had your fill, and focus
on one point: all irreducible Lorentz covariant objects can be cast in the form of a
(2j1 +1)× (2j2 +1) dimensional matrix. Lorentz transformations of these objects can be
affected by simultaneously left-multiplying and right-multiplying by the matrices R(j1)

1

and R(j2)T
2 from Eq. 14.4. Reducible Lorentz-covariant objects can be represented as

direct sums of irreducible objects.
As a quick guide to the following sections: four-vectors can be transformed as

2 × 2 complex matrices; Weyl spinors can be transformed exactly as they are normally
represented, i.e. as two-component spinors; and Dirac spinors can also be transformed
as they are represented—in this case as a sum of two Weyl spinors, or if you prefer, a
four-component spinor.

14.5.1 Four-vectors

A four-vector is a basic geometric entity arising in special relativity. The archetypical
four-vector is the spacetime four-vector with components (ct, x, y, z) or (x0, x1, x2, x3).
A common four-vector represents energy and momentum as (E, �p) (in units where
c = 1). E is the relativistic energy E = mγ of a particle and �p is the relativistic
momentum �p = m �βγ . A decent four-vector class should include the basic operations
of addition, subtraction, and scaling, the compound operations +=, -=, *=, and /=, and
the dot product between two four-vectors a · b = aμbμ. As is likely familiar, aμ denotes
the “covariant” components (a0, a1, a2, a3)=(a0, −a1, −a2, −a3) and bμ denotes the
contravariant components (b0, b1, b2, b3). Summation over repeated indices is implied.
This dot product is invariant under simultaneous Lorentz transformations of the two
four-vector operands.

Usually four-vectors are real-valued objects, but in one particular situation complex-
valued four-vectors are needed. The polarization of a massive spin-1 particle propagating
along the z direction is represented by the polarization vectors describing longitudinal
(0) and transverse (x,y) polarization:

ε0 = (βγ , γ β̂)

εx = (0, 1, 0, 0)

εy = (0, 0, 1, 0)
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however, often one takes longitudinal, right- and left- handed polarization vectors,

ε0 = (βγ , γ β̂)

εR = (0,−1,−i, 0)/
√

2

εL = (0, 1,−i, 0)/
√

2

as basis states; for massless spin-1 particles the longitudinal state is absent.
We implement two classes, FourVector and ComplexFourVector, by instantiat-

ing our template class BasicFourVector, using double as the underlying datatype
for the former and std::complex<double> for the latter. These classes have the
expected operations (addition, subtraction, scaling, dot product, norm, abs, plus
compound operations +=,-=,*=). In addition they may be acted upon by Lorentz
transformations (with operator *).

The way this works is as follows. First, one forms a complex 2 × 2 matrix from the
components of xμ:

X =
( −x1 + ix2 x3 + x0

x3 − x0 x1 + ix2

)

Then, after obtaining the rotation matrices R(1/2)
1 and R(1/2)

2 from the Lorentz
transformation, the product:

X′ = R(1/2)
1 X · (R(1/2)

2 )T

is formed. The elements of X′ are:

X′ =
( −x1′ + ix2′ x3′ + x0′

x3′ − x0′ x1′ + ix2′
)

.

Components of the transformed four-vector, x′=(x0′, x1′, x2′, x3′) are obtained by taking
linear combinations of the elements of X′. These are stuffed back into a new four-vector
(real or complex) and returned.

14.5.2 Weyl spinors

Weyl spinors are complex-valued two-component column vectors. They are used to
represent massless spin 1/2 particles. It was long thought that neutrinos provided a
concrete example—but no longer! Neutrinos are now known to have a mass, leaving the
Weyl spinors completely out of the game until further notice. Nonetheless, they are still
an excellent approximation given that neutrino masses are exceedingly small. In addition,
the Dirac spinors, considered next, are simply a direct sum of two Weyl spinors.

Weyl spinors come in two-varieties, left-handed and right-handed. In our library, these
are called WeylSpinor::Left and WeylSpinor::Right. Unlike ordinary spinors,
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Weyl spinors are normalized to the energy of the particle that they represent, i.e. such that
χ† · χ = E.

In a Lorentz transformation, the right-handed Weyl spinor is acted upon by the matrix
R(1/2)

1 , while the left handed Weyl spinor is acted upon by R(1/2)
2 (see Eq. 14.4). That’s

all there is to it. The implementations are:

WeylSpinor::Right operator*(const LorentzTransformation & L,
const WeylSpinor::Right & s) {

return L.rep1(2)*s;
}

WeylSpinor::Left operator * (const LorentzTransformation & L,
const WeylSpinor::Left & s) {

return L.rep2(2)*s;
}

As with ordinary spinors, it is possible to retrieve the spin orientation from the Weyl
spinor; the only difference is that the alternative normalization must be accounted for,
so instead of Eq. 14.5, one has:

�vs = 〈s|�J(1/2)|s〉
〈s|s〉 . (14.7)

This is implemented as:

ThreeVector spin(const WeylSpinor &s)
double E= (s.adjoint()*Eigen::Matrix2cd::Identity()*s)(0,0)

.real();
return ThreeVector((s.adjoint()*SU2Generator::JX(2)*s)(0,0)

.real()/E,
(s.adjoint()*SU2Generator::JY(2)*s)(0,0)

.real()/E,
(s.adjoint()*SU2Generator::JZ(2)*s)(0,0)

.real()/E);

We can also obtain the four-momentum from the Weyl spinors! Conceptually, the
momentum of a right-handed particle is equal to its energy, since the particle is
massless. The energy therefore determines the magnitude of the momentum. The
direction of momentum coincides with the direction of the spin. This can be written
compactly as:

(E, �p) = 〈s|(I, �σ)|s〉. (14.8)
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In code:

FourVector fourMomentum(const WeylSpinor::Right &s) {
using namespace SpecialOperators;
return FourVector(

(s.adjoint()*sigma0*s)(0,0).real(),
(s.adjoint()*sigma1*s)(0,0).real(),
(s.adjoint()*sigma2*s)(0,0).real(),
(s.adjoint()*sigma3*s)(0,0).real());

}

For left-handed Weyl spinors, the four-momentum is obtained from:

(E, �p) = 〈s|(I,−�σ)|s〉. (14.9)

The Pauli matrices sigma0, sigma1, sigma1, sigma1 and other useful operators are
defined in the header file Spacetime/SpecialOperators.h and are scoped within
the namespace SpecialOperators. The reader can use the Spacetime library to
verify that the two four-vectors

FourVector f1=L*fourMomentum(s);
FourVector f2=fourMomentum(L*s);

are identical as they ought to be. Here L is a Lorentz transformation and s is a Weyl
spinor:

LorentzTransformation L(ThreeVector(0,0,1)); // e.g.
WeylSpinor::Left s(1,0); // e.g.

14.5.3 Dirac spinors

Dirac spinors represent spin 1/2 particles in relativistic quantum mechanics. They exist
in two varieties, denoted as u (representing particles) and v (antiparticles). The spinors
u and v represent distinct objects, though they both have four complex components. The
following expressions represent spin 1/2 particles and antiparticles at rest, in the “Weyl
representation”, which is particularly useful for expressing the effect of rotations and
Lorentz transformations:

u+ = √
m

⎛

⎜⎜
⎝

1
0
1
0

⎞

⎟⎟
⎠ u− = √

m

⎛

⎜⎜
⎝

0
1
0
1

⎞

⎟⎟
⎠ v+ = √

m

⎛

⎜⎜
⎝

−1
0
1
0

⎞

⎟⎟
⎠ v− = √

m

⎛

⎜⎜
⎝

0
1
0
−1

⎞

⎟⎟
⎠

(14.10)
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These spinors are normalized such that u† · u = v† · v = 2m, for particles at rest. The
spinors can be rotated, Lorentz-boosted, or a combination of both. The generic Lorentz
transformation acts on the Dirac spinor by acting on the upper two-components with
the spin-1/2 with R(1/2)

1 and on the lower two components with R(1/2)
2 .

Dirac spinors are represented by the following class:

class DiracSpinor : public Eigen::Vector4cd
{
public:

// Default Constructor constructs null spinor
DiracSpinor();

// Constructor
DiracSpinor(const std::complex<double> & s0,

const std::complex<double> & s1,
const std::complex<double> & s2,
const std::complex<double> & s3
);

...
};

which inherits from an Eigen four-component column vector. A generic Lorentz
transformation can be affected using operator *; the implementation of this function
is again simple:

DiracSpinor operator * ( const LorentzTransformation & T,
const DiracSpinor & s) {

//
// This computation is carried out in the Weyl

representation. Top part
// according to the left handed representation, bottom

according to the
// right handed representation:
DiracSpinor result;
Eigen::Vector2cd sL=T.rep2(2)*s.head(2);
Eigen::Vector2cd sR=T.rep1(2)*s.tail(2);
result.head(2)=sL;
result.tail(2)=sR;
return result;

}
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Because the Dirac spinor represents a spin 1/2 particle, we will be interested in
recovering properties of the particle from the spinor. The spin of the particle is obtained
by forming the product:

s† · �S · s

where s is a Dirac spinor and �S is a vector of matrices:

�S =
( �σ 0

0 �σ
)

. (14.11)

We introduce the Dirac matrices, γ μ, to extract the four-momentum of the
particle:

(γ 0, γ i) =
((

0 I
I 0

)
,
(

0 σi
−σi 0

)
.
)

(14.12)

The Dirac adjoint, defined by:

s̄ = s†γ 0

is also useful.
The gamma matrices are constant matrices, like the Pauli spin matrices, and are

declared in the header file SpecialOperators.h. The Dirac adjoint operation is
defined in the DiracSpinor.h header:

DiracSpinorBar bar(const DiracSpinor & s);

A DiracSpinorBar, also defined in DiracSpinor.h, is a complex four-component
row vector.

With these definitions, the four-momentum associated with a Dirac spinor is:

pμ = 1
2

s · γ μ · s, (14.13)

the factor of two being due to the normalization. The spin and four-momentum functions
have been implemented in the routine:

// Return the Four-momentum of this Dirac Spinor
FourVector fourMomentum(const DiracSpinor &s);

// Return the Spin (magnitude and direction)
ThreeVector spin(const DiracSpinor &s);
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Therefore, as with Weyl spinors, the operations

FourVector f1=L*fourMomentum(s);
FourVector f2=fourMomentum(L*s);

give the same thing.

14.5.4 Tensors of higher order

Finally, we consider the action of Lorentz transformations on higher order tensors. In
particular, antisymmetric rank two tensors frequently occur in nature; the prime example
is the electromagnetic field tensor, Fμν , μ, ν = 0, 1, 2, 3, defined by:

Fμν =

⎛

⎜⎜⎜
⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞

⎟⎟⎟
⎠

. (14.14)

Antisymmetric rank two tensors have six independent elements, out of which we can
make two three-component complex vectors:

�S1 =
⎛

⎜
⎝

−T1,0 − T1,3 − iT3,2 + iT2,0

T3,0 + iT2,1

T1,0 − T1,3 + iT3,2 + iT2,0

⎞

⎟
⎠ , �S2 =

⎛

⎜
⎝

−T1,0 + T1,3 + iT3,2 + iT2,0

T3,0 − iT2,1

T1,0 + T1,3 − iT3,2 + iT2,0

⎞

⎟
⎠ .

(14.15)

For Tμν = Fμν , these vectors are just �S1 = �E + i �B and �S2 = �E − i �B. A Lorentz
transformation acts upon these vectors in the following way:

�S′
1 = R(1)

1 · �S1 (14.16)

�S′
2 = R(1)

2 · �S2 (14.17)

To implement Lorentz transformations on these objects, one unpacks the antisym-
metric tensor into the vector, applies the above transformations to the two vectors, and
then takes linear combinations of their elements to construct the transformed rank two
tensor. Here is our implementation:

AntisymmetricFourTensor operator *(const
LorentzTransformation & L, const AntisymmetricFourTensor
& v) {

typedef std::complex<double> Complex;
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Complex I(0,1);
const double sqrt2=sqrt(2.0), sqrt8=sqrt(8);

Eigen::Vector3cd
S1((-v(1,0)-I*v(3,2) + I*v(2,0)-v(1,3))/sqrt2,

v(3,0)+I*v(2,1),
(v(1,0)+I*v(3,2) + I*v(2,0)-v(1,3))/sqrt2);

Eigen::Vector3cd
S2((-v(1,0)+I*v(3,2) + I*v(2,0)+v(1,3))/sqrt2,

v(3,0)-I*v(2,1),
(v(1,0)-I*v(3,2) + I*v(2,0)+v(1,3))/sqrt2);

Eigen::Vector3cd S1Prime=L.rep1(3)*S1, S2Prime=L.rep2(3)*
S2;

AntisymmetricFourTensor T;
T(1,0) = real(S1Prime(2)-S1Prime(0) + S2Prime(2)-

S2Prime(0))/sqrt8;
T(2,0) = real (-I*(S1Prime(2)+S1Prime(0)+S2Prime(2)+

S2Prime(0)))/sqrt8;
T(3,0) = real(S1Prime(1)+S2Prime(1))/2.0;

T(3,2) = imag(S1Prime(2)-S1Prime(0) - S2Prime(2) +
S2Prime(0))/sqrt8;

T(1,3) = imag (-I*(S1Prime(2)+S1Prime(0)-S2Prime(2)-
S2Prime(0)))/sqrt8;

T(2,1) = imag(S1Prime(1)-S2Prime(1))/2.0;
return T;

}

We could continue with tensors of higher order, but at this point we have illustrated
the general idea—a universal computational approach to both rotations and Lorentz
transformations based on representations of SU(2)—with objects that are perhaps the
most useful in physics.

14.6 The helicity formalism

One of the applications of the ideas in this chapter is the computation of angular
distributions in the scattering and decay of elementary particles. The topic goes by the
name of the helicity formalism and is developed in a series of papers originating with
that of Jacob and Wick (1959). An accessible treatment is also available in (Richman,
1984). In this section we show how the helicity formalism can be used to predict
angular distributions in two-body decays, and sequential two-body decays. The helicity
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formalism does not allow us to compute the distributions from first principles — for that,
the Feynman calculus, described in the next chapter, is needed. However it does allow
us to express angular distributions in terms of a few unknown amplitudes that depend
upon the spin of mother and daughter particles, as well as their polarizations.

Consider the case of a mother particle with spin J decaying into two particles, daughter
1 and daughter 2, with spins j1 and j2. Throughout this section, we work in the center-of-
mass of the mother particle, so that the daughter particles are back-to-back. The z axis
of a Cartesian coordinate system will be taken as the quantization axis. Let the particle
be polarized such that its spin projection along the z axis is M, and label this initial state
with the quantum numbers J and M:

|i〉 ≡ |J, M〉.

The polar and azimuthal angles of daughter 1 will be denoted θ , φ. Each daughter
particle is characterized by its helicity, or the projection of its angular momentum onto
its direction of motion. We call these helicities λ1 and λ2 and note that they can take
values from −j1,−j1 +1, . . . ji −1, ji and −j2,−j2 +1, . . . j2 −1, j2, respectively. The final
state is labelled as follows:

| f 〉 ≡ |θ ,φ; λ1, λ2〉

The amplitude for the process i → f is the S-matrix element:

Ai→f (θ ,φ) ≡ 〈 f |U |i〉 ≡ 〈θ ,φ; λ1, λ2|U |J, M〉 (14.18)

where U is the time development operator. The associated probability density is:

ρλ1λ1(θ ,φ) = |〈θ ,φ; λ1, λ2|U |J, M〉|2. (14.19)

We insert a complete set of daughter-particle states:

Ai→f (θ ,φ) =
∑

j,m

∑

λ′1,λ′2

〈θ ,φ; λ1, λ2| j, m; λ′
1, λ′

2〉〈j, m; λ′
1, λ′

2|U |J, M〉 (14.20)

Since the interaction conserves angular momentum:

〈 j, m, λ′
1, λ′

2|U |J, M〉 = δjJδmMAJ
λ′1,λ′2

(14.21)

where AJ
λ′1,λ′2

is a complex constant. So

Ai→f (θ ,φ) =
∑

λ′1,λ′2

〈θ ,φ; λ1, λ2|JM; λ′
1, λ′

2〉AJ
λ′1,λ′2

. (14.22)
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The state 〈θ ,φ; λ1, λ2| is related via a rotation operator to the same state with particle 1
along ẑ:

〈θ ,φ; λ1, λ2| = 〈0, 0, λ1, λ2|R† (14.23)

where R is a rotation by the angle θ about the axis (− sinφ, cosφ, 0); this rotation brings
the z axis into line with the direction n̂ = (sin θ cosφ, sin θ sinφ, cos θ), i.e., the direction
of daughter 1. Note that 〈0, 0, λ1, λ2| has a spin projection along the z axis of λ = λ1−λ2;
it is thus a pure angular momentum state with quantum numbers j = J and m = λ.
Including an extra factor for proper normalization, we have:

〈0, 0, λ1, λ2| =
√

2J + 1
4π

〈 J, λ; λ1, λ2| (14.24)

and therefore:

Ai→f (θ ,φ) =
√

2J + 1
4π

∑

λ′1,λ′2

〈 Jλ; λ1, λ2|R†|JM; λ′
1, λ′

2〉AJ
λ′1,λ′2

. (14.25)

This simplifies because the matrix element of the rotation operator does not depend on
the helicity labels, thus one can simply write:

Ai→f (θ ,φ) =
√

2J + 1
4π

〈Jλ|R†|JM〉AJ
λ1,λ2

. (14.26)

The factor
√
(2J + 1)/(4π) assures that:

∫ ∣∣Ai→f (θ ,φ)
∣∣2 d� = |AJ

λ1,λ2
|2. (14.27)

This formalism yields a recipe for computing the angular distribution of a decay
amplitude of this type (one particle to two):

• Represent the initial state as a 2J+1 dimensional spinor χi , configured to represent
the spin orientation of the initial state. For example: for a spin-1 particle , the spin-
up configuration is represented by χi = (1, 0, 0)T , spin down by χi = (0, 0, 1)T , and
the “longitudinally polarized” state with m = 0 is represented by χi = (0, 1, 0)T . Of
course any arbitrary polarization state can also be represented by the appropriate
spinor.

• The (unrotated) final state is likewise represented by a spinor χf in the 2J + 1
dimensional Hilbert space, whose magnetic quantum number is m = λ. For
example, considering a final state of two spin 1/2 particles, when λ1 = +1/2
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and λ2 = +1/2, then χf = (0, 1, 0)T ; when λ1 = +1/2 and λ2 = −1/2, then
χf = (1, 0, 0)T , and when λ1 = −1/2 and λ2 = −1/2, then χf = (1, 0, 0)T .

• Construct a rotation about the axis (− sinφ, cosφ, 0) by the angle θ ; obtain the
matrix of the J-representation from the rotation (call it R).

• Compute:

Ai→f (θ ,φ) =
√

2J + 1
4π

χT
f · R†χi (14.28)

The square magnitude of this expression gives the properly normalized angular
distribution.

A simple example is the decay of a W− boson, a spin-one particle, into an electron
plus an antineutrino. The electron helicity can be +1/2 or –1/2; in the former case the
electron is said to right-handed while it the latter case it is left-handed. Nature is not
equitable, it turns out, with regard to right-and left-handed electrons. The only possible
transition from a W− boson is to left-handed electrons and right-handed antineutrinos.
So if we call the electron “particle 1” and the neutrino “particle 2”, we have λ1 = −1/2,
λ2 = +1/2 and λ = λ1 − λ2 = −1; therefore the final state spinor is χf = (0, 0, 1)T . The
initial state depends on the polarization of the W−; if the spin is oriented along the z axis,
then m = 1 and the spinor for the W -boson is χi = (1, 0, 0)T . Code that computes the
related squared amplitude is:

double ASQ (double cosTheta) {
Spinor<3> chiInitial={1,0,0};
Spinor<3> chiFinal ={0,0,1};
Rotation R(ThreeVector(0,-acos(cosTheta),0));
return 3.0/4.0/M_PI norm(((R*chiFinal).adjoint()*

chiInitial)(0) );
};

The full program can be found in EXAMPLES/CH14/WDECAY. This example is
simple but unusual because only one helicity state is present in the final state. A more
complicated decay is J/ψ → μ+μ−; as in the previous example this is (spin 1) → (spin
1/2) + (spin 1/2), but now three configurations may exist in the final state. For a J/ψ
polarized along z, the full angular distribution can be written as:

ρ(θ ,φ) = 3
4π

|A 1
2 , 1

2
|2
∣∣∣∣∣∣

(
0 1 0

) · R† ·
⎛

⎝
1
0
0

⎞

⎠

∣∣∣∣∣∣

2

+ 3
4π

|A− 1
2 ,− 1

2
|2
∣∣∣∣∣∣

(
0 1 0

) · R† ·
⎛

⎝
1
0
0

⎞

⎠

∣∣∣∣∣∣

2
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+ 3
4π

|A 1
2 ,− 1

2
|2
∣∣∣∣∣∣

(
1 0 0

) · R† ·
⎛

⎝
1
0
0

⎞

⎠

∣∣∣∣∣∣

2

+ 3
4π

|A− 1
2 , 1

2
|2
∣∣∣∣∣∣

(
0 0 1

) · R† ·
⎛

⎝
1
0
0

⎞

⎠

∣∣∣∣∣∣

2

(14.29)

assuming that one does not distinguish the helicities of the final state particles.
Certain simplifications can be made from conservation laws. We have seen already

that only left-handed fermions and right-handed antifermions are produced in W− decay
(more generally in charged weak decays). In the case of the J/ψ decay, which is mediated
by the electromagnetic interaction, helicity conservation excludes the final states in which
both muons are right-handed or both are left-handed (in the limit of massless fermions);
therefore A 1

2 , 1
2
=A− 1

2 ,− 1
2
= 0. Moreover, CP conservation requires that A− 1

2 , 1
2
=A 1

2 ,− 1
2
.

So only two terms in Eq. 14.29 are nonzero. With these considerations taken into account,
the decay can be computed as:

double ASQ (double cosTheta) {
Spinor<3> chiInitial={1,0,0};
Spinor<3> chiFinal1 ={0,0,1};
Spinor<3> chiFinal2 ={1,0,0};
Rotation R(ThreeVector(0,-acos(cosTheta),0));
return 3.0/4.0/M_PI*(norm(((R*chiFinal1).adjoint()*

chiInitial)(0)) +
norm(((R*chiFinal2).adjoint()*

chiInitial)(0)));
};

The full example can be found in EXAMPLES/CH14/JSPIDECAY.
Things get even more interesting in sequential (or cascade) decays. Consider the

decay B0 → J/ψK0∗, which is followed by the decays J/ψ → μ+μ− and K∗0 → K+π−.
The J/ψ decay has been discussed above; while the K0∗ (a spin-1 particle), decays into
a K+ (spin 0) and a π− (also spin 0). The final state is μ+μ−K0π+; however this is in
fact four final states (two in the limit of massless muons) that are distinguished by the
helicities of the muons. We take them one at a time, computing the angular distributions
for each final state separately before summing them — unless we are planning to spin-
analyze the decay products and distinguish the four final states, which is a practically
impossible task. Each final state can be reached through any of three intermediate states
S, which have the angular momentum quantum numbers of the parent B0 meson:

• Right-handed J/ψ , right-handed K0∗, called S = RR

• Left-handed J/ψ , left-handed K0∗, called S = LL

• Longitudinal J/ψ , longitudinal K0∗, called S = 00
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where “longitudinal” implies a spin projection of zero. The angular distribution is a joint
probability density in six variables: θB and φB are the polar and azimuthal angles of the
decay B0 → J/ψK0∗ in the rest frame of the B0; θJ and φJ are the polar and azimuthal
angles of the decay J/ψ → μ+μ− in the rest frame of the J/ψ ; and θK and φK are the
polar and azimuthal angles of the decay K−∗ → K+π− in the rest frame of the K0∗. For
the decays of the daughter particles J/ψ and K0∗, the calculation is performed using the
direction of motion of the particle as the quantization axis.

The angular distribution for each of the four final states is:

ρ(θB,φB, θJ ,φJ , θK ,φK |λμ+ , λμ−)

=
∣∣∣∣∣∣

∑

S∈{LL,RR,00}
AB0→J/ψK0∗
S (θB,φB)A

J/ψ→μ+μ−
λμ+ ,λμ− (θJ ,φJ |S)AK0∗→K+π=

0,0 (θK ,φK |S)
∣∣∣∣∣∣

2

where the amplitudes AB0→J/ψK0∗
S (θB,φB), AJ/ψ→μ+μ−

λμ+ ,λμ− (θJ ,φJ |S) and AK0∗→K+π=
0,0

(θK ,φK |S) are calculated according to Eq. 14.28. For the amplitudes in J/ψ and K0∗
decays, the dependence on the intermediate state S is through the polarization of the
intermediate particle.Then, the final probability density is:

ρ(θB,φB, θJ ,φJ , θK ,φK ) =
∑

λμ+ ,λμ−
ρ(θB,φB, θJ ,φJ , θK ,φK |λμ+ , λμ−)

Most frequently one finds analytic expressions for simple decays such as these in
the physics literature. They are possible because analytic expressions for elements of
the rotation matrix exist and are well known. They are called the Wigner D-functions,
and they are written in terms of Euler angles. Every educated person needs to know
about these in order to follow developments in the quantum physics over the last half
century or so. However, we have skillfully avoided any mention of them until now; which
indicates that they are not essential for computational work if one is prepared to handle
the rotation group abstractly as we have done in this chapter. As a learning strategem,
the approach takes one’s attention from the minutia of complicated formulae for the
D-functions and focuses it instead on the essentials of rotations and the abstract objects
upon which they act.

As a final point, we note that the rotation which carries the z axis into the unit vector
n̂ = (sin θ cosφ, sin θ sinφ, cos θ) is not unique. We have made the simplest choice. Other
choices correspond to different overall phases in the transition amplitudes. Our rotation
corresponds to the Jackson (1965) phase convention. It is less commonly used in the
physics literature than the Jacob-Wick (Jacob and Wick, 1959) phase convention, but is
simpler to construct.

14.7 Exercises

1. The following is a recipe for constructing the spherical harmonic Y m
l (θ ,φ). Take

r̂ ≡ (sin θ cosφ, sin θ sinφ, cos θ). Take the direction of rotation to lie along r̂ × ẑ
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and the angle of rotation to be cos−1 r̂ · ẑ. From this axis and angle construct the
rotation matrix R(l). The middle column of this matrix multiplied by

√
(2l + 1)/4π

contains the spherical harmonics Y l
l (θ ,φ), Y l−1

l (θ ,φ)...Y−l
l (θ ,φ). Try this and plot

the results. Perform a comparison with a brute force computation of the spherical
harmonics. Note, the basis for the rotation matrix R(l) has m = l in the first row,
m = l − 1 in the second, m = −l in the last.

2. Write a visualization program to render radiation patterns and use it to visualize
dipole, quadrupole, sextupole, octupole, etc radiation patterns. Start by setting the
axis of symmetry equal to the z-axis. Then, use the rotation matrices in the 2L + 1
representation of the rotation group to rotate the radiation pattern and check with
your visualization program that you obtain the expected result.

3. An eigenstate of angular momentum has j = 3/2 and m= 3/2. The state is rotated
about the x-axis. On a single set of axes, plot the probability for the rotated state to
have m= 3/2, m= 1/2, m= − 1/2, m= − 3/2, as a function of the rotation angle θ

over the range [0,4π]. Then, plot the real and imaginary parts of the amplitude. Do
the same for the state j = 2, m= 2, plotting the probability and the amplitude for the
rotated state to have m= 2, m= 1, m= 0, m= − 1, and m= − 2.

4. A conventional way to transform four vectors under a general proper Lorentz trans-
formation is to act upon the four vector with a 4×4 real matrix. The antisymmetric
field tensor is transformed by applying the matrix twice: F′ =��F. Devise a scheme
for constructing this matrix from the LorentzTransformation class. Use it in
a few test cases to apply

• a pure rotation

• a pure boost

to

• a purely spacelike four-vector

• a purely timelike four-vector

• a purely electric antisymmetric field tensor

• a purely magnetic antisymmetric field tensor

and check that the result agrees with the transformations as implemented in the
Spacetime library.

5. A massive spin 1/2 particle has momentum along z and is also spin-polarized
along z. Using Dirac spinors, verify numerically that the helicity is p̂ · �s where �p
is the momentum and �s is the spin is invariant to rotations. Do this for both spin
orientations.

6. Write a routine to compute the decay amplitude for a massive particle of mass M
into two daughters of mass m1 and m2. Your routine should take the four-vector pμ0 of
the massive particle and return the four-vectors pμ1 and pμ2 of the two daughters. Let



Rotations and Lorentz transformations 481

the decay of the massive particle be isotropic in the rest frame of the massive particle.
Plot the average opening angle of the two daughter particles (in the laboratory
frame) as a function of the energy divided by the mass E/M of the massive particle.
Check that the invariant mass-squared of the final state equals that of the initial state,
i.e. (pμ1 + pμ2 )

2 = (pμ0 )
2.

7. Re-using or modifying your code from the previous problem, generate sequential
decays

B0(5280 MeV) → J/ψ(3097 MeV)K0∗(892 MeV)

followed by:

K0∗(892 MeV) → K+(494 MeV)π−(140 MeV)

and:

J/ψ(3097 MeV) → μ+(105 MeV)μ−(105 MeV)

under the (false) assumption that all decays are isotropic. Check the invariant masses
of the muon pair, the K+π− pair, and the μ+μ−K+K− system.

8. Write a visualization program to view the four-vectors generated in Exercise 7. Color
the lines so that you can recognize each particle.

9. Write a routine to compute the joint probability density ρ(θB,φB, θJ ,φJ , θK ,φK )

for the decay B0 → J/ψK0∗. Build in all the constraints on the decay amplitudes
in J/ψ →μ+μ− that have been discussed in the text. The routine should be
parameterized on the amplitudes A00, ARR, and ALL . Plot the following quantities:

• the angle between the decay plane of the K0∗ and the J/ψ , in the B0 rest frame.

• the angle between the direction of the μ+ and the B0, in the J/ψ rest frame.

• the angle between the direction of the K+ and the B0, in the K0∗ rest
frame.

Do this for various combinations of A00, ARR, and ALL .

10. Revisit Exercise 7, except generate the decay angles according to the joint probability
distribution of Exercise 9. These depend upon the complex amplitudes. Remake
the plots of Exercise 9, but in two ways: first using the angles that you generate, and
second, using angles that you reconstruct from the four-vectors. Compare the plots.
Work out all of the bugs until they agree.

11. [P] Write a general purpose package to compute the joint probability distribution of
kinematic angles for an arbitrary sequence of two-body decays. Some suggestions
for writing this library follow. First, write a class to describe relevant (to this project)
information about each particle: namely the spin information. Arrange for objects
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of this class to hold pointers to child objects so that you can configure an arbitrary
decay tree. At the top of the tree, specify the polarization of the first mother. Your
code should determine the possible spins of all the daughters–and create parameters
for the magnitude and phase (alternately, real and imaginary part) of each allowed
transition. Thus far you have only built the control structures for your joint PDF.
Now, use that to produce a probability density given the value of all the angles that
describe the decay. Then build the test program that allows you to visualize the PDF.

12. [P] Rotations and Visualization.
Computations with rotations can be confusing and visual checks are always help-
ful. Write an algorithm to translate the Rotation class of this chapter to the
SoRotations of the Coin library. Then write a program to visualize the decay
of the H →W+W− followed by W+ → e+ν and W− → e−ν. Display the particles
as arrows and render the decay angles as they would appear in the center-of-mass
frame of the decaying particle.

..........................................................................................
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15.1 Stochastic systems

The mechanical systems that we first encounter in physics have a certain appeal because
of their predictable and deterministic nature. These systems are often modeled by
ordinary or partial differential equations whose solutions can be regarded as a temporal
simulation.

Many systems, however, are governed by stochastic or random behavior. Examples
are the radioactive decay of nuclear isotopes or subatomic particles, the production
of secondary particles in a shower of cosmic rays, or the scattering of alpha particles
from gold nuclei. Quantum mechanics is the ultimate source of randomness in these
processes. In some fully deterministic systems our ignorance of the exact state of the
system (e.g., molecules in a gas) constitutes an additional source of randomness.

Physical systems are not completely random. Instead of the Newtonian certainty
about the values of dynamic or thermodynamic variables, we console ourselves with the
twentieth century concept of probabilities and probability densities. Instead of following

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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a single dynamical system as it evolves according to a Hamiltonian, one is obliged to
throw virtual dice as a system evolves; therefore an understanding of the system comes
from studying ensembles of virtual experiments called pseudoexperiments.

15.2 Large scale simulation

The ATLAS collaboration is an international team of scientists who built and operate one
of two detectors at the world’s highest energy particle collider, the LHC. Prior to LHC
operations, in 2008, the ATLAS collaboration at the LHC embarked on a remarkable
exercise. A complete dataset of the anticipated proton-proton collisions was synthesized
and distributed to hundreds of physicists to be analyzed as if it were real collider data. The
result was published in a three-volume, 1800 page document (ATLAS Collaboration,
2008) called Expected performance of the ATLAS detector. Figure 15.1 appeared on the
cover of volume three.

The figure shows the production and the decay of the Higgs boson, whose discovery
was announced on July 4, 2012 (The ATLAS Collaboration, 2012, and The CMS
Collaboration, 2012). This means that the image appeared a little less than four years
before the discovery. The event in Figure 15.1 was born in a digital computer—the
display shows the simulated digital signals left behind by simulated particles from a
simulated collision, as they passed through a simulated detector.

Figure 15.1 A simulated Higgs event in the ATLAS detector at the LHC. Image courtesy of CERN.
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The simulation starts with the collision of two protons (henceforth we drop the word
“simulated” from every sentence). Within the protons, quarks and gluons are moving
with nearly random relativistic momenta. A pair of quarks and/or gluons are selected at
random; their color and flavor are also chosen randomly, and their momenta are drawn
from a probability distribution called a parton density function.

A fundamental process leading to the production of a Higgs is then simulated. This
process is quantum mechanical, thus the production angle of the Higgs boson, the
number of additional particles that are spewed out along with the Higgs boson, and their
angles are all not predictable; however the distributions of these quantities can (more or
less) be predicted by the theory of the strong, weak, and electromagnetic interactions.
Thus the simulation draws these quantities from the relevant probability distributions.

Figure 15.1 displays a particular decay mode of the Higgs; H0 → Z0Z0. The Z0 is the
intermediate vector boson that transmits the neutral weak force. For one of the Z0’s, the
decay Z0 → e+e− was simulated, for the other Z0 → μ+μ−. The muons are indicated
by yellow lines in the figure.

The angular distribution of the decay is again not predictable, but is instead drawn
at random from the applicable distribution. These particles are then propagated in a
deterministic way through the magnetic field. Muons, being unstable over large distance
scales, are given an opportunity to decay in flight after a random time. In traversing the
detector, however, material is encountered, such as silicon sensors. When the electrons or
muons enter this material, they interact in several ways. Some processes, like ionization
energy loss, occur continuously along the path of the particle. Others, like bremsstrahlung
of hard photons, nuclear interactions or δ−ray production, occur catastrophically at
precise locations.

The energy left behind in these processes is the basis for the simulated detector
response—the green dots along the yellow lines, for example, indicate the response of
a straw tracker. The tracks eventually reach more dense material called a calorimeter,
which the muons are able to penetrate. On the other hand, electrons tend to brems hard
photons; these photons then either Compton scatter or pair produce electron-positron
pairs. These, in turn, can brems more photons. The process continues until the entire
energy of the incident electron, some tens of billions of electron volts, is degraded into
a shower of low-energy particles. It is this shower that produces a visible signal in the
detector, shown as red clumps of energy in the figure.

Along with this picture, the document (ATLAS, 2008) presented detailed studies of
many other processes that were based on simulated data. Some of the processes have
now actually been produced in real collisions, while others are hypothetical processes,
some of which have since been proven not to have taken place at the LHC. Hundreds of
Ph.D theses were produced during this time, supported by synthetic data produced on
a huge and widely distributed computing grid. The synthetic data were presented and
studied in much the same way as real data. They were crucial to many studies conducted
during that period, and continue to be important (even with real data in hand) to predict
the response of the detector to various signals.

The simulation program that produced all of this was a major endeavor on the part of
a large team and a represented a substantial capital investment. We are not about to train
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you to start assembling an infrastructure this large, but we can show you what building
blocks are required in a way that allows you to simulate simple systems and begin to
understand larger ones.

15.3 A first example

The type of simulation described in the last section is called “Monte Carlo” and the
main underlying computational technique behind all of this simulation is distribution
sampling, such as we have already discussed in Chapter 7. The Higgs boson is a spin-
0 particle which is unpolarizable and therefore the emission of any decay product
occurs in a completely isotropic fashion. A simulation program, having first defined a
Cartesian coordinate system, generates the cosine of the polar angle cos θ according to
a flat distribution over the interval [-1,1], and an azimuthal angle φ according to a flat
distribution on [0,2π]. In a two body decay, either one of the daughter particles is emitted
along the direction of n̂ = (sin θ cosφ, sin θ sinφ, cos θ), while the other daughter particle
is emitted along −n̂.

The Higgs boson decays to multiple final states. Branching ratios are given in
Table 15.1. The actual final state of a single Higgs boson is the outcome of a random
process, which can be simulated most easily these days using std::discrete_
distribution. Here is a short program which prints out a random decay mode each
time it is run (and can be found in EXAMPLES/CH15/BRANCH); a typical way of
testing a program like this is to histogram the frequency of decay into each of the final
states (Exercise 1).

#include <iostream>
#include <random>
using namespace std;

enum DecayMode {BBBAR, TAUPAIR, MUONPAIR, CHARMPAIR,
GLUONPAIR, GAMMAPAIR, ZGAMMA, WPAIR, ZPAIR, OTHER};

int main() {

// Initialize random number generators:
std::random_device dev;
std::mt19937 engine(dev());

// Initialize the generator:
std::discrete_distribution<int> BR = { 5.809E-1,

6.256E-2,
2.171E-4,
2.884E-2,
8.180E-2,
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2.270E-3,
1.541E-3,
2.152E-1,
2.641E-2};

// Draw a random decay mode and print it out
DecayMode mode= (DecayMode) BR(engine);
std::cout << mode << std::endl;

// Done
return 0;

}

Now if we wish to take our simulation further, we will have to follow the daughter
particles as they evolve in their surroundings, which in this case probably involves the
complex instrumentation put in place to observe particles like the Higgs boson. These
daughter particles do not interact with matter in a generic way; each one has specific
processes. Some (like γ rays) are absolutely stable, others like (μ±) decay but—usually—
far beyond the detector system; the quarks (b and c) hadronize, in other words, they dress
themselves with light quarks to form bound states called hadrons. The b and c quarks
and the τ lepton travel distances of a few hundred microns to a few millimeters, which
are distances that can be observed in modern detector systems. The W and Z bosons
with lifetimes on the order of 10−25 seconds decay, for all practical purposes, at the point
where they are produced. Those particles which travel through significant amounts of

Table 15.1 Higgs boson branching ratios, calculated for a Higgs
mass of 125.09 GeV. Source: Heinemeyer (2014).

Final state Terminology Branching ratio

bb̄ bottom quark pairs 5.809×10−1

τ+τ− tau lepton pairs 6.256×10−2

μ+μ− muon pairs 2.171×10−4

cc̄ charm quark pairs 2.884×10−2

gg gluon pairs 8.180×10−2

γ γ gamma ray pairs 2.270×10−3

Z0γ Z boson plus gamma ray 1.541×10−3

W+W− W boson pairs 2.152×10−1

Z0Z0 Z boson pairs 2.641×10−2
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matter interact in various ways. In the next section we see how to simulate the fate of a
gamma ray (γ ).

15.4 Interactions of photons with matter

Photons interact with matter through several distinct processes, which we shall refer to as
scattering processes. Rayleigh and Compton processes scatter the incident photon into
a different angle, in the latter case with a reduced energy. Photons are absorbed through
the photoelectric effect. Finally, photons can be converted into electron-positron pairs.
The conservation of energy and momentum requires that this process occur in the static
field of a charged particle, and we distinguish pair production in the field of the atomic
nucleus from pair production in the field of electrons. The relative probability of these
processes depends strongly upon the energy of the photon, as well as on the type of matter
that has been struck. These probabilities can be obtained from the cross sections, σ ,
that describe the relevant processes.

When the cross section is multiplied by the flux of incoming particles (which is the
number of particles per unit area per unit time in a beam) one obtains the number of
scattered particles per unit time. Now, we are interested in the probability of a single
photon interacting with a layer of matter, and this is not the most handy formulation for
our purposes.

Imagine a collision between a wave packet describing a single particle (e.g. a photon),
uniformly filling a square box, travelling towards a layer of material (like aluminum).
Each side of the box has a length of L the thickness of the layer is dx. The interaction
cross section of a single aluminum atom is σ . We are interested in the probability
of an interaction in the material. One has first to take account of the fact that the
“box of particle” encounters numerous scattering centers as it passes the through the
material. Their number N can be calculated as the product of the number density n of
scattering centers, times the volume of material L2dx through which the box of particle
passes.

N = nL2dx (15.1)

The number density is the mass density ρ divided by the mass m of the scattering centers:

n = ρ

m
= ρ

NA

A
(15.2)

where NA is Avogadro’s number and A is the atomic mass of a pure material. So that the
total cross section presented by the full layer of material is:

σlayer = Nσ = ρ
NA

A
L2σdx (15.3)
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The probability of an interaction is then the ratio of this layer cross section σlayer to the
cross sectional area of the “box of particle”, L2, in other words:

dP = ρ
NA
A L2σdx

L2 = ρ
NA

A
σdx (15.4)

A beam of Nγ photons evolves according to:

dNγ = −Nγ dP

= −Nγ ρ
NA

A
σdx (15.5)

which we can integrate to obtain:

Nγ = Nγ (0)e−ρ(NA/A)σx (15.6)

so, if we start with one photon (Nγ = 1), the quantity e−ρ(NA/A)σx is the probability to
be transmitted throught the material, while:

1 − e−ρ(NA/A)σx (15.7)

is the probability to interact within it.
The quantity α ≡ ρ(NA/A)σ is called the attenuation coefficient, and μ ≡ α/ρ =

(NA/A)σ = σ/m is the called the mass attenuation coefficient. Both can readily
found in tables, though it is more common to find mass attenuation coefficients because
they are independent of the density of the material. For aluminum, the mass attenuation
coefficients for various processes are shown in Figure 15.2. These cross sections were
obtained from the website

http://physics.nist.gov.

Let’s consider the Higgs boson after it has decayed to two hard photons. The energy
of the photon (making the not-so-accurate assumption of a Higgs decaying at rest) is
half the Higgs mass, or 62.5 GeV. This photon passes through an inner detector region
designed to be as transparent as possible so that the photon can be accurately measured
in the calorimeter. But wait . . . this photon first encounters a support structure made of
aluminum, with a thickness of 1/2 cm. From the data in Figure 15.2, one obtains a mass

http://physics.nist.gov.
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Figure 15.2 Cross sections for the interaction of photons with aluminium. The curves are cubic spline
interpolations of data points which have been downloaded from http://physics.nist.gov,
where similar data for other elements and compounds can be found.

attenuation coefficient of 3.19×10−2cm2/g. Using the density of aluminum, 2.70 g/cm3,
we obtain the probability of pair production in the aluminum as:

P = 1 − exp
(

3.19 × 10−2 cm2/g
)
× 2.70 g/cm3 × 0.5 cm = 4.3% (15.8)

In large-scale simulations one must propagate the photon through a complicated geom-
etry, determine the materials which are encountered, and calculate these probabilities at
every step and for every process.

We return now to our photon: it either passes undisturbed through the aluminum
layer (95.7% probability) or it produces an electron-positron pair somewhere within
the aluminium (4.3% probability). As with our first example (Section 15.3) we throw
a virtual dice. For a 62.5 GeV photon the production of an electron-positron pair is the
highly favored outcome. In that case, we are finished with our photon, but now we have
two daughter particles to track.

You might think that the electron+positron pair carry the energy and momentum of
the original photon, but this is impossible since the magnitude of the photon’s energy-
momentum four-vector is zero, while that of an electron positron pair is at minimum 4m2

e .
In fact, the process is forbidden in a vacuum, but takes place in the field the constituents
of the aluminum atom (either the nucleus or the electrons). The electron and positron
momenta are collinear with that of the original photon, and the energy is divided between
the components, a fraction x going to the electron and 1−x going to the positron, where
x is a random variable distributed according to

ρ(x) = 9
7

(
1 − 4

3
x (1 − x)

)
. (15.9)

The expression is an approximation (Tsai, 1974), valid for photons above 1 GeV.
The distribution can be sampled using techniques discussed in Chapter 7, say the
transformation method or von Neumann rejection.

http://physics.nist.gov,
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15.5 Electromagnetic processes

The production of electron-positron pairs in matter is closely related to another process,
namely bremsstrahlung of photons from electrons (or positrons). The calculation of their
rates involves the complexity of the atomic and nuclear coulomb fields as well as atomic
and nuclear excitations. These calculations are the work of many people; for a review see
Patrignani (2016) or Tsai (1974).

From the plot in Figure 15.2, one can see that the cross section (and mass attenuation
coefficient) reach a plateau at energies above a few GeV. The absorption length in this
region, λ = 1/α, has a fixed value, and defines another quantity of interest called the
radiation length X0:

X0

ρ
= 7

9
λ = 7

9
M

NAσ
. (15.10)

The radiation length (like the mass absorption coefficient) is defined so that it depends
only on the type of material and not on its density. Divide by the mass density ρ to
obtain a characteristic length scale X0/ρ for high-energy photon interactions, and also for
another process: bremsstrahlung. On average, a high-energy electron loses a fraction 1−e
of its energy through bremsstrahlung over a distance X0/ρ. However, bremsstrahlung of
hard photons, like pair production, is a discrete process, and we should like to know the
probability of generating a photon as a function of its kinematics.

15.5.1 Bremsstrahlung

An electron (or positron) e± with energy E strikes an atomic nucleus; because the nucleus
is far heavier than the e± it remains largely at rest while the e± is highly deflected; it’s
acceleration leads to the emission of photons. The kinematics of the process is fully
specified by the energy k and polar and azimuthal angles θ , φ of the photon with respect
to the original electron or positron direction.

The process is governed by the triple differential cross section:

dσ
d�dk

≡ dσ
d cos θdφdk

, (15.11)

which is the cross section per unit solid angle per unit energy (of the photon) for the
process. A formula appearing in Tsai (1974) for the triple differential cross section is
exceedingly difficult to work with owing to the complications arising from the structure
of the atom. Instead we shall use a simpler treatment in which the correlations between
the energy of the scattered photon and the scattering angle are ignored. The distribution
of photon energies can be obtained from the approximate formula (Tsai, 1974):

dσ
dk

= 4αr2
e

3k

[
{y2 + 2[1+ (1− y)2]}[Z2(Lrad − f ((αZ)2))+ZL′

rad]+ (1− y)
Z2 + Z

3

]
.

(15.12)
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In this formula, y = k/E, E is the energy of the incoming electron or positron, k is
the energy of the scattered photon, re = 2.82 × 10−13 cm is the classical electron radius,
α ≈ 1/137 is the fine structure constant, Z is the atomic number of the target nucleus,
the Coulomb correction function is:

f (z) ≈ 1.202z − 1.0369z2 + 1.008z3/(1 + z), (15.13)

and the elastic and inelastic form factors describing the complex structure of the atom
are approximated (Tsai, 1974) by:

Lrad = ln
(

184.15
Z1/3

)
L′

rad = ln
(

1194.
Z2/3

)
(15.14)

for elements with Z > 4, while tabulated values for lighter elements can be found in
(Patrignani, 2016).

The total cross section is required to simulate bremsstrahlung in material with finite
thickness (Eq. 15.7), thus one must integrate Eq. 15.12. Alas, the result is infinity;
however, the total energy lost by an e± in traversing a layer of material is finite. The
result is1 1 − exp ρx/X0.

A practical scheme for simulating bremsstrahlung is to treat the process as discrete
above some cutoff energy, and continuous below that. One possible choice is the MeV
scale, since below that scale radiated photons cease to produce electron-positron pairs
and will only interact through Compton scattering or the photoelectric effect.

Once the energy k has been obtained we can turn our attention to the generation of the
azimuthal and polar scattering angles. The azimuthal angle φ is of course simple: draw
from a uniform distribution in the range [0, 2π]. The polar angle θ can be generated by
defining u ≡ Eθ/m (where m is the mass of the electron) and generating u according to
the function:

f (u) =
{

C
(
ue−au + de−3au

)
, 0 ≤ u ≤ Eπ

m
0, u < 0 or u > Eπ

m ,

where:

C = 9a2

9 + d
a = 0.625 d = 27 (15.15)

as described in The GEANT4 Collaboration (2015).

1 To make this connection it is necessary to drop the term (1 − y)Z2+Z
3 from Eq. 15.12.
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15.5.2 Electromagnetic showers

A high energy electron, positron, or photon develops an electromagnetic shower
by alternating the processes of pair production and bremsstrahlung. Electromagnetic
showers take place in detector systems, which concerns high-energy physicists. They also
occur in the earth’s atmosphere, which concerns astronomers and cosmic ray physicists,
and in human tissue, which concerns medical physicists. The descriptions we have given
constitute rather crude approximations to very complicated physics, and they can at best
be used for crude simulations that serve as the basis for simplistic pedagogical exercises
but not for serious work. So, now we turn for a moment to a brief survey of how the
professionals do it.

15.5.3 The need for simulation toolkits

Simulation of radiation transport is a huge task, involving not only fundamental processes
between electrons, positrons, and photons, but also other particles and interactions. The
particles with which one is concerned can be categorized in several ways.

First, particles may be stable or unstable. Even if the particle is not absolutely stable,
it may nonetheless be stable on the timescale of the simulation. Neutrons, for example,
have a mean lifetime of 882 seconds, so for most purposes they may be considered stable.
The charged pion π∓ commonly found in high energy physics experiments has a lifetime
of 26 ns, so most, but not all, of them interact or escape the detector volume before
they decay. Large databases containing particle properties such as mass, decay rates,
branching ratios, and angular distributions are required in typical radiation transport
programs.

One is seldom interested in the transport of radiation through simple idealized
geometric shapes such as thin layers or ideal cylinders. Realistic applications often involve
complex geometries or, in some applications, soft tissues. Particles therefore must be
tracked through these geometries, often in the presence of magnetic fields, homogeneous
or inhomogeneous according to the application. In such cases the equations of motion
must be integrated and collisions with the geometry detected.

A second way in which particles may be categorized is by their interactions in
materials. All charged particles are deflected by electric and magnetic fields; neutral
particles are not. All charged particles lose energy as they pass through materials by
ionizing the surrounding materials, chiefly by interacting with the electrons. In addition,
their direction is continuously deflected through interactions with nuclei, an effect which
is known as multiple Coulomb scattering. These effects are discussed in Section 15.8.
Bremsstrahlung is predominant for light electrons, but only becomes important for
heavier charged particles (the lightest of which is the muon) at extremely high energies.
Thus the showers described above generally do not occur for muons below several
hundred GeV.

Particles composed of quarks are called hadrons. Hadronic interactions in matter
are the most complicated of all. In addition to the continuous processes of ionization
energy loss and multiple scattering (if they are charged), hadrons can collide with nuclei,
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breaking them up and spewing large numbers of ground state and excited nucleons,
pions, and other particles. These interactions are poorly understood and often constitute
a fundamental limitation of high energy experiments. They are modeled with various
degrees of success when no exact formulae can be found.

These problems are common across many domains, and therefore several toolkits
have been designed to address them. A complete history of simulation toolkits would
mention EGS (Ford, 1978), FLUKA (Aarnio, 1986 and 1987), PENELOPE (Sempau,
1997), and GEANT (Agostenelli et al., 2003). Today GEANT, now in its fourth version,
is written in C++ and is the most commonly used toolkit for simulation. The GEANT
toolkit has facilities for describing materials, particles, geometry, sensitive elements (like
scintillator panels), track propagation, nearest-neighbor detection, and a complete library
of physics processes, both electromagnetic and hadronic. It is widely used in HEP
experiments as well as in medical physics and space physics.

This brief survey of the simulation landscape hopefully puts our efforts to simulate
an electromagnetic shower into perspective: in today’s complex computing environment,
our shower simulation is but a small, crudely implemented illustration of a component
of a massive computational task. Ultimately the criterion upon which all simulation is
judged is, Does it adequately describe reality? For this purpose, comparison with real
data is the “acid test”.

15.6 Fundamental processes: Compton scattering

We return now from our brief interlude on simulation toolkits to our narrative of the
lifecyle of the Higgs boson and its decay products. Our Higgs happens to have decayed
to two photons, the photons have converted to electron-positron pairs which are losing
energy through bremsstrahlung, their photons converting again to more electrons and
positrons and bremsing more photons. Eventually the photons will reach an energy where
Compton scattering is the dominant process, while the electrons will predominantly lose
energy by ionizing the surrounding material.

Compton scattering, finally, is a fundamental process that is simple enough for us to
go through the calculation from quantum electrodynamics. The cross section (Heitler,
1955) is given by the Klein-Nishina formula (Klein, 1929):

dσ
d�

= r2
e

2

(
ks

k0

)2 ( ks

k0
+ k0

ks
− 2 sin2 θ cos2 φ

)
. (15.16)

Here, k0 = 2π/λ0 is the wavenumber of the incident radiation, ks = 2π/λs is the
wavenumber of the scattered radiation, and φ is measured from the polarization vector
(the electric field) of the incoming photon. Note that the variables θ , k0 and ks are related
through the Compton scattering formula,

λs − λ0 = λc(1 − cos θ).



Simulation 495

where λc = re/α is called the Compton wavelength of the electron. Thus the scattered
wavenumber ks depends implicitly on the scattering angle. Note also that in natural units
(h̄ = c = 1), which we shall use from now on in this section, the wavenumber of a photon is
measured in energy units and is equal to the photon’s energy.

The Klein-Nishina formula is simple enough to sample in a simulation program.
Often, however, simple formulae are not available and it proves necessary to compute
the cross section from quantum mechanical matrix elements. For example, Compton
scattering is a 2→2 elastic collision: two particles, a photon and an electron, collide, and
two particles (photon+electron) emerge from the collision. The general expression (see,
e.g., Schwartz, 2104, Chapter 5) for the differential scattering cross section in the center
of mass frame is:

dσ
d�cm

= 1
64π2s

|�pf |
|�pi|

∣∣∣∣∣

∑

i

Mi

∣∣∣∣∣

2

, (15.17)

where |�pi,f | are the magnitudes of the incoming and outgoing momenta of the colliding
particles in the center-of-mass frame of the collision and Mi is a Lorentz invariant
scattering subamplitude for the process. These contain the dynamics and depend
on the particular process under consideration. The Mandelstam variable s is (pA + pB)

2

where pA and pB are the four-momenta of the incoming particles. In the case of Compton
scattering we shall denote the four-vector of the incoming photon as k, the four-vector
of the electron as p, and the four-vector of the scattered photon as k′. The collision is
elastic so we can ignore the factor pf /pi , and for this process s = 2me(k0 +me), where me
is the electron mass.

Simulation programs can operate in any convenient reference frame and there is no
harm in using the above formula directly. For the sake of comparison with the Klein-
Nishina formula we transform Eq. 15.17 to the laboratory frame,

dσ
d�lab

= dσ
d�cm

d�cm

d�lab

= 1
64π2m2

e

(
ks

k0

)2
∣∣∣∣∣

∑

i

Mi

∣∣∣∣∣

2

,

using some relativistic kinematics and the chain rule.
The dynamics of Compton scattering and other processes in quantum electrodynam-

ics are described by Feynman diagrams. The two lowest-order (tree-level) Feynman
diagrams are shown in Figure 7.2. The Feynman rules appropriate for quantum
electrodynamics determine how these diagrams can be used to derive matrix elements.
The upper diagram in Figure 15.3 is called the s-channel diagram; the lower diagram is
called the t-channel diagram.

The rules yield the following expressions for the matrix elements corresponding to
each of the two diagrams:
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Figure 15.3 Lowest order Feynman diagrams for Compton scattering.

−iMs = ū′
[
ε′∗ν (ieγ ν)

i(�p + �k + me)

(p + k)2 − m2
e
(ieγ μ)εμ

]
u

−iMt = ū′
[
εμ(ieγ μ)

i(�p − �k ′ + me)

(p − k′)2 − m2
e
(ieγ ν)ε′∗ν

]
u. (15.18)

The objects in these expressions were discussed in Chapter 14. They include: the spinor
of the incoming electron u(p), the adjoint spinor of the outgoing electron ū′(p′), the
polarization four-vector of the incoming electron ε, the (complex conjugate) polarization
four-vector of the outging electron ε′∗, and the gamma matrices γ μ. Summation over
repeated indices is implied. We also use the “Feynman slash notation”: �a ≡ γ μaμ.
All of the above objects and operations can be found in the Spacetime library
introduced in the previous chapter. The gamma matrices and a function called slash,
taking either a FourVector or a ComplexFourVector are defined in the header file
Spacetime/SpecialOperators.

We now show how these diagrams can be computed with the aid of rotations and
Lorentz transformations. For consistency, all quantities appearing in Eq. 15.18 should
be computed in the same reference frame. The center-of-mass frame is the easiest in
which to work, since in that frame incoming and outgoing vectors differ by a rotation.
We will boost all incoming vectors and spinors into the center-of-mass frame, then
rotate to obtain the outgoing vectors and spinors. The scattering angle in the center-
of-mass frame θcm can be related to the scattering angle in the lab frame θ through the
equation:

cos θcm = cos θ − β

1 − β cos θ
(15.19)

where β = k0/(k0+me) is the velocity of the center-of-mass with respect to the laboratory.
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We introduce a class called Compton with the public interface:

class Compton {

public:

// Constructor:
Compton(double kLab, bool isPolarized=false);

// Compute the cross section in units of the classical
electron radius squared ( r_e^2)

// where r_e = 1/m Mev^-1 and m=0.511 MeV.

double sigma(double cosThetaLab, double phiLab=0.0);
...

};

This class is initialized with the energy (in MeV) of the incoming photon and an optional
flag to turn on polarization. It is intended to provide the differential cross section as a
function of θ , the scattering angle in the laboratory frame, and φ, the azimuthal angle.
The incoming photon is taken to move along the positive z direction. If it is polarized,
then the polarization is assumed to be along x; if not, then the scattering does not depend
upon the azimuthal angle φ, which may be omitted in the function call.

Certain constants are declared static in the class declaration to avoid initializing
them each time the Compton class is instantiated; these include constants of nature, unit
vectors, constant polarization four-vectors εx,y, spin-up and spin-down spinors, and a
constant matrix M = diag(me, me, me, me). In the .cpp file they are iniitialzed as:

const double Compton::alpha=1/137.0;
const double Compton::m=0.511;
const ThreeVector Compton::nullVector(0,0,0);
const ThreeVector Compton::zHat(0,0,1);
const FourVector Compton::eps[2] = {FourVector(0,1,0,0),

FourVector(0,0,1,0)};
const Spinor <> Compton::up={1,0};
const Spinor<> Compton::down={0,1};
const Eigen::Matrix4cd Compton::M=Compton::m*Eigen::Matrix4cd

::Identity();

These data members belong to the Compton class:

// The initial state:
const double k0; // photon energy,

lab frame.
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const double beta; // velocity of cm
frame.

const LorentzTransformation tCM; // to center-of-
mass frame

const FourVector k; // photon four-
vector in C.M.

const FourVector p; // electron four-
vector in C.M.

const DiracSpinor::U u[2]; // Dirac spinors

They represent mathematical objects appearing in Eq. 15.18, all expressed consistently
in the center-of-mass frame:

p in code tCM ∗ FourVector(m,0,0,0), (15.20)

the four-momentum of the incoming electron;

k in code tCM ∗ FourVector(k0,0,0,k0), (15.21)

the four-momentum of the incoming photon;

u[0] in code tCM ∗ DiracSpinor :: U(up,m), (15.22)

the Dirac spinor for the incoming spin-up electron,

u[1] in code tCM ∗ DiracSpinor :: U(down,m), (15.23)

the Dirac spinor for the incoming spin-down electron. With regard to the spinor, we will
compute the squared sum of matrix elements, and average that over both polarization
states of the electron.

These objects are initialized in the constructor, shown here:

Compton::Compton(double k0, bool isPolarized) :
k0(k0) ,
beta(1.0/(1.0+m/k0)),
tCM(ThreeVector(0,0,-atanh(beta))),
k(tCM*FourVector(k0,0,0,k0)),
p(tCM*FourVector(m,0,0,0)),
u{tCM*DiracSpinor::U(up,m), tCM*DiracSpinor::U(down,m)},
isPolarized(isPolarized)

{}

The outgoing four-vectors, spinors, and polarization vectors can be computed once
the scattering angle is known. A Lorentz transformation consisting of a pure rotation can



Simulation 499

then be constructed. The rotation axis points in the direction of ẑ × n̂ and the rotation
angle is just θcm:

// We calculate the scattering angle in the C.M. frame:
double cosThetaCM=(cosThetaLab-beta)/(1-beta*cosThetaLab);
double sinThetaCM = sqrt((1+cosThetaCM)*(1-cosThetaCM));
double phiCM=phiLab;

ThreeVector nHat(sinThetaCM*cos(phiCM), sinThetaCM*sin
(phiCM), cosThetaCM);

LorentzTransformation rot(nullVector, zHat.cross(nHat).
normalized()*acos(cosThetaCM));

Then we can compute the outgoing quantities:

k′ in code FourVectorkPrime = rot ∗ k;, (15.24)

the four-momentum of the incoming photon;

u′[0] in code DiracSpinor :: UuPrime = rot ∗ u[0];, (15.25)

the Dirac spinor for the outgoing positive-helicity electron,

u′[1] in code DiracSpinor :: UuPrime = rot ∗ u[1];, (15.26)

the Dirac spinor for the outgoing negative-helicity electron,

ε′[0] in code FourVectorepsPrime = rot ∗ eps[0];, (15.27)

the polarization vector for:

ε′[1] in code FourVectorepsPrime = rot ∗ eps[1];, (15.28)

the Dirac spinor for the outgoing negative-helicity electron. We shall compute the
squared sum of matrix elements for both spin states of the outgoing electron and
both polarization states of the outgoing photon, and sum them all for the cross-section
computation.

Finally, we come to the computation of the matrix elements themselves. For the s-
channel, Eq. 15.18 can be realized like this:

Complex MS = e*e*((bar(uPrime)*(slash(epsPrime.conjugate())*
(slash(p+k)+M)/((p+k).squaredNorm()-m*m)*slash(epsIn))*
uIn)(0));
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Figure 15.4 Plots of total cross section vs. photon energy (top left), the differential cross section (top
right), and angular distribution in elliptical projection for unpolarized (bottom left) and polarized
(bottom right) photons at energy k = me. For the elliptical projections, the direction of the incident
photon is along z.

and for the t-channel, like this:

Complex MT = e*e*((bar(uPrime)*(slash(epsIn)*(slash(p-kPrime)
+M)/((p-kPrime).squaredNorm()-m*m)*slash(epsPrime.
conjugate()))*uIn)(0));

These two matrix elements are summed and the sum is squared. The prefactors in
Eq. 15.18 are included:

double ks=1./(1./k0+1./m*(1.-cosThetaLab));
double re=alpha/m;
double phaseSpaceFactor=pow(ks/(8.0*M_PI*k0*m),2);

Finally, the cross section is for a particular polarization state of both incoming and
outgoing photons and the spin state of both incoming and outgoing electrons. For this
application we can’t see how one would ever know or care to know the spin state of the
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incoming electron, the outgoing electron, or the outgoing photon. We should therefore
average over the incoming spins and sum over the outgoing polarizations and spins.
The polarization of the incoming photon is sometimes of interest. Averaging over the
polarization state of the incoming photon is only called for if the incoming photon
“beam” is unpolarized.

The class Compton can be found in EXAMPLES/CH15/COMPTONXS, together with
a test program that computes the plots in Figure 15.4.

15.7 A simple experiment: double Compton scattering

In 1948, R.C. Hanna of Rutherford Laboratory in England reported the results of an
important experiment in quantum mechanics (Hanna, 1948). A sketch of his apparatus
from his Nature article is shown in Figure 15.5. A similar experiment was carried out
two years later, more conclusively, by Wu and Shaknov of Columbia University.

In the experiment, a positron is produced from a radioactive isotope. The positron
forms an “atom” of positronium, e+e−, which annihilates from a 1S0 state (called
parapositronium). In order to conserve energy and momentum the decay is required
to produce into two gamma (γ ) rays that are back to back and have energy k = m. Each
γ may scatter from aluminum targets placed on either side of the source.

The theory of double Compton scattering was first correctly described by Pryce and
Ward (Pryce, 1947) and almost at the same time by Snyder, Pasternack, and Hornbostel
(Snyder, 1948). The 1S0 positronium state has angular momentum L = 0 and spin
S = 0. For positronium, a fermion-antifermion bound state, the C (charge conjugation)
eigenvalue is (−1)L+S = 1. The P (parity) eigenvalue is (−1)L+1 = −1.

Because the initial state has total angular momentum of zero, the spins of the two
photons must be antiparallel. We take the spin quantization axis of each photon as its
direction of travel; a right-handed photon will be designated as |R〉 and has a spin of +1;

R

A
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θ ϕ ϕ

(b)

S1

S1S2

S2
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G3
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2 12 θ1

Figure 15.5 Schematic diagram and sketch of the apparatus used by R.C.Hanna in 1948 to observe
correlations in the polarization of annihilation radiation. ©1948 Nature. Reprinted with permission.
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while a left handed photon will be designated as |L〉 and has a spin of -1. The two-photon
state is even under charge conjugation, so the decay is allowed, provided that parity of
the final state is odd. We arrange that as follows.

The final state of two photons is a linear superposition of |R1〉|R2〉 ≡ |R1R2〉 and
|L1〉|L2〉 ≡ |L1L2〉. The parity operation transforms a left handed photon into a right-
handed photon. The initial state:

|ψ〉 = |R1R2〉 − |L1L2〉√
2

(15.29)

clearly has P|ψ〉 = −|ψ〉. The state can also be written as:

|ψ〉 = |R1R2〉 − |L1L2〉√
2

.

= 1√
2

[( |X1〉 + i|Y1〉√
2

)
·
( |X2〉 + i|Y2〉√

2

)
−
( |X1〉 − i|Y1〉√

2

)
·
( |X2〉 − i|Y2〉√

2

)]

= i
|X1Y2〉 + |Y1X2〉√

2
.

This quantum state is entangled: the state of each photon cannot be expressed indepen-
dently of the other.

The annihilation radiation is unpolarized, but there is a correlation between the direc-
tion of the electric field of the two gamma rays, which are required to be perpendicular
to each other. This polarization was analyzed in the Hanna experiment by Compton
scattering from two heavy targets. Let’s call the polar and azimuthal angles of the two
scattered photons θ1, φ1, θ2, and φ2. Because of the correlation of the polarization of
the two photons there will be a correlation between the two azimuthal angles φ1 and φ2.
The experiment was designed to measure this correlation carefully.

The experiment was important because it distinguished two radically different views
of quantum mechanical processes—putting different ingredients into the calculation
results in different predictions for the correlation. By confronting the simulation with
data, one can distinguish two scenarios:

• Scenario A: The two photons have a random (but predetermined) polarization
as they move away from the source. This predetermined polarization is partially
analyzed on both ends by the Compton scattering process.

• Scenario B: The two photons exist in a state |ψ〉 = i|X1Y2〉+|Y1X2〉√
2

which makes
a transition to a final state in which the first photon is detected with polar and
azimuthal angles θ1 and φ1 while the second photon is detected at polar and
azimuthal angles θ2 and φ2.

These two scenarios are rather different because in the first scenario, the annihilation
radiation is either |XY 〉 or |YX〉 while in the latter it is both |XY 〉 and |YX〉. The
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two scenarios can be distinguished from an analysis of the angular distributions; an
interference term in Scenario B is absent in Scenario A.

Scenario B is more unsettling than the former, because it inescapably involves nonlocal
effects. If the first gamma is polarization-analyzed and determined to be in an |X〉 state,
the second will be forced at the same time into a |Y 〉 state—across a spacelike interval.
The result of the second observer depends on the measurement of the first observer. This
type of paradox was discussed in a famous paper by Einstein, Podolsky, and Rosen (EPR)
(Einstein, 1935). These nonlocal effects are, in fact, actually observed in experiment, and
as strange as they seem, are an established feature of quantum mechanics.

To simulate this process we consider the scattering of two gamma rays. We let Û =
Û1Û2 be the time evolution operator which takes the initial state to the final state, Û1,2
being the time evolution operators for each photon interacting with an electron from the
target. We shall label the final state as |θ1φ1θ2φ2〉 ≡ |θ1φ1〉|θ2φ2〉. The amplitude for this
process is:

〈θ1φ1θ2φ2|Û |ψ〉 = i√
2

[
〈θ1φ1|Û1|X1〉〈θ2φ2|Û2|Y2〉 + 〈θ1φ1|Û1|Y1〉〈θ2φ2|Û2|X2〉

]
.

(15.30)

The amplitudes 〈θiφi|Û i|Xi〉and 〈θiφi|Û i|Yi〉 are just the amplitudes discussed in
the previous section, the sum of the two Lorentz invariant scattering amplitudes in
Figure 15.3 and Eq. 15.18. To compute the double-scattering fourfold differential cross
section dσ/d�1d�2, we require two phase space factors:

dσ
d�1d�2

=
[

1
64π2m2

e

(
k1

k01

)2
][

1
64π2m2

e

(
k2

k02

)2
]

|〈θ1φ1θ2φ2|Û |ψ〉|2

= k2
1k2

2

(8πm2
e )

4 |〈θ1φ1θ2φ2|Û |ψ〉|2 (15.31)

where k01 = k02 = me are the energies of the incoming photons (which are equal to the
electron rest energy since we are dealing with annihilation radiation).

The reduction of this formula to an analytic expression involving the angles is a
difficult task. However, simulating the process is not so difficult if one retains the
amplitudes in the computation of Compton scattering processes. The simulation of this
process is left as an exercise that we are certain the student will enjoy.

15.8 Heavier charged particles

The discussion of radiation transport with which we started this chapter would not be
complete without a discussion of two processes that apply universally to stable charged
particles traversing materials: ionization energy loss and multiple Coulomb scattering.
Ionization energy loss is due to the interaction of a charged particle with the electrons in
the material; while multiple Coulomb scattering is due to its interaction with nuclei.
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Approximate formulae are known for both of these processes. Mean ionization energy
loss over a range of 0.1 < p/m = βγ < 1000 is described by the Bethe-Bloch equation
(Patrignani, 2016):

〈
−dE

dx

〉
= Kz2 Z

A

[
1
2

log
2mec2β2γ 2Wmax

I2 − β2 − δ(βγ )

]
(15.32)

where the constant K is 4πr2
e NAmec2 = 0.307075 MeV mol−1, z is the charge of the

incident particle, I is the excitation energy of the material, and β and γ are the speed and
Lorentz factor of the incident particle.2 The quantity:

Wmax = 2mec2β2γ 2

1 + 2γme/M + (me/M)2
(15.33)

with M being the mass of the incident particle, is the maximum kinetic energy that
can be transfered to an electron in a single collision. The formula calculates the mean
ionization energy loss divided by the density of the material; multiply by the density of
the material to obtain the energy loss per unit length. This is done to (mostly) remove the
dependence of energy loss upon the density of the material; but a residual dependence
persists through the term δ(βγ ). This term represents the so-called “density effect”,
whereby the incident particle produces a polarization in the surrounding material which
reduced the electric field from the incident particle. The effect is usually introduced
through a parameterization due to Steinhammer (1952).

A plot of the Bethe-Bloch function is shown in Figure 15.6, for the case of muons (z=1,
M=105 MeV) on aluminium, neglecting the aformentioned density effect which enters
for highly relativistic particles but does not change the picture quantitatively. Several
features are apparent from the plot: slow particles lose energy at a higher rate than fast
particles. The energy loss curve falls to a broad minimum around βγ ∼ 3, where (for
aluminum) it takes the value 1.6 MeV/g/cm2; note also that over the range 1.3 < βγ < 18
the the energy loss stays in the range 1.6 MeV/g/cm2 < dE/dx < 2.0 MeV/g/cm2. A
minimum ionizing particle (MIP) with βγ ∼ 3, but usually particles over the broad
minimum which is apparent in Figure 15.6 are taken to be MIPs. Above the minima,
the density effect contributes corrections that can reach order (10%). This correction is
larger for heavier materials and smaller for lighter materials and gases. Above βγ = 1000,
heavy charged particles begin to radiate and the approximation is no longer valid.

The second effect, multiple Coulomb scattering, causes deviations in the trajectory
of a particle of charge Z as it traverses a layer of material of thickness x. The angular

2 Ionization energies of common materials can be found at http://physics.nist.gov.

http://physics.nist.gov.
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Figure 15.6 Ionization energy loss of a muon in aluminum according to the Bethe-Bloch equation,
neglecting the density effect. Eq. 15.32.

deviation projected in any plane perpendicular to the particle’s velocity is approximated
(Patrignani, 2016) by a Gaussian distribution with width:

θ0 = 13.6MeV
βcp

Z
√

x/X0 (1 + 0.038ln(x/X0)) . (15.34)

Angular deviations projected into any two planes are independent if the two planes
are mutually perpendicular. It may also be of interest to know the lateral displacement
along any direction perpendicular to the original trajectory. It too may be described as a
Gaussian with width xθ0/

√
3.

15.9 Conclusion

In this chapter we have given an overview of how to simulate stochastic processes, draw-
ing examples from the decays of unstable particles and the evolution of their daughter
particles through matter. The randomness in all of these examples comes ultimately
from quantum mechanics, which is nature’s own random number generator. We remind
the reader again that every formula in this chapter is an approximation with limited
accuracy and range of applicability. Simulation toolkits, discussed in Subsection 15.5.3,
often start out life with simple formulae but have grown increasingly complex as the
demand for higher accuracy has grown. Accurate discussion of physics processes can
be found throughout the literature, but nowadays the best detailed overview of such
processes can be found in the Review of Particle Physics (Patrignani, 2016); the best
implementation is the GEANT Toolkit, and the best practical description of the physics
processes is the GEANT 4 Physics reference manual (The GEANT4 Collaboration,
2016). These references are indispensable for the serious developer of radiation transport
simulation code. In the exercises we invite the student to develop his or her skills using
approximations which are for the most part crude.
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15.10 Exercises

1. Higgs Decays.
Generate 10K simulated decays of the Higgs boson, keeping track only of the final
state, and make a histogram showing the frequency of decay of each mode.

2. [P] Gamma Ray Astronomy.
Gamma ray astronomy relies on Cherenkov light from electromagnetic showers
initiated high in the earth’s atmosphere. Simulate the development of a shower
initiated by a 100 GeV gamma ray striking the earth’s atmosphere. Assume the
density of the atmosphere falls of with altitude z as ρ(z) = ρ0 exp (−z/(8km)),
where ρ0 is the density of the atmosphere at sea level. Make a graphical display
of the shower. It is best to do this in two steps: simulating and saving the data in the
first step, then displaying it in the second.

3. [P] Electron-Muon Scattering.
Simulate electron-muon (e−μ−) scattering at a center of mass energy of 10 GeV.
The process involves only one t-channel diagram with the matrix element:

−e2 (ū
′
1γ

μu1)(ū′
2γμu2)

(p′
1 − p1)2

,

where u1, u′
1, p1, p′

1 are the incoming and outgoing electron spinors and
four-momenta, u2, u′

2, p2, p′
2 are the incoming and outgoing muon spinors and four-

momenta. Products such as e2ū′
1γ

μu1 occurring in these expressions are four-vector
currents; they can be computed by hand or by using the class Current4 from the
Spacetime library. An example of the latter is:

#include " Spacetime / Current4 . h "
#include " Spacetime / Spec i a lOpera to r s . h "
using namespace SpecialOperators;
ComplexFourVector jElectron=bar(u1Prime)*Gamma()*u1;
ComplexFourVector jMuon =bar(u2Prime)*Gamma()*u2;
std::complex<double> jeDotjm=jElectron.dot(jMuon);

Plot the cosine of the scattering angle and the azimuthal angle in the center of mass
assuming unpolarized beams. Note that the cross section is infinite at low values of
the scattering angle so impose a cut of cos θ < 0.95 when generating events.

4. [P] Polarized Electron-Muon Scattering.
Repeat the previous exercise, but this time assume that:

a) The electron beam is transversely polarized and the muon beam is unpolarized.

b) The electron beam is transversely polarized and the muon beam is transversely
polarized in the same direction.
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c) The electron beam is transversely polarized and the muon beam is transversely
polarized in an orthogonal direction.

d) The electron beam is longitudinally polarized and the muon beam unpolarized.

e) The electron beam and the muon beam are longitudinally polarized in the same
direction.

f) The electron beam and the muon beam are longitudinally polarized in the
opposite directions.

5. [P] Double Compton Scattering.
Simulate the double Compton experiment of Section 15.7. Plot histograms of:

a) the distribution of cos θ1 and cos θ2.

b) the distribution of φ1 and φ2.

c) the � cos θ = cos θ1 − cos θ2 distribution.

d) the �φ = φ1 − φ2 distribution.

of the scattered radiation. Use parallel processing since event generation will be CPU
intensive. Then plot the �φ distribution again when both photons scatter through
an angle of 90◦.

6. [P] Electron-Positron Annihilation to Muons.
In the past, several electron-positron colliders have operated at accelerator labora-
tories around the world. One of the processes that one observes at these colliders is
e+e− → μ+μ−. The electron has a mass of 0.511 MeV, while the muon has a mass
of 105 MeV. The positively charged e+ and μ+ are antiparticles of the negatively
charged e− and μ− and have the same mass as their particles. The annihilation
process involves only one s-channel diagram from which the matrix element:

−e2 (v̄γ
νu)(ū′γνv′)

(pe+ + pe−)2

can be deduced. Here u, v, pe+ , pe− are the incoming electron and positron spinors
and four-momenta, while u′, v′ are the outgoing muon and antimuon spinors and
four-momenta. Simulate the process and compute the total cross section σ and the
differential cross section dσ/d� vs. the scattering angle θ in the center of mass frame.
Average over the initial state helicity and sum over final state helicity. In so doing,
note which combinations of initial state electron and positron helicities contribute
to the cross section. Do the same for combinations of final state helicities. Does this
suggest how you can speed up the computation?

7. [P] High Energy Electron-Positron Scattering.
If electrons and positrons are collided at much higher energy, the neutral weak inter-
action becomes important. At a center of mass energy of 91.2 GeV, it completely
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dominates. This interaction is mediated by the neutral Z0 boson and thus violates
parity symmetry, or invariance under spatial inversion. The amplitude for the
process is:

− ig2

cos2 θw

−i( jin · jout − ( jin · pz)( jout · pz)/M2
z )

p2
z − M2

Z + iMZ�Z

where:

jνin = v̄γ ν 1
2
(cV − cAγ

5)u jνout = ū′γ ν 1
2
(cV − cAγ

5)v′),

pz = pe+ + pe− , u, v, pe+ , pe− , u′ and v′ are defined in the previous problem;
MZ = 91.2 GeV is the mass of the Z boson; and its natural width is �z = 2.50 GeV.
The coupling constants are cv = − 1/2 and ca = − 1/2 + 2 sin2 θw where θw
is the Weinberg angle, sin2 θw = 0.231; while the constant g = e/ sin θW . The
operator γ 5 = iγ 0γ 1γ 2γ 3, for which an implementation can be found in the
SpecialOperators.h of the Spacetime library, is:

γ 5 =
( −I 0

0 I

)
.

a) Simulate the process e+e− → μ+μ− at a center of mass energy of 91.2 GeV.

b) Make a plot of the cosine of the scattering angle.

c) The matrix element for the production of bottom quark pairs, e+e− → bb̄, is
the same, except that the constant ca = −1/2 + 2/3 sin2 θw. Show that for this
process, at a center of mass energy of Ecm = MZ ,

• Polarized bottom quarks are produced from unpolarized electron beams.

• The production of bottom quarks is asymmetric in the scattering angle θ .

8. [P] Interference in Electron-Positron Annihilation to Muons.
At energies well below MZ , both the electromagnetic and the weak interaction
contribute to the process e+e− → μ+μ−. Since the final state is identical, the two
contributions interfere. Include both production mechanisms in your Monte Carlo
simulation. Use it to compute the total cross section, and the forward-backward
asymmetry AFB ≡ (N+ − N−)/(N+ + N−), where N± are the numbers of positive
muons produced in the “forward” hemisphere (along the direction of the e+) and
in the backward hemisphere. Do this for various center-of-mass energies Ecm and
plot the cross section and AFB as a function of Ecm.

9. [P] Bhabha Scattering.
Bhabha scattering is the elastic scattering of electrons and positrons. At most e+e−
colliders, a focused electron beam collides head-on with a focused positron beam.
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Each beam has equal energy, so the laboratory frame coincides with the center-
of-mass frame. Two Feynman diagrams contribute to the process. The s-channel
diagram translates into the expression:

−e2 (v̄γ
νu)(ū′γνv′)

(pe+ + pe−)2

while the t-channel diagram translates into the expression:

−e2 (ū
′γ μu)(v̄γμv′)
(p′

e− − pe−)2

In this expression, pe+ , pe− , p′
e+ , p′

e− are the four-vector momenta of the incoming
positron, incoming electron, outgoing positron, and outgoing electron, respectively.
The spinors, v̄, u, v, and ū are the Dirac spinors representing the incoming positron,
incoming electron, outgoing positron, and outgoing electron, respectively. Simulate
the process; compute and plot the differential cross section dσ/d� as a function of
the cosine of the scattering angle in the center-of-mass. Note that the cross section
diverges in the forward direction; therefore introduce a cutoff value in cos θ in order
to generate efficiently, and in the interesting region of phase space. Take the beam
energy to be 5000 MeV.

10. [P] Bragg Peak.
Consider a monoenergetic beam of charged particles incident upon water, for which
the mean ionization energy of I = 81 eV may be taken. Notice from Figure 15.6 that
slower particles lose energy at a high rate, such that the greatest deposit of energy
occurs at the end of the particle’s range. Using the Bethe-Bloch equation (and ignor-
ing the density effect), plot dE/dx (in MeV/cm) as a function of distance travelled in
water. You should observe a sharp peak at the endpoint of the trajectory, known as
the Bragg peak. Do this for protons (mass 938 MeV) and for charged pions (mass
140 MeV). For which species of particle is the Bragg peak more pronounced?

11. [P] Proton Therapy.
In Chapter 10, Exercise 10 you made an accurate computer description of your own
head. Somewhere in there lies a pea-shaped organ called the pituitary gland, which
is located behind the eyes, approximately halfway between the front and back of the
skull. Proton therapy is sometimes used to treat tumours of the pituitary gland. In
proton therapy the energy of a beam of protons is chosen so that the Bragg peak (see
previous exercise) coincides with the tumour. To minimize damage to surrounding
tissue, the orientation of the beam relative to the cranium is varied to reduce the
exposure to any given point except the tumor. Simulate a treatment session in which
the patient is slowly rotated around his/her “axis” while the energy of the beam is
adjusted so that the Bragg peak always targets the pituitary gland. Use the computer
description of your head for a model. Make a 3d map of the energy deposit within
your cranium.
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In this chapter we describe how to treat a problem which is in many respects the
inverse of a simulation problem. In simulation we generate a realization of a probability
density function of one, several, or even an enormous number of variables. In data
modeling (or fitting, more colloquially) the problem is the extraction of meaningful
physical parameters from data. Procedures for modeling data can be applied to either
synthetic data from pseudoexperiments or real data from actual experiments; generally
synthetic data is used to develop, test, and characterize fits applied to real data. This step
is practically obligatory nowadays in many branches of experimental science.

Data modeling is a bit of an art, and refers to several related procedures. These
have much in common—many of them are built around the idea of maximizing the
probability of the data over parameters of the model. They differ by the exact measure
of the probability, in other words the objective function that is to be extremized; but
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in each case the objective function is exactly or approximately related to a particular
function of the unknown parameters �α, which is known as the likelihood function L(�α),
and which is constructed in some way from the dataset. The likelihood function itself
is interesting and will have an interpretation of its own within the school of Bayesian
statistics, where it determines the probability density for unknown parameters. Within the
frequentist school of thought the output of our procedures, called the maximum likelihood
estimator (MLE), is important because it possesses the desirable statistical properties of
consistency, efficiency, and asymptotic normality:

• Consistency: the estimated parameter values tend to their true values in the limit of
infinitely large datasets; one also says that they are unbiased in this limit.

• Asymptotic normality: in an ensemble of equivalent experiments, the estimated
values are distributed about the true values according to a multivariate normal
distribution.

• Efficiency: the variance of the estimated values from an ensemble of equivalent
experiments is as low as it possibly can be. This is referred to as the Cramér-Rao
bound.

This chapter deals exclusively with the large-dataset limit, and therefore in the following
we regard the likelihood function as the probability density for the unknown parame-
ters �α. This justifies some of the steps we take in the following sections. Frequentists
may take comfort in the fact that the estimators we derive from this line of reasoning are
unbiased, normal, minimum-variance estimators of the unknown quantity, in precisely
the same limit.

Instead of maximizing the likelihood L(�α), one instead minimizes −2 lnL(�α). For the
determination of the optimal parameters �α0 (sometimes called the central value of the
fit) the two procedures are equivalent. The uncertainties on �α can be determined directly
from the Hessian matrix:

(H)ij = ∂2(−2 lnL)
∂αi∂αj

of the latter quantity determined numerically. These uncertainties are properties of the
multivariate normal distribution, which arises in the frequentist interpretation as the
asymptotic form of the likelihood function.

16.1 Tabular data

One of the simplest ways to collect data is in tabular form, and we introduce here a
new class in QatDataAnalysis called Table. Each row in the table will be called a
Tuple, and consists of several columns, each having a particular built-in datatype: int,
unsigned int, float, or double.
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The program in EXAMPLES/CH16/FITTING/GRAVITYTABLE is an illustration of
the use of the Table class. It is excerpted here:

unsigned int seed=0;
std::mt19937 engine(seed);
std::normal_distribution<double> n;
double g=9.8;
double v0=-32.1;
double x0=10.0;
double sigmaV=9.0;
double sigmaX=4.0;

Table table( " Grav i ty ");
unsigned int i=0;
for (double t=0;t<10;t+=1.0) {
double v = v0+g*t;
double x = x0 + v0*t + 1/2.*g*t*t;
v += sigmaV*n(engine);
x += sigmaX*n(engine);
table.add( " I ", i++);
table.add( " Time ", t);
table.add( " V e l o c i t y ", v);
table.add( " P o s i t i o n ", x);
table.add( " SigmaX ", sigmaX);
table.add( " SigmaV ", sigmaV);
table.capture();

}
table.print();

This program is a simulation of an experiment to measure gravity, similar to the first
laboratory experiment typically performed by students in elementary physics. In the
simulated experiment a mass is released from rest from a great height and a clock is
started after the mass passes through a gate. Thereafter, the position and velocity are
measured at regular intervals by means of a radio transmitter. Both position and velocity
are measured with intrinsic uncertainties (σx and σv), which are also recorded in the
table. In our example we will take these uncertainties to be fixed. The deviation of the
recorded values of x and v are drawn from a normal distribution with standard deviation
σx and σv. The final line in this example prints the entire table as shown below:

I Position SigmaV SigmaX Time Velocity
0 11.2112 9 4 0 -21.9948
1 -16.9078 9 4 1 -21.6623
2 -28.5197 9 4 2 -25.3009
3 -42.7324 9 4 3 -5.32255
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4 -47.0466 9 4 4 5.54237
5 -22.5325 9 4 5 16.1109
6 -7.63598 9 4 6 36.8278
7 20.042 9 4 7 47.4855
8 66.3061 9 4 8 50.1554
9 117.504 9 4 9 68.8294

Next, we describe the linear least squares technique for extracting a value of the
gravitational constant g, as well as the initial velocity v0, from data such as that presented
in this table.

16.2 Linear least squares (or χ2) fit

The method of linear least squares fitting is one of the oldest, simplest and best-known
techniques used to model data. We shall illustrate it by extracting the gravitational
constant from the simulated acceleration experiment.

We use a linear relationship between the time and the velocity as a model for the data.
The goal is the determination of the slope g and the intercept v0 of the line. In addition,
we want to determine also the uncertainty on these parameters, their correlations, and
the “quality of the fit”, from which one can evaluate quantitatively whether the model is
a good description, or not. This is an example of a more general situation in which:

• A dataset D consisting of N measurements {y0, y1, . . . yN−1} taken at N points
{x0, x1, . . . xN−1} is available; at each point the measured values of yi deviate from
the true values according to a normal distribution with standard deviation σi .

• The relationship between the true values of x and y is described by the data model
(or fitting function) y(x; �α), where �α is a vector of M unknown parameters. For a
linear data model the vector �α could consist of the slope and intercept. However,
any parameterized data model will do.

We proceed by writing down the probability density for obtaining the N measured values,
which is:

ρ(D; �α) =
N−1∏

i=0

1√
2πσi

e−(yi−y(xi ;αi))
2/2σ 2

i . (16.1)

We then take the bold step of regarding this normalized probability density for the dataset
D as an unnormalized probability density for the M unknown parameters �α. Since an
experiment furnishes the values of {yi} and their errors {σi} at the points {xi}, this is only
a function of the M parameters �α. Viewed in this way, the probability density is called
the likelihood function, L( �α):

L( �α) = ρ(D; �α). (16.2)
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Most of the time we are interested in the part of parameter space in which L(�α) is
near its peak, or equivalently, when the positive-definite quantity −2 lnL( �α) is small. We
will call the most probable point in the parameter space �α0, which is where the likelihood
is maximized and −2 lnL(�α) is minimized. Moreover, in the neighborhood of that point
the likelihood function behaves as a multivariate normal distribution (in the limit of N
large and σ small, a limit that we shall refer to as the Gaussian limit).

Expanding −2 lnL(�α) around �α0 yields:

−2 lnL(�α) = −2 lnL( �α0)+ 1
2
(�α − �α0)

T H(�α − �α0)+ . . .

where H is the Hessian matrix, which is symmetric and positive-definite.

(H)ij = ∂2(−2 lnL)
∂αi∂αj

.

The first term is unimportant since it merely sets an overall constant in the likelihood
function and does not depend on �α. We can write our likelihood as:

L(�α) ≈ L(�α0) · e−(�α−�α0)
T H(�α−�α0)/4.

≈ L(�α0) · e−(�α−�α0)
T C−1(�α−�α0)/2. (16.3)

where:

C ≡
(

H
2

)−1

is called the covariance matrix.
By comparison with Eq. 7.3, we see that the the likelihood function is approximately

a multivariate normal distribution, up to an overall normalization factor which would be
trivial to compute were it ever needed. In the Gaussian approximation, the important
task is to determine the point �α0 in the parameter space where the likelihood attains its
maximum value, and the covariance matrix C. The former quantity is the central value of
the estimate, while the latter determines the uncertainties in the parameters. Specifically,
the diagonal elements (C)ii give the variance of the parameter αi . Correlations between
any two parameters αi and αj are quantified by the correlation coefficients:

ρij ≡ Cij/
√

CiiCjj . (16.4)

We have just developed a rather general discussion of likelihood techniques that will
be very useful later, but for the moment we can return to the case of the linear least
squares fit that we started with. From Eq. 16.2 identify the quantity:
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−2 lnL = 2N ln
(√

2π
)
+ 2

N−1∑

i=0

ln σi +
N−1∑

i=0

(yi − y(xi ; �α))2
σ 2

i

.

This is to be minimized over the M parameters �α to obtain �α0. We notice that the first
two terms do not involve �α at all so they can be ignored. Instead one can minimize the
third term, which we call χ2:

χ2 =
N∑

i=0

(yi − y(xi ; �α))2
σ 2

i

(16.5)

and determine its Hessian matrix.
In some circumstances, including data models that are polynomials of finite order,

one can carry this out analytically. In the case of a linear model one computes:

χ2 =
N∑

i=0

(yi − (mx + b))2

σ 2
i

(16.6)

and takes partial derivatives with respect to m and b. The solution to the resulting coupled
linear equations yields the central values, (m0, b0). The expression for the Hessian matrix:

⎛

⎝
∂2χ2

∂m2
∂2χ2

∂m∂b

∂2χ2

∂m∂b
∂2χ2

∂b2

⎞

⎠ .

is obtained and then evaluated at the minimum. Further development can be found in
Press (2007) or Gibbs (2006). We do not develop the analytical method further because
one rarely deals with data models that lend themselves to an analytic solution; rather a
numerical approach must be taken.

We conclude this section with the observation that the function that is to be minimized
is χ2 ≈ −2 log(L). In general other likelihood functions can be formulated that are
built from other probability distributions where appropriate. In Chapter 8 we have
already obtained likelihood functions built from the binomial distribution (Section 8.1.3)
and from the Poisson distribution (Exercise 6). These functions can be plotted, sam-
pled (since they appear as unnormalized PDF’s), and maximized numerically, thereby
extracting the parameters of the approximating multivariate Gaussian (namely the mean
and covariance).

16.3 Function minimization in data modeling

To go further in our program we require a piece of functionality that can minimize
a function of several variables and determine the relevant Hessian matrix. It should
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be able to cope with a few dozen parameters in order to be useful in typical data
modeling problems. The branch of computational science devoted to this problem is
called optimization, and there is a rather vast literature on the topic. Press (2007)
devotes a substantial amount of space to various optimization algorithms.

One of the best known packages for function minimization appeared at CERN in the
1970s. Called MINUIT and written by James (1994) in Fortran, it has more recently
been ported to C++ and renamed Minuit2. Documentation is at the website:

http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/
minuit/

MINUIT provides a number of minimization options along with extra functionality
to determine the Hessian matrices and to extract from them statistically important
information such as covariance matrices.

The examples in this book, which use QatGenericFunctions, use a wrapper to
MINUIT found in the library QatDataModeling. The library defines an important
class called MinuitMinimizer.

Experienced users (or those developing outside of the QAT framework) may wish to
bypass the interface and use MINUIT2 directly.

We will not discuss the algorithms used to minimize functions in this book since these
are fairly standard, well-known, and are implemented in large software projects that are
publicly available. Instead we will treat function minimization as if it were carried out
by a “black box” called a minimizer. We will regard this black box as being inhabited
by an individual known as “Minimizer Man” (Figure 16.1), who turns knobs with the
purpose of finding the minimum value of an objective function f (�α)1. For a more serious
discussion one can refer to (James, 1994) or the websites above.

In data modeling, the connection between the parameters �α and the function to be
minimized (such as χ2 of the previous section) is as follows:

• The parameters �α, like little knobs, control the shape of a function y(�x; �α). We
write �x as a vector because in general y will be a function of one or more variables,
controlled by the parameters �α.

• Data from an experiment are used to construct a functional, meaning a mapping
from the function y(�x; �α) to real numbers. We will write this map as f [y(�x; �α)].

One example is the χ2 functional. We will encounter other examples in a
moment.

1 “Minimizer Man” is inspired by “Transistor Man,” the hero of Horowitz and Hill’s classic The Art of
Electronics. (Horowitz, 1989). Transistor Man, in contrast to Minimizer Man, has a straightforward job; namely
to keep a transistor’s collector current in strict proportion to its base current. Minimizer Man will sometimes
fail at his job for a variety of reasons we discuss.

http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
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∇
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f 

Figure 16.1 Minimizer man diligently adjusts a series of knobs (parameters) in order to obtain the
lowest value of an objective function f (�α). Figure by M.R. Quinn.

In the directory EXAMPLES/CH16/GRAVITY we include an illustration of a simple
χ2 fit to the gravity simulation. A class called MinuitMinimizer carries out the
minimization (using Minuit2). The objective function (χ2) is encapsulated in a class
called ChiSq which collects points and then maps a fitting function to a real-valued
number. In the following excerpt, we generate a velocity smeared with measurement
error, and add it to the collection of points used for the χ2 fit:

PlotProfile pf;
ChiSq chi2;
// Make measurements
for (int t=0;t<10;t++) {

double v=9.8*t+v0+gauss(engine);
pf.addPoint(t,v, sigma); // add to the profile plot
chi2.addPoint(t,v,sigma); // add to the chisq objective

function
}

A parameterized fitting function is constructed in the following code; the parameters are
the “knobs” that MINUIT will adjust to change the shape of the function.
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using namespace Genfun;
Variable T;
Parameter pv0( "V0",0.0, -100, 100);
Parameter pg( " g ", 10.0, 5.0, 15.0);
GENFUNCTION F=pv0+pg*T;

Then finally we construct a MinuitMinimizer and declare its objective function and
the parameters:

const bool verbose=true;
MinuitMinimizer minimizer(verbose);
minimizer.addParameter(&pv0);
minimizer.addParameter(&pg);
minimizer.addStatistic(&chi2,&F);
minimizer.minimize();

When the minimize method returns results can be harvested. These include:

• a status code that can be used to determine whether the minimization was successful
(double getStatus()). Possible return values are:

– –1 failure

– 0 Covariance matrix not positive-definite.

– 1 Covariance only approximate

– 2 Covariance matrix forced positive-definite

– 3 Full accurate matrix.

• the value of the function at the minimum (double getFunctionValue()).

• the central value of each of the parameters (Eigen::VectorXd getValues()).

• the covariance matrix for the set of parameters.
(Eigen::MatrixXd getError Matrix()).

The example program simulates the experiment and fits the generated data to a
straight line, thereby extracting values of the parameters v0 and g. The measurement
is visualized in another plot which shows the measurement as an ellipse, whose contour
is set at χ2 = 2.30, a value chosen such that the error ellipse should contain the true
value 68.3% of the time, corresponding to one Gaussian standard deviation. Each run of
the program starts from a different random seed. Results from a typical run are shown
in Figure 16.2

The class ChiSquare is a functional, inheriting from Genfun::AbsFunctional.
Its essential methods are

void addPoint (double x, double y, double dy);
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Figure 16.2 Output from a typical run of the program in EXAMPLES/CH16/GRAVITY. On the left
is shown the fit to the input data, on the right is shown the measurement in the space of the parameters g
and v0 (gravitational acceleration and initial velocity). The blue dot represents the input (or true) values
of these parameters, i.e., those used in the simulation.

which is amply illustrated in the above example, and

virtual double operator () (Genfun::GENFUNCTION f) const;

which maps the fit function into a real number, here the χ2. The method is called by
MinuitMinimizer.

Inside the ChiSquare class, the following code computes the value of χ2:

// Function Call Operator
virtual double operator () (const Genfun::AbsFunction & f)

const {
double c2=0.0;
for (unsigned int i=0;i<_points.size();i++) {
point p = _points[i];
double y = f(p.x);
c2 += (p.y-y)*(p.y-y)/p.dy/p.dy;

}
return c2;

}

The χ2 fit in this section is only one of a family of methods for fitting data that we
discuss in this chapter. Most of the others are based upon a likelihood function, which,
however it is constructed, is to be minimized and the Hessian matrix computed. The
main difference between the methods are the objective function to be minimized. The
QatDataModeling library implements a family of objective functions inheriting from
Genfun:AbsFunctional, each one adapted to a different kind of fit. A class tree
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Genfun::AbsFunctional ChiSq

HistChi2Functional

HistLikelihoodFunctional

TableLikelihoodFunctional

Figure 16.3 A class tree diagram for AbsFunctional and subclasses. The subclasses are part of
QatDataModeling and their header files can be found there.

diagram is shown in Figure 16.3. Users may also implement their own objective function
by extending this set through inheritance.

After the fit runs, users should check the status code; however, whether the minimizer
is truly successful is not always clear; there is no guarantee that the minimization of
functions converges and there is no criterion to check either. When it does converge it
may not converge to the true global minimum but rather to a local minimum. In addition,
the Hessian matrix may not be properly computed. The minimizer can provide rather
detailed information by setting the verbose flag in the constructor call:

MinuitMinimizer (bool verbose=false);

to “true” (as in the example on page 519).
Certain circumstances can exacerbate convergence problems in MINUIT:

1. A very large number of parameters.

2. Large correlations between the parameters.

3. The existence of certain directions in the parameter space in which the function
value does not change. This will certainly occur in cases where the fit function
itself possesses continuous symmetries in its parameters, exact or approximate.

4. The existence of many local minima in the objective function. These are sometimes
caused by discrete symmetries, exact or approximate.

The simple example which we have been discussing causes no problems for MINUIT;
however complicated problems can be a source of frustration and have even been known
to cause irritability, sleeplessness, headaches, nausea, and fits of vomiting.

The result of the measurement can be visualized as iso-density contours in the
parameter space. These contours are elliptical in the case of Gaussian likelihood
functions, and are therefore called “error ellipses”. Typically one is interested in the
contour that encloses 68.3% of the likelihood, corresponding to one Gaussian deviation
or “one sigma”, or 95.4% corresponding to two Gaussian standard deviations or “two
sigma”. The class PlotErrorEllipse in the QatPlotting library inherits from
Plottable, and is therefore an object which can be added to a graph (PlotView).
This is shown together with the fit in Figure 16.2.
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16.3.1 The quality of a χ2 fit

While a χ2 fit is a little pedestrian for most serious data modeling applications, it has
a feature that other techniques lack—the value of χ2 at the minimum can be used to
evaluate the quality of the fit. Given N true values y(xi) for the state of a system at various
values of x and also N measurements yi described by independent Gaussian errors σi ,
the deviations y(xi)− yi for the full set of measurements follow a multivariate Gaussian
distribution with a mean of (0, 0, 0...0) and a covariance matrix

C =

⎛

⎜⎜⎜⎜⎜
⎝

σ 2
0 0 0 . . . 0
0 σ 2

1 0 . . . 0
0 0 σ 2

2 . . . 0
. . . . 0
0 0 0 0 σ 2

N−1

⎞

⎟⎟⎟⎟⎟
⎠

The probability for a fluctuation less than that observed in the dataset is the
cumulative χ2 distribution P(χ2|N) described in Section 7.3. The complement
Q(χ2|N) = 1 − P(χ2|N) is the probability to observe an even greater fluctuation. This
is also colloquially (but quite commonly) called the Probability χ2. The logic behind
this figure of merit is the following: while large fluctuations can occur, fluctuations
whose probability χ2 is 10% or less should occur only 10% of the time, those whose
probability χ2 is 1% or less should occur only 1% of the time, etc., if the model describes
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Figure 16.4 In a mechanical analogy to a χ2, the data model is connected to the data points with
springs whose stiffness depends on the error bars, and the model adjusts itself in order to minimize the
energy stored in the springs.
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the data. Thus very low values of probably χ2 should be considered suspicious. When
parameters of the model have been adjusted during the fit, the number of degrees of
freedom N − P where P is the number of adjustable parameters should be used in
calculating the probability χ2, i.e. Q(χ2|N − P) should be taken. A useful rule of thumb
is that the “reduced χ2”, or χ2/dof where dof = N − P, should be approximately one
unit for a reasonably good fit.

16.3.2 A mechanical analogy

The behavior of a χ2 fit can be understood intuitively with a simple mechanical analogy.
We imagine that the data model is connected to the data points via small springs, as in
Figure 16.4. The springs are stiff if the error bar is small and loose if the error bar is
large: the spring constant should be related to the error via the relationship ki = 2/σ 2

i ,
so that:

χ2 =
N∑

i=0

(yi − y(xi|�α))2
σ 2

i

→
N∑

i=0

1
2

ki ( yi − y(xi|�α))2

and the χ2 is then simply the fictional energy stored in the fictional springs. The fitter
will minimize this energy. This analogy can give some intuitive feeling for how the fit will
act in response to a particular set of data points.

16.4 Fitting distributions

Distributions of random variables can be very sensitive to underlying physics—one has
only to think of the spectral distribution of blackbody radiation, which triggered a huge
paradigm shift in the physical sciences, to find a dramatic example. Depending upon
the circumstances, we could be dealing with univariate data or multivariate data. There
are two common ways of fitting the data; first, we can collect the data into the bins of
a one, two, or multidimensional histogram and fit the bin contents, and second, we can
fit the data without putting it into bins at all. The first method becomes difficult when
the number of variables becomes large, since the number of bins grows exponentially
with the number of dimensions, while the amount of data is usually fixed. However for
univariate data it is still a useful technique.

When looking at a histogram of binned data, we need to keep two probability
distributions in mind: first, the distribution according to which the data is distributed,
and second, the distribution that the contents of a particular bin would follow if the
experiment could be repeated. The latter is called the Poisson distribution and is given by:

P(N ; λ) = e−λ λ
N

N ! .
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The Poisson distribution is a discrete probability distribution; i.e. the outcome can only
be an integer, N = 0, 1, 2... It gives the probability that N random events are observed
in some interval (of time, space, frequency, or whatever) when the expected number
is λ. If one were to record a stable source of natural background radiation with a Geiger
counter, for example, the number of counts in a five second interval would follow a
Poisson distribution. Both the mean and the variance of the Poisson distribution are λ.
When N events are actually observed in some interval or bin, we will therefore take the
uncertainty in the number of observed events to be

√
N . Thus, error bars for a bin in a

histogram are often set to be the square root of the number of events in that bin. This is
a good choice except that it is clearly wrong for an empty bin, where N = 0. Finally, for
large values of λ, the Poisson distribution approaches a normal distribution.

We discuss in the following sections a series of useful techniques for fitting dis-
tributions. We take, as an example, data which is distributed according to a gamma
distribution, which is a function of one variable whose shape is controlled by two
parameters, called α and β. The probability density for the gamma distribution is:

ρ(x;α,β) = xα−1e−x/β

�(α)βα
. (16.7)

To generate according to this distribution one can use std::gamma_distribution,
which takes parameters α and β in its constructor call.

16.4.1 χ2 fit to a distribution

If we have binned data (i.e. a histogram) then according to the previous section the
histogram itself can provide a series of points and error bars needed to compute the χ2

for a particular data model. Eq. 16.5 can be written as:

χ2 =
N∑

i=0

(Mi − n ·�x · ρ(xi ; �α))2
Mi

(16.8)

where i is the bin number and Mi is the bin contents, and xi is the coordinate
of the bin, n is the total number of events in the sample, �x is the width of a
bin in the histogram, and ρ(x; �α) is the probability density for the variable x. The
class HistChiSquareFunctional of the QatDataModeling library provides an
implementation.

An example program, gammaChiSq, can be found in EXAMPLES/CH16/GAMMA/
CHISQ and is excerpted below. The program uses std::gamma_distribution to
fill a histogram (hist in the excerpt below), and then fits the histogram to a gamma
distribution, determining the values of the parameters α and β. This is repeated in
multiple runs, and in the end the program makes summary plots relevant to determining
the quality and accuracy of the fits.
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#include " QatDataModeling / His tChi2Funct iona l . h "
//
Hist1D hist; // histogram of binned data
.
.
using namespace Genfun;

// PREPARE THE FIT. THIS IS A TWO-PARAMETER FIT.
Parameter pAlpha( " Alpha ", 0.5, 0.1, 4.0);
Parameter pBeta ( " Beta ", 0.5, 0.1, 4.0);

// MAKE A FIT FUNCTION AND CONNECT IT TO ITS PARAMETERS:
Variable X;
Log log;
Gamma gamma;
Exp exp;
GENFUNCTION gammaDistribution=
exp(-pAlpha*log(pBeta))/gamma(pAlpha)*exp(-X/pBeta+(pAlpha

-1)*log(X));

// MAKE A FUNCTIONAL,
HistChi2Functional objectiveFunction(&hist);
GENFUNCTION f = hist.sum()*gammaDistribution;

// MAKE AN ENGINE FOR MINIMIZING THE LIKELIHOOD BY VARYING
THE PARAMETERS.

bool verbose=true;
MinuitMinimizer minimizer(verbose);
minimizer.addParameter(&pAlpha);
minimizer.addParameter(&pBeta);
minimizer.addStatistic(&objectiveFunction,&f);
minimizer.minimize();

Results from the fit are shown in Figure 16.5. On the left is the fit itself, and on
the right is the fit result, shown as an error ellipse, together with the true value of the
parameters α and β used in the simulation. Two kinds of χ2 can be obtained from
the information which is displayed. First, from the information in the left-hand plot one
derives the χ2 for the fit, which can be used to judge whether the model used for the
data is a good one. We will call this the “fit χ2”. Second, from the information on the
right-hand plot, one can obtain the χ2 for the measured value of the parameters to match
the input values, we will call this the “matching χ2” which is used to assess the accuracy
of the fit. Obviously, this second can only be determined for pseudoexperiments, for
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Figure 16.5 Results of a χ2 fit to binned data following a γ distribution. On the left, the fit is shown
together with the probability χ2 for the fit; on the right is the �χ2 = 1 error ellipse, shown together with
the probability χ2 for the result to match the input value.

which the true input values are known. From either value of χ2, one can compute the
“probability χ2” (the language is somewhat colloquial but quite common). This is the
the complementary cumulative χ2 distribution function for N degrees of freedom. For
the fit χ2, N must be taken as the number of bins in the histogram, minus the number
of parameters in the fit. For the matching χ2, N is simply the number of parameters in
the fit.

Is the fit good? This is a statistical question, and statistical questions can only be
answered with “probably” or “probably not”. If the model used to fit the data is correct,
the distribution of the probability of the fit χ2 over many pseudoexperiments should be
flat over the entire range, i.e. [0,1]. On the other hand, bad data models will usually lie
far from the data points, produce large values for the fit χ2, and small values for the
probability of the fit χ2.

The probability of the matching χ2 gives the probability of a deviation of the measured
values from the input values larger than the one which is observed. This is also a random
variable between zero and one which is flat if deviations from the measured central values
are well described by their estimated errors.

Both probabilities can be used as indicators of other sources of trouble in the fits. One
possible issue is simple errors in normalization or the numerical procedures. Another
source of trouble is the approximation of the Poisson distribution by a normal distribution
in the χ2 fitting procedure. Low statistics in the experiments may result in a failure
of the likelihood function to reach its asymptotically limiting form as a multivariate
normal distribution. By performing large numbers of pseudoexperiments and plotting
the distribution of fit probabilities and matching probabilities one can frequently spot
this kind of problem. An example of this type of exercise is shown in Figure 16.6 for
low-statistics (10K events) and high-statistics (500K events) χ2 fits.
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In addition to plots of probability χ2 distributions for the fitted parameters in the full
multidimensional parameter space, one can check the accuracy one parameter at a time.
Usually this is done by normalizing the deviation �αi = αi − αi0 by the estimated error
σ(αi) returned by the fit. This normalized deviation �αi/σ(αi) is called the pull. Pull
distributions for an ensemble of pseudoexperiments should be normally distributed in
the limit of large-statistics pseudoexperiments. Any shift in the mean is usually indicative
of a bias in the fit, and departures from unit variance is a sign that errors are over- or
underestimated.

16.4.2 Binned maximum likelihood fit to a distribution

The minimization of χ2 is based on the minimization of a likelihood function, Eq. 16.2,
which is a product of normal distributions. The use of this approximation affects the
accuracy of the fit, and is largely responsible for the accuracy problems in Figure 16.6.
In the case of fitting binned data, the true likelihood function is a product of Poisson
distributions. In this case the likelihood is:
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Figure 16.6 Probabilility χ2 plots for fit quality and fit accuracy. Top: 10K pseudoexperments with
10K events per experiment. Bottom: 10K pseudoexperiments with 500K events per experiment. Ideally,
all of these plots should be flat as departures from flatness indicate defects in the χ2 fit. Top: with few
events per experiment, the content of each bin is Poisson-distributed with too few entries to be adequately
described by a normal distribution. This causes distortion of the fit quality plot and the fit accuracy plot.
Bottom: with higher statistics the first problem is eliminated and the second is greatly reduced.
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L(�α) =
N−1∏

i=0

e−n·�x·ρ(xi ;�α) (n ·�x · ρ(xi ; �α))Mi

Mi ! ,

where Mi is the bin count in the ith bin. The log likelihood is then:

−2 lnL(�α) = 2
N−1∑

i=0

[
n ·�x · ρ(xi ; �α)− Mi ln (n ·�x · ρ(xi ; �α))+ ln(Mi !)

]
.

The last term in the expression is a constant and can be neglected.
The parameters �α0 that minimize this functional are the central values of the estimate.

As before, the covariance matrix of the estimate is C = (H/2)−1, where H is the Hessian
matrix of the likelihood function calculated at the minimum. The binned likelihood fit
does not provide an estimate of goodness-of-fit; instead, the value of −2 lnL(�α0) after
minimization may be compared to the distribution of values from a large ensemble of
pseudoexperiments.

In order to perform a binned likelihood fit, a different functional is chosen to map the
fitting function into a objective function; specifically:

HistChi2Functional objectiveFunction(&hist);

is changed to

HistLikelihoodFunctional objectiveFunction(&hist);

The accuracy of the fit is much improved, as can be seen in Figure 16.7.
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Figure 16.7 Probability χ2 distribution for 10K binned likelihood fits to a gamma distribution, with
10K events per experiment. The fit quality cannot be assessed in a binned likelihood fit. The use of the
Poisson distribution in describing the bin counts has solved the fit accuracy trouble of the χ2 fit
(compare to Figure 16.6 top right), as can be seen from the flatness of the distribution.
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In comparing binned likelihood and χ2 fitting algorithms, several observations can be
made. The χ2 fit is not expected to be very accurate when the histogram contains empty
bins or bins containing less than about ten counts because the Gaussian approximation to
the Poisson distribution is inaccurate in such cases. Indeed, bins with zero counts cannot
be used at all since the corresponding term in the Eq. 16.8 is not defined (and is therefore
usually omitted). Clearly; however, the population of every bin carries information, even
those with no counts. The binned likelihood fit, on the other hand, correctly accounts
for empty bins.

A binned likelihood fit can be very accurate if the correct data model is used, but it can
also incur large systematic errors if the data shows minor discrepancies with the model.
This is because bins with low statistics are taken into account by the binned likelihood fit
and have a important effect on the overall fit. In real data, the presence of a few events
in the tail of the distribution that are not described by the model can grossly distort the
fit. This introduces large discrepancies in the major modes of the probability density
function in order to obtain a more satisfactory agreement with the tails. The χ2 fit on
the other hand is less heavily influenced by the tails of the distribution. In any case, the
statistical properties of the fit should be checked by running tests involving large numbers
of pseudoexperiments.

16.5 The unbinned maximum likelihood fit

The unbinned maximum likelihood fit is the most powerful of all data modeling
techniques used in the business. This method is used by the pros because it is simple,
easily accomodates multivariate data, and does not require the data to be binned. Thus
the rapid increase in the number of bins with dimension, and the corresponding decrease
in bin counts, is avoided.

Imagine that multivariate data, which is assumed to come from a normalized parent
probability density ρ(�x; �α), is collected. As usual, �x is a set of measured data points
and �α is a vector of unknown parameters. The likelihood for the entire dataset,
D = {�x0, �x1...�xN−1}, is given by:

L(�α) = ρ(D; �α) =
N−1∏

i=0

ρ(�xi ; �α), (16.9)

which is considered as an unnormalized probability density for the parameters �α. In the
Gaussian limit, near to the maximum, this quantity behaves (except in pathological cases)
like a multivariate probability density. Central values and errors can be extracted from
the log likelihood function:

− 2 lnL(�α) = −2
N−1∑

i=0

ln ρ(�xi ; �α). (16.10)
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As usual, the central value occurs at �α0, the point in parameter space for which −2 lnL(�α)
is minimized, and the covariance matrix for the parameter �α is C = (H/2)−1, where H
is the inverse of the Hessian matrix calculated at the minimum.

16.5.1 Implementation

The input to the likelihood function is a set of multivariate data together with a model
for the data, called a fitting function. The two are combined into an objective function
which is minimized and the Hessian matrix is determined.QatDataModeling provides
functionality to carry out the fit using a Table and a GENFUNCTION. The multivariate
data is stored in the Table, while the fitting function is a GENFUNCTION whose shape is
controlled by parameters. The ith row of the table contains the variables xi in Eq. 16.10.
The fitting function can be constructed from the variables through the use of the
methodTable::symbol as follows:

Table table;
Genfun::Variable X=table.symbol( "X");

This creates a variable associated with the column labeled “X” in the Table that can be
used in symbolic expressions. For example, to create a gamma distribution controlled by
two parameters in the variable X, the following lines of code can be used:

Genfun::Parameter pAlpha( " Alpha ", 0.5, 0.1, 3.5);
Genfun::Parameter pBeta ( " Beta ", 0.5, 0.1, 3.5);

Genfun::Variable X=table.symbol( "X");
// MAKE A FIT FUNCTION AND CONNECT IT TO ITS PARAMETERS:
Genfun::Log log;
Genfun::Gamma gamma;
Genfun::Exp exp;
Genfun::GENFUNCTION gammaDistribution=exp(-pAlpha*log(pBeta))

/gamma(pAlpha)*exp(-X/pBeta+(pAlpha-1)*log(X));

In case a probability density that is a function of more than one variable is desired,
two variables can be extracted from the table and used together in symbol expressions.
The following example sets up a function of two variables (call them X and Y) that is
controlled by four parameters:

Genfun::Parameter pAlpha0( " Alpha0 ", 0.5, 0.1, 3.5);
Genfun::Parameter pBeta0 ( " Beta0 ", 0.5, 0.1, 3.5);
Genfun::Parameter pAlpha1( " Alpha1 ", 0.5, 0.1, 3.5);
Genfun::Parameter pBeta1 ( " Beta1 ", 0.5, 0.1, 3.5);
Genfun::Variable X=table.symbol( "X");
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Genfun::Variable Y=table.symbol( "Y");

Genfun::Log log;
Genfun::Gamma gamma;
Genfun::Exp exp;

// Function of X
Genfun::Variable _x; // Dummy variable
Genfun::GENFUNCTION gammaDistribution0=
exp(-pAlpha0*log(pBeta0))/gamma(pAlpha0)*exp(-_x/pBeta0+

(pAlpha0-1)*log(_x));

// Function of Y
Genfun::GENFUNCTION gammaDistribution1=
exp(-pAlpha1*log(pBeta1))/gamma(pAlpha1)*exp(-_x/pBeta1+

(pAlpha1-1)*log(_x));

// Make a multivariate PDF
Genfun::GENFUNCTION f = gammaDistribution0(X)*

gammaDistribution1(Y);

The objective function is constructed using the class TableLikelihoodFunctional;
the constructor for this class takes a table containing the input data:

Table *table;
...

TableLikelihoodFunctional objectiveFunction(table);

As usual the fitting function (a normalized probability density) and the functional are
declared to the minimizer so that it may construct and minimize an objective function:

bool verbose=true;
MinuitMinimizer minimizer(verbose);
minimizer.addParameter(&pAlpha1);
minimizer.addParameter(&pBeta1);
...
minimizer.addStatistic(&objectiveFunction,&f);
minimizer.minimize();

Several examples can be found in EXAMPLES/CH16/GAMMA:

• EXAMPLES/CH16/GAMMA/UNBINNEDLIKELI/ contains code which fits a
single random variate. This is an unbinned version of the fits we have discussed in
previous sections. The variate is constructed usingstd::gamma_distribution.
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Figure 16.8 Example of an unbinned maximum likelihood in two variables. Left: the data in an x vs. y
scatterplot. Center and Right: histograms of the x and y variables alone, compared to the fitted functions.
The example is available in EXAMPLES/CH16/GAMMA/MULTIDIM.

• EXAMPLES/GAMMA/CH16/MULTIDIM contains code to generate bivariate
data according to:

ρ(x, y) = �(x;αx,βx) · �(y;αy,βy)

and then to fit the distribution, determining the unknown parameters αx, βx, αy,
and βy. Since it is difficult to compare the fitted distribution to the data in two
dimensions, we check the fit by projecting both the generated data and the fitted
PDF onto one-dimensional subspaces. This is always easy for the data, since it
just consists of making a histogram of the x or y variables separately. It is also
easy for the PDF used in this example because it is a direct product of two one-
dimensional PDFs. This so-called likelihood projection may be more demanding
in the general case. The joint PDF ρ(x, y) and the two projections are shown in
Figure 16.8

• EXAMPLES/CH16/UNBINNED_EXP is a fit to an exponential distribution that
can be written:

ρ(t) = "(t)
1
τ

e−t/τ (16.11)

where "(x) is the Heaviside (or unit step) function. The exponential distribution
describes, for example, the number of radioactive decays versus time produced
in a radioactive substance. This example allows you to experiment with the
size of the dataset by giving the command line parameter NPER=value.
With this example you can see that the unbinned maximum likelihood fit
works with very few events, and even with only one event! However careful
consideration must always be given to measurements performed with very small
statistical samples.
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16.5.2 Construction of normalized PDFs

The PDFs used in fitting functions to an unbinned maximum likelihood fit must be
normalized. While constants like 1, 2,π , represent only constant offsets to the −2 lnL(�α)
objective function, normalization constants like 1/τ in Eq. 16.11 depend upon one or
more of the parameters �α and so vary during the minimization—they cannot be ignored.

Normalized probability densities can be obtained in several ways. The probability
densities can be born normalized, or normalized through analytic or numerical integra-
tion. Numerical integration in more than one dimension is especially tricky; Monte Carlo
integration should be avoided unless it can be carried out to machine precision, since any
statistical fluctuation of the objective function during the minimization step will confuse
the minimizer.

Two normalized probability distributions G1(x) and G2(x) may be used to construct a
summed normalized probability density,ρ(x) = f1G1(x)+(1−f1)G2(x). The fraction f1 is
parameter that usually floats in the fit, and ranges between 0 and 1. If a third normalized
component G3(x) is added to the mix, a PDF defined in the following way:

ρ(x) = f1G1(x)+ f2G2(x)+ (1 − f1 − f2)G3(x)

could easily fail as the minimizer explores parameter space. This is because both f1 and f2
must vary between 0 and 1, which means that negative values of (1 − f1 − f2) can occur.
If this happens the PDF need not be positive definite in this region of parameter space.
The practical consequence is usually the occurrence of an inf or a NaN in the calculation
that evaluates −2 lnL(�α). A better parameterization is:

ρ(x) = f1G1(x)+ (1 − f1)(f2G2(x)+ (1 − f2)G3(x)),

which does not suffer from the same problem because the entire rectangular reg-
ion of parameter space with 0 < f1 < 1 and 0 < f2 < 1 is physically meaningful.
Figure 16.9 shows an example fit; code for which is available in EXAMPLES/CH16/
GAMMA/UNBINNED_GAUSS.

Given two normalized probability densities f (x) and g(x), the convolution (f ◦ g)(x) is
normalized and represents (as we have seen in Chapter 7) the distribution of the sum of
two random variables, one distributed according to f (x) one according to g(x).

Orthogonal polynomials in any number of dimensions can be used to construct
normalized PDFs through a procedure which we illustrate in one dimension. Let {φi(x)}
be a set of orthogonal polynomials such that

∫ b
a φi(x)φj(x)dx = δij . If {ai} are complex

coefficients satisfying:

∑
|ai|2 = 1

then the function ψ(x) = ∑ aiφi(x) satisfies the condition
∫
ρ(x) = ∫ b

a |ψ(x)|2 dx = 1.
By choosing a parameterization for a set of coefficients ai satisfying Eq. 16.5.2 one can
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Figure 16.9 This plot shows a fit of three Gaussians to a gamma distribution. The sum of the
Gaussians data model is constrained to integrate to unity by the parameterization which has been
adopted. The three fitted components are shown in grey, and their sum is shown in black. This example is
accessible in EXAMPLES/CH16/GAMMA/UNBINNED_GAUSS.

construct a normalized ρ(x). Do not, however, be tempted to enforce the normalization
condition using a Lagrange multipliers to modify the objective function. This technique
produces saddle-point extrema rather than minima.

For functions of more than one variable, normalized multivariate PDFs can be
constructed as the direct product of normalized univariate PDFs.

Finally these tricks can be used in combination. If, for example, we have two
normalized PDFS F1(x) and F2(x) for the variable x, and two normalized PDFs G1(y)
and G2(y) for the variable y then the direct products F1(x)G1(y) and F2(x)G2(y) are
normalized joint PDFs, and so is f1F1(x)G1(y) + (1 − f1)F2(x)G2(y), where f1 is a
parameter that can be adjusted between 0 and 1. Tricks like this are of great practical use
in devising complicated data models.

It’s remarkable how easy it is to get the hang of this, and with a little practice simple
data modeling exercises can be refined with more and more detail with little additional
effort. The main general difficulties are coaxing the minimizer into convergence and
satisfying yourself that the minimization has found the correct minimum. Practice
makes perfect, and experienced numerical programmers can succeed in obtaining good
convergence, even when thousands of parameters are involved.

16.6 Orthogonal series density estimation

When fit parameters happen to be the coefficients of orthogonal functions, as above,
another approach can be used to determine their values. Orthogonal series density
estimation (Watson, 1969) is a simple approach related to Fourier analysis. The fitting
function is expressed in a basis expansion with undetermined coefficients. For example,
a two-dimensional PDF can be modeled with a Fourier expansion in a rectangular region
(of size [0, Lx] × [0, Ly]) as follows:
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ρ(x, y) = 1
√

LxLy

∑

n

am,n exp (imπx/Lx) exp (inπy/Ly). (16.12)

The coefficients of the expansion are given by:

am,n = 1
4

1
√

LxLy

∫ Lx

0

∫ Ly

0
ρ(x, y) exp (−imπx/Lx) exp (−inπy/Ly) dxdy. (16.13)

By determining the coefficients am,n we fully determine the PDF in Eq. 16.12. Those
coefficients are obtained by recognizing the integral in Eq. 16.13 as the average of the
quantities

Am,n = 1
4

1
√

LxLy
exp (−imπx/Lx) exp (−inπy/Ly) (16.14)

over the dataset. This average is quite simple to compute.
An illustration of this process is given in Figure 16.10. The left panel shows a

photograph of Abraham Lincoln, but we will imagine that it defines a two-dimensional
distribution that we will whimisically call the “Abraham Lincoln distribution”. We
imagine that this PDF is to be reproduced from data. The dataset consists of a number
of points distributed according to the unknown PDF, as shown in the center panel. This
data is used to compute 〈Am,n〉D up to m = 40 and n = 40, and the resulting joint PDF
is shown in the right panel of the figure. Some details of the image have been lost, both
because of the limited number of points in the dataset and because of the limited number
of Fourier components used to reconstruct the image. In physics, many distributions lack

Figure 16.10 Orthogonal series density estimation. Left: an original photograph of Abraham Lincoln
(public domain) which defines the Abraham Lincoln distribution, and two dimensional joint probability
density. Center: data generated from this distribution using Monte Carlo techniques. Right: an
approximation to the original density function is recovered using orthogonal series density estimation.
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the sharp features of this photograph and the smoothing that can be observed here is
actually a desirable feature.

Some data of interest is directional in nature and can be mapped onto a spherical
surface; these include celestial data on one hand, and data from scattering experiments
on the other. This data is characterized by a polar angle θ and an azimuthal angle φ

and the appropriate basis functions are the spherical harmonics. In this case the PDF
expansion is:

ρ(θ ,φ) =
∞∑

l=0

l∑

m=−1

almY m
l (θ ,φ) (16.15)

where:

alm =
∫

ρ(θ ,φ)Y m∗
l (θ ,φ) d�, (16.16)

which can again be estimated by taking averages.
Formally, all of these series are infinite; in practice they have been terminated, either

by truncation or by “rolling off” the coefficients smoothly to zero after some cutoff. It is
of interest to examine the infinite series too, even if it cannot be calculated on a computer.
Our estimate of the coefficients is the average:

alm = 1
N

N−1∑

i=0

Y m∗
l (θi ,φi) (16.17)

and therefore the PDF we would (conceptually) construct with an infinite series is:

ρ̃(θ ,φ) =
∞∑

l=0

l∑

m=−1

almY m
l (θ ,φ)

=
∞∑

l=0

l∑

m=−1

(
1
N

N−1∑

i=0

Y m∗
l (θi ,φi)

)

Y m
l (θ ,φ)

= 1
N

N−1∑

i=0

δ(φ − φi)δ(θ − θi).

Thus if the sum is not truncated, one would obtain a superposition of δ-functions, each
one with equal weight and centered directly upon one of the points in the realization.
This is not useful. The truncation, on the other hand, broadens these contributions so
that a “blob” is laid down at each point rather than a δ-function.

Note that the reconstructed PDF can be thought of as a scalar product of abstract
vectors. For example, with a spherical harmonic basis, we express the probability density
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for a single trial point (after having determined it from an independent, “training”
dataset):

ρ(θ ,φ) =
lmax∑

l=0

l∑

m=−l

〈
Y m∗

l (θ ,φ)
〉
D Y m

l (θ ,φ). (16.18)

In this case the scalar product is between “vectors” composed of a finite number of
spherical harmonics evaluated for the point θ , φ, in the case of the trial point, and
averaged over θi , φi in the case of the training sample, D. This result can be useful in
techniques requiring this probability, such as data modeling, or in techniques designed
to classify data, such as character recognition.

Are two datasets different?

We consider the N real coefficients for a dataset determined through orthogonal series
density estimation; in case the N coefficients are complex, as in both of our the previous
examples, we have 2N real numbers, the real and imaginary parts of the coefficients.
These are obtained by taking averaging the N basis functions ei(�x) (for complex basis
functions: the 2N real and imaginary parts) over the dataset.

While computing the averages 〈ei(�x)〉 in the previous equation, one can also compute
the average of their squares:

〈e2
i (�x)〉 (16.19)

as well as the products.

〈ei(�x)ej(�x)〉 (16.20)

and form a matrix Cs called the sample covariance matrix:

(Cs)i,j ≡ 〈ei(�x)ej(�x)〉 − 〈ei(�x)〉〈ej(�x)〉.

Dividing this by the number of events N in the dataset yields the covariance of the mean:

C = Cs/N . (16.21)

Given two data sets for which we have determined two coefficient sets �a1 and �a2, with
covariance C1 and C2, we can compute the difference �� = �a1 − �a2, and its covariance
C� with elements:

C�
ij = ∂�i

∂a1
k

∂�j

∂a1
l

C1
kl +

∂�i

∂a2
k

∂�j

∂a2
l

C2
kl = C1

ij + C2
ij (16.22)
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(summation implied over repeated indices) such that C� = C1 + C2. Finally, we can
calculate the χ2 for the two sets to be consistent, which is the standard distance between
the two vectors �a1 and �a2:

χ2 = ��T · C� · �� = (�a1 − �a2)
T · (C1 + C2)

−1 · (�a1 − �a2) . (16.23)

The probability of this χ2 can now be calculated for N degrees of freedom and used as a
test of the consistency of the two datasets. It is also possible to fit a dataset to pseudodata
(rather than a function) by minimizing this χ2 over the parameters used to generate the
pseudodata.

This recipe is vague on several points. Which functions should be used as basis
functions? This answer is usually determined by the space on which the analysis is
carried out, e.g. for functions on a one-dimensional interval, either harmonic functions or
Legendre polynomials could be used, whereas spherical harmonics are more appropriate
for functions defined on a sphere. Then, how many coefficients should one use?
Generally a smooth function without oscillations that serves only to follow fluctuations
in the data is desired, so this depends on how much smoothing is required and how much
statistical fluctuation is present in the dataset, the latter depending mostly on the amount
of data and the number of dimensions.

A common approach to comparing two datasets is to fill two histograms with the same
quantity and compare the histograms by computing the χ2 (the template method). See
for example (Press, 2007, Section 14.3). We note that this is in fact a special case of the
method we have just described, provided that the basis functions are defined to be:

ei(x) =
{

1√
xi+1−xi

, xi < x ≤ xi+1

0, otherwise
. (16.24)

Thus what probably strikes the reader as a completely different technique turns out to
be simply a particular choice of basis functions. Which choice is best? Depending on
the distributions, some descriptions of the data may be more economical than others.
This is particularly true when the distribution is known to contain only a small number
of harmonics, and also with smooth multidimensional distributions. This case arises, for
example, in the decay and scattering of particles.

16.7 Bayesian inference

In previous sections we have treated the likelihood as a probability distribution for
unknown parameters. This view, which is based in Bayes’ theorem, is justifiable with
caveats. Consider the joint probability distribution for the datasetD and the parameters �α.
This is a purely abstract notion that can be expressed in terms of conditional probabilities
in two ways:
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ρ(D, �α) = ρ(�α|D)ρ(D) = ρ(D|�α)ρ(�α), (16.25)

from which we may obtain:

ρ(�α|D) = ρ(D|�α)ρ(�α)
ρ(D)

(16.26)

which is Bayes’ theorem. We identify the conditional probability ρ(D|�α) with the
likelihood L(�α). As for the denominator in Eq. 16.26, it can expressed as:

ρ(D) =
∫

ρ(D|�α) d �α =
∫

L d �α.

The density π(�α) ≡ ρ(�α) is the notorious prior density, while ρ(�α|D) is called the
posterior density, which may be written as:

ρ(�α|D) =
[ L(�α)
∫
L(�α)d �α

]
π(�α). (16.27)

In brackets, the factor in the denominator is a normalizing factor for the likelihood, so
that the entire expression within the brackets is a normalized probability density. The
prior density π(�α) represents one’s prior knowledge about the parameters �α. This prior
density may be taken as flat, but note that probability densities are not invariant under a
simple change of variables �α → �α′, which introduces additional terms due to the Jacobian
of the transformation.

In previous sections we have ignored the prior density π(α). The basis for this
approximation is as follows. Usually we will assume flat priors with respect to a certain
choice of parameters �α to describe the likelihood function. Other parameterizations will
not be flat, but they will be smooth. The higher the sample size, the more sharply
peaked the likelihood function. As it becomes more sharply peaked, the variation of
the prior over the range in which the likelihood function is non-negligible becomes
smaller. Eventually the variation can be neglected, at which point one says that the “data
overwhelms the prior”.

If the data does not overwhelm the prior, then the prior should be specified in Bayesian
analyses. For example, information from previous measurement may be incorporated in
the prior. In this case Bayes’ theorem describes a refinement of previous knowledge with
new information. The Kalman filter, described in the next section, is an example of this
philosophical point of view. In the case of small sample sizes, Bayesian analysis involves
a certain degree of subjectivity because results will depend on the prior.

The likelihood function has many uses. It may be used, as we have illustrated, in
Bayesian inference, interpreted usually as the probability density for �α, or it may be
combined with other likelihood functions derived from other datasets. Additionally, it
may be used as the basis for a test statistic in frequentist analysis, see for example
(Feldman, 1997).
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Communicating likelihood functions

Often it may be desired to exchange the posterior density with the scientific community.
In these cases the question is how? The likelihood function, being defined by data, has no
analytic form. One can exchange a numerical procedure together with necessary config-
uration files. Alternatively, one can find an analytic expression that closely approximates
the likelihood, through interpolation or some other procedure. Lastly, one can capture
the shape of the likelihood function in a plot, or characterize it by determining intervals
containing a specified fraction of the integrated probability density.

The problem of communicating the likelihood function is simplest when one is mainly
concerned with only one of the parameters at a time. In that case Monte Carlo integration
can be performed to integrate out the unobserved parameters. The function:

ρ(αj) =
∫

ρ(�α) dα0dαi . . . dαj−1 . . . dαj+1 . . . dαN−1 (16.28)

represents the probability density for the single parameter αj independently of the value
of all of the other N − 1 parameters. A simple way to perform the integration is using
Markov chain Monte Carlo, discussed in Section 7.5. Markov chain Monte Carlo is
first used to generate a realization of the full N dimensional posterior density ρ(�α).
Then, a histogram is made of the variable αi . As usual, care must be taken when
generating the Markov chain to ensure the elimination of burn-in and spurious results
from insufficiently long runs. If the Markov chains are stored in a file, they can be
reweighted later with other priors, to determine the sensitivity of a result to assumptions
about the prior. This is referred to as a sensitivity analysis and is a standard part of
Bayesian analysis.

16.8 Combining data

When two or more datasets which constrain the same set of parameters are available,
one can obtain the constraints from the combined datasets by multiplying together the
two likelihoods, or, equivalently, adding their logarithms. Defining L1(�α) and L2(�α) as
the likelihood functions for datasets D1 and D2 and L12(�α) as the likelihood function for
the combined dataset, one has:

− 2 lnL12(�α) = −2 lnL1(�α)+−2 lnL2(�α). (16.29)

An example is given in Figure 16.11; here measurements from two segments of a
single straight line are fit for the slope m and the intercept b using a χ2 fit. This type
of problem can arise in reconstructing a charged particle track in a segmented tracking
chamber, for example. The measurements are then combined according to the above
Eq. 16.29.

This amounts to the equation:

χ2
12(m, b) = χ2

1 (m, b)+ χ2
2 (m, b).
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Figure 16.11 Combining data. Left: two fits to two datasets. Right: error ellipses in the parameters m
(slope) and b (intercept) from the two fits and a contour at the intersection representing the combination
of the two datasets.

A substantial reduction in the error on both parameters is observed when the mea-
surements are combined; intuitively this is because, as one can see from Figure 16.11,
one requires measurements on both ends of the line to accurately determine the slope
and the intercept. Alternately, looking at the error ellipses in Figure 16.11, one sees
that the two measurements constrain the parameters in different ways and are thus
complementary. This is due to choice of data points used in each fit. Example code
lives in EXAMPLES/CH16/COMBO.

In the general case, Eq. 16.29 is written as:

χ2
12(�α) = χ2

1 (�α)+ χ2
2 (�α)

where χ2(�α) now denotes the Taylor series expansion of −2 lnL12(�α) about the point
�α0, up to terms of up to second order in �α. In this approximation, the combination can
be carried out analytically

χ2
12(�α) = (�α − �α1)

T C−1
1 (�α − �α1)+ (�α − �α2)

T C−1
2 (�α − �α2)+ constant. (16.30)

In this expression �α1 and C1 represent the central value and covariance matrix of the
first fit and �α2 and C2 represent the central value and covariance matrix of the second
fit. They are outputs from a fit as well as inputs to a combined fit, so it is also proper
to call them measurements. Measurements go into the combined fit and more refined
measurements come out. The constant in Eq. 16.30 is of no consequence.

We seek a similar approximation for χ2
12(�α), in other words:

χ2
12(�α) = (�α − �α12)

T C−1
12 (�α − �α12),

where �α12 will be identified with the central value of the combined measurement and
C12 with its covariance matrix. The covariance matrix is the inverse of the Hessian of
χ2

12(�α),
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C−1
12 = 1

2
H12 = 1

2
(H1 + H2) = C−1

1 + C−1
2

or:

C12 =
(

C−1
1 + C−1

2

)−1
.

To compute the central value of the combined measurement, �α12, we need to minimize
the χ2, Eq. 16.30, over the parameters �α. The derivatives with respect to the parameters
�α can be taken analytically:

∂χ2
12(�α)
∂ �α = ∂

∂ �α (�α − �α1)
T C−1

1 (�α − �α1)+ ∂

∂ �α (�α − �α2)
T C−1

2 (�α − �α2)

= 2C−1
1 (�α − �α2)+ 2C−1

2 (�α − �α2)

and set to zero:

C−1
1 (�α − �α2)+ C−1

2 (�α − �α2) = 0. (16.31)

Thus:

�α =
(

C−1
1 + C−1

1

)−1 ·
(

C−1
1 �α2 + C−1

2 �α2

)
. (16.32)

We summarize the procedure in two equations:

C12 =
(

C−1
1 + C−1

2

)−1

�α12 = C12 ·
(

C−1
1 �α2 + C−1

2 �α2

)
(16.33)

These two equations become intuitive in the case of one parameter, which we could
call y. Assume we have two measurements, y1 ± σ1 and y2 ± σ2, and that we denote the
combined measurement ȳ and its error σ . Our two equations read:

σ 2 =
(

1/σ 2
1 + 1/σ 2

2

)−1

ȳ = y1/σ
2
1 + y2/σ

2
2

1/σ 2
1 + 1/σ 2

2

,

which is a common formula for the weighted average of two measurements.
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16.9 The Kalman filter

In Section 16.8 and Figure 16.11 we fit a straight line in two steps, first by fitting the
segments and then by combining the two fits. In this section we will go the extreme case
in which the entire dataset is fit by combining individual data points (xi , yi ±σi), one-by-
one. The reward is the development of a technique that can be used to update a fit with
new data points as they are made available. This permits tracking an evolving system in
the presence of both measurement error and Gaussian perturbations on the parameters.
The technique, called the Kalman filter, was invented in the early 1960s at NASA where
it was used to land the lunar module. It has also been applied to estimate the trajectories
of charged particles in tracking detectors in the presence of both measurement error and
multiple Coulomb scattering. There is a vast literature on the Kalman filter and there are
many extensions to the basic method, to which we limit ourselves in this text.

We will derive the Kalman filter method in analogy to the combination of measure-
ments made above. The method combines information about the measured parameters
from the points indexed 0,1,2…N−1 with additional information from the Nth point. To
be clear: using a Kalman filter to fit a straight line is like killing a fly with an elephant gun.
However the example is designed to soften our introduction to a complicated subject.

There are two main differences between this type of combination and that of the
previous section with which we will have to cope. The first is that the individual data
points, (xi , yi ± σi), constrain a higher-dimensional parameter space and thus do not
have a full 2 × 2 dimensional covariance matrix in the space of the parameters m and b
(slope and intercept). So the formulae of Eq. 16.33 cannot be used.

The second issue is how one initiates the procedure. In the case of a straight line the
parameters are not known until two points have been incorporated, for second order
polynomials three are required, etc. The first of these two issues will be clarified in the
derivation of the Kalman filter equations, while the second will be sidestepped for the
moment by assuming that after the first n points, central values and covariance matrices
for the fit are already available. When the form of the Kalman filter equations is available
we will return to the issue of how to start the fit.

Before we start the derivation we generalize a bit by assuming that more than one
variable is measured at each point xi , such that the variable yi is itself a vector, designated
�yi . It matters little if the measured quantities are correlated or uncorrelated, because in
any case we will express the contribution of the full set of independent measurements
to χ2 as

(
�yi − �f (xi ; �α)

)T
R−1

i

(
�y − �f (xi ; �α)

)

where Ri is the covariance matrix for the measurements �yi . The equation for generating
the prediction for the value of �yi is denoted �f (xi ; �α) and is called the measurement equation.
For example, for the straight line with parameters m and b, the measurements yi consist
of only one value and the covariance matrix Ri =

(
σ 2

i

)
has dimension 1 × 1. We define

�α = (b, m) and f (x; �α) = mx + b.
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We choose now some particular point i = n and assume that the previous n points
0, 1, ...n−1 have already yielded central values �αn−1 for the parameters and a covariance
matrix Cn−1. Combining the measurement �yn with the covariance matrix Rn gives a new
χ2 which we write as:

χ2
n (�α) ≈ (�α − �αn−1)

T C−1
n−1(�α − �αn−1)+ (�yn − �f (xn; �α))T R−1

n (�yn − �f (xn; �α)).

We seek an approximate solution in the form:

χ2
n (�α) = (�α − �αn)

T C−1
n (�α − �αn).

This is facilitated by expanding the measurement equation to first order in the para-
meters:

�f (x; �α) = �f (x; �αn−1)+ An−1 · (�α − �αn−1)+ . . .

where An−1 is a matrix of derivatives,

(An−1)ij =
∂fi(x; �α)

∂αj

∣∣∣∣
x=xn; �α=�αn−1

.

With this we can write:

χ2
n ≡ (�α − �αn)

T · C−1
n · (�α − �αn)

= (�α − �αn−1)
T · C−1

n−1 · (�α − �αn−1)

+
(
�yn − �f (xn; �αn−1)− An−1 · (�α − �αn−1)

T
)
· R−1

n

·
(
�yn − �f (xn; �αn−1)− An−1 · (�α − �αn−1)

)
.

The covariance matrix Cn can be obtained immediately from the inverse of the Hessian
matrix of the right-hand side, which is:

C−1
n = C−1

n−1 + ATR
−1
n An−1

or:

Cn =
(

C−1
n−1 + ATR

−1
n An−1

)−1
.

The central value �αn can be determined by minimizing the right hand side over the
parameters �αn. The relevant derivatives are:



Data modeling 545

∂χ2
n (�α)
∂ �α = 2C−1

n−1 · (�α − �αn−1)− 2AT
n−1R−1

n ·
(
�yn − �f (xn; �αn−1)− An−1 · (�α − �αn−1)

)
,

(16.34)

which we set to zero to obtain:

C−1
n−1 · �α + AT

n−1R
−1
n An−1 · �α = C−1

n−1 · �αn−1 + AT
n−1R−1

n

·
(
�yn − �f (xn; �αn−1)+ An−1 · �αn−1

)

or:

�α =
(

C−1
n−1 + ATR

−1
n An−1

)−1 ·
(

C−1
n−1�αn−1 + AT

n−1R−1
n · (��yn + An−1 · �αn−1)

)

(16.35)
where ��yn = �yn − �f (xn; �αn−1).

In summary, the Kalman filter equations are:

Cn =
(

C−1
n−1 + ATR

−1
n An−1

)−1
,

�αn = Cn ·
(

C−1
n−1 · �αn−1 + AT

n−1R−1
n · (��yn + An−1 · �αn−1)

)
. (16.36)

These are the Kalman filtering equations in their preliminary form, a set of equations
for combining a fit to the first n points with information from the (n + 1)th point.
The equations are used at each step to refine an existing fit by updating it with new
information. This is, in fact, an excellent illustration of Bayes’ theorem at work.

The philosophical problem we encountered in the discussion of Bayesian inference,
namely, the dependence upon the prior density, becomes a technical issue in the context
of Kalman filtering. In particular, the Kalman filter equations only specify how to update
a fit. Prior information is needed to start the fit. This prior information comes in the form
of a starting estimate, as well as a starting covariance. At the first few steps in the fit, the
parameter values are not well estimated since insufficient information has been provided
to the fit. However, with more steps in the fit the data should eventually overwhelm
the initial assumptions. Sensitivity to these assumptions should be examined, and tests
should be carried out with simulated data before applying the procedure to real data.

If the starting covariance is too small or the starting estimate is too far from the mark, it
can pull the fitted values of the parameters; usually this will result in bad pull distributions
for one or more parameter. If the covariance is too large on the other hand, the Kalman
filtering equations may fail due to roundoff error. These considerations will become clear
in the example of the following section.

16.9.1 Example: fitting a polynomial curve

The Kalman filter equations, Eq. 16.36, are still incomplete but we take a break from
the development to see a simple application. The application seeks to fit data generated
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according to a polynomial with the addition of Gaussian noise. The measurement
equation will be taken to be a polynomial of form:

f (x) = α0 + α1x + α2x2 . . . .αn−1xn−1,

which has a 1 × n derivative matrix:

A = ( 1, x, x2, x3, . . . , xn−1
)

.

The quantity ��yn + A · �αn−1 appearing in Eq. 16.36 reduces to just �yn in this case
The matrix Ri is one-dimensional since only one variable, y, is measured at each point
x along the curve. Thus Ri = δ2

i , where δi is the measurement error on the ith point.
Large diagonal covariance matrices are taken to start the fit, together with an arbitrary
guess for the initial values of the parameters.

Three directories in the EXAMPLES/KALMAN area, called KALMAN-FLAT,
KALMAN-LINEAR, and KALMAN-THIRD, fit zeroth-order, first-order, and third-
order polynomials to the synthetic data. For the third order polynomials, the progression
of the fitted curve as more points are added is shown in Figure 16.12.

The zeroth-order polynomial fit is worth examining. In this case the measurement
equation is y = a0; the matrix A is a 1×1 matrix whose value is unity, and Eqs. 16.36 are:

σ 2
n =

(
1

σ 2
n−1

+ 1
δ2

n

)−1

a0,n = σ 2
n ·
(

a0,n−1

σ 2
n−1

+ yn

δ2
n

)

. (16.37)

This represents a procedure for averaging a set of measured values yi ± δi by taking, at
each step, the weighted average of the new measurement with the weighted average of
all the previous measurements.

A second example uses the sigmoid (S-shaped) function:

f (x; w, θ) = tanh(wx + θ).

The matrix A is
(

∂f
∂w , ∂f

∂θ

)
= (x · sech2(wx + θ), sech2(wx + θ)

)
. Again Ri = σ 2

i ,
where σi is the measurement error on the ith point. The progression of the fit is
similar to that of Figure 16.12. The code for this example is available in the directory
EXAMPLES/CH16/KALMAN/KALMAN-SIGMOID.

16.9.2 Complete equations

The equations in Eq. 16.36 are expressed in a form that is called the weighted means
formalism. This form is well adapted for recognizing the relationship between a Kalman
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Figure 16.12 A Kalman-filter fit to a third-order polynomial curve. The first plot shows the fit before
any points have been added—this corresponds to “prior knowledge” on the input parameters. The second
plot shows the fit after a single point is added. Then two and three points are added (third and fourth
plots), and finally 12 points (fifth plot) and 21 points (sixth plot). At each stage, points which are used
are shown in black and unused points are shown in grey.
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filter and a weighted mean. A calculationally superior formalism known as the Kalman
gain matrix formalism can be found by giving a slightly different treatment to
Eq. 16.35. We have:

C−1
n−1 · �α + AT

n−1R
−1
n An−1 · �α = C−1

n−1 · �αn−1 + AT
n−1R−1

n

·
(
�yn − �f (xn; �αn−1)+ An−1 · �αn−1

)

(
C−1

n−1 + AT
n−1R

−1
n An−1

)
· �α =

(
C−1

n−1 + AT
n−1R

−1
n An−1

)
· �αn−1

+ AT
n−1R−1

n ·
(
�yn − �f (xn; �αn−1)

)

�α = �αn−1 +
(

C−1
n−1 + AT

n−1R
−1
n An−1

)−1

AT
n−1R−1

n (�yn − �f (xn; �αn−1))

�α = �αn−1 + Kn · (�yn − �f (xn; �αn−1))

where Kn is the Kalman gain matrix; there are several equivalent ways of writing it:

Kn =
(

C−1
n−1 + AT

n−1R
−1
n An−1

)−1
AT

n−1R−1
n

= CnAT
n−1R−1

n

= Cn−1AT
n−1

(
An−1Cn−1AT

n−1 + Rn

)−1

The Kalman gain matrix involves a single matrix inversion; having obtained that, we can
now update the covariance and the parameters without further inversions:

Cn =
(

C−1
n−1 + ATR

−1
n An−1

)−1

= (I − KnAn−1) · Cn−1

�αn = �αn−1 + Kn · (�yn − �f (xn; �αn−1)).

The χ2 of the fit may also be of interest. The change in χ2 is:

�χ2 = χ2
n − χ2

n−1

= (�αn − �αn−1)
T · C−1

n−1 · (�αn − �αn−1)

+
(
�yn − �f (xn; �αn−1)− An−1 · ( �αn − �αn−1)

)T

· R−1
n ·

(
�yn − �f (xn; �αn−1)− An−1( �αn − �αn−1)

)
.
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The system we have described until now can be considered a deterministic dynamical
system which evolves in a trivial way with random measurement noise. This can be
represented as:

�yi = �f (xi ; �α)+ �vi

where �vi is Gaussian distributed measurement noise with covariance matrix Ri . Using
these equations we track the development of the system. With a small modification, the
equations can track a less trivial system, where the system itself is subject to random
perturbation, obtaining what are usually called the Kalman filter equations, first
introduced by R.E. Kalman in 1960 during the Apollo program (Kalman, 1960). The
mathematical foundations of the Kalman filtering algorithms can be found in Chui
(1991). Applications of the algorithm include real-time tracking of the motion of an
object (e.g., a satellite) in the presence of deterministic and/or random changes to the
trajectory, or tracking charged particles through a detector system. In this case the system
is described by a different set of equations:

�αi = �g(�αi−i)+ �wi

�yi = �f (xi ; �α)+ �vi

The measurement noise �vi is still Gaussian distributed with covariance matrix Ri . New
ingredients include, the determinisic development of the system at each step, governed by
the function �g(�α), and the system noise �wi , which will be taken to be Gaussian distributed
with covariance matrix Qi . Such a system is called a deterministic-stochastic system. In
this case the predicted parameter values may evolve at the beginning of each step, and in
addition the covariance matrix needs to be incremented by adding the system noise. We
change our notation to accommodate applications with these effects, recognizing that
there are two phases to the procedure, a prediction phase and a correction phase. The
prediction phase takes estimates of parameter values and their covariance at the output
of one fitting stage and predicts their values at the input of another. We designate the
predicted values of �αn and Cn after point n − 1 has been added as �αn|n−1 and Cn|n−1.
The Jacobian of the function �g(�α), is designated as P:

(Pk)ij ≡ ∂gi

∂αj

∣∣∣∣�α=�αk

. (16.38)

The full set of Kalman filter equations now becomes:

Cn|n−1 = Pn−1Cn−1|n−1PT
n−1 + Qn

�αn|n−1 = �g(�αn−1|n−1)

Kn = Cn|n−1AT
n−1

(
An−1Cn|n−1AT

n−1 + Rn

)−1
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Cn|n = (I − KnAn−1)Cn|n−1

�αn|n = �αn|n−1 + Kn ·
(
�yn − �f (xn; �αn|n−1)

)

�χ2 = (�αn|n − �αn|n−1
)T · C−1

n−1|n−1 · (�αn|n − �αn|n−1
)

+
(
�yn − �f (xn; �αn|n−1)− An−1 · (�αn|n − �αn|n−1)

)T

· R−1
n

·
(
�yn − �f (xn; �αn|n−1)− An−1 · (�αn|n − �αn|n−1)

)

This formulation is not the most general one; more general formulations, which
include, for example, the incorporation of control input used to correct the trajectory of,
say, an airborne projectile or a robotic arm, can be found in the references. Fruehwirth
(1987) describes the application of Kalman filtering to track and vertex reconstruction
in charged particle detectors; Luchsinger (1993) shows how the method can be used
to carry out a fit to a whole cascade of particles decaying in such a detector, and
Avery (1991a; 1991b; 1991c; 1992a; 1992b), in a series of on-line lecture notes, gives
an excellent overview of fitting theory with applications to track reconstruction. In
most applications it is the computation of the derivative matrix An−1 that is the most
challenging and time-consuming part of the task. For the charged particle tracking
applications, these computations are carried out in Fruehwirth (1987), Luchsinger
(1993), and Avery (1991a; 1991b; 1991c; 1992a; 1992b).

16.10 Exercises

1. Iron Decay.
The iron isotope Fe55 decays by electron capture to Mn55. After the electron capture
the atom has an empty K-shell orbital. As the excited atom fills this vacancy, several
forms of radiation are emitted: Auger electrons (60%), and X-rays at 5.89875 keV
(16.2%), 5.88765 keV (8.2%), and 6.49045 keV (2.85%). New devices can measure
the energy of gamma rays with a resolution in the range of a few eV. In the
directory

DATA/CH16/EX1

you will find a text file Fe55-1KCounts.txt containing a set of simulated val-
ues for measured energies of gamma rays in the energy range of the first two
decays. Plot these data and note the presence of two spectral lines. Determine from
these data,

a) The energy of each spectral line and its error.

b) The energy resolution of the device, and its error.
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c) The natural width of the spectral line.

d) Use the uncertainty principle to obtain the lifetime of the atomic state giving rise
to the X-ray.

2. Mossbauer effect.
The Mossbauer effect is the recoiless emission and absorption of gamma radiation
from a nucleus. In the file

DATA/CH16/EX2/Fe57.dat

is raw Mossbauer data recorded at the National Bureau of Standards in 1967
(Spijkerman, 1967) for the 14.4 KeV line of Fe57. The file consists of a list of
photon counts for each bin of a multichannel analyzer, arranged sequentially by bin
number. The emission line is split by 6.22×10−8 eV due to the electric quadrupole
field of the compound, sodium nitroprusside, at the Fe57 nucleus. Fit the absorption
lines to a Voigt distribution and determine the natural line width and lifetime of
Fe57.

3. Smeared Spectral Lines.
The following exercises refer to data files that can be found in the directory:

DATA/CH16/EX3.

The files contain unbinned data from a series of spectral lines that have been
measured using a mass spectrometer with a finite resolution. We would like to ask
the question: does the width of the spectral lines come from the natural width of the
resonance or is it due to measurement uncertainty? The answer is provided by the
shape of the line. A pure spectral line without energy resolution effects is described
by a Lorentzian or Breit-Wigner lineshape whose width is the natural width of the
transition. On the other hand, resolution effects add measurement noise which we
assume to be Gaussian.

a) The dataset data00.dat contains a set of measured photon energies (in eV).
From this data: decide whether the data follows a Lorentzian distribution or a
Gaussian distribution, and, determine the energy of the spectral line (and its
error). If the lineshape is Lorentzian, determine the lifetime of the state; if it is
Gaussian, determine the experimental resolution.

b) The dataset data01.dat is more complicated since it contains two partially
overlapping spectral lines that are not very well resolved. Your job is to determine
the relative fraction of light in each of the two spectral lines, and the energies (in
eV) of either line.

c) The dataset data02.dat is the same as before, except that these spectral lines
have a contribution from experimental resolution and a natural line width, with
neither effect completely dominating or completely negligible. Your job is to
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determine the same parameters as in the previous problem, but, additionally to
determine the amount of smearing due to experimental resolution.

d) The dataset data03.dat contains hypothetical data describing the thermal
radiation from a black body. Determine the temperature from this data. Your
answer should be in electron volts. It should include an error estimate.

e) Finally, the data in the file data04.dat contains two spectral lines with a
background from thermal radiation. Determine the energy and width of the two
spectral lines in addition to the temperature of the blackbody radiation. Is it
possible to determine the energy resolution of the spectrometer?

4. Synthetic Poisson.

a) Generate data according to a Poisson distribution. Make a histogram of the
generated data and observe the shape of the function for various values of the
mean λ of the distribution. Notice how the shape of the distribution becomes
similar to a Gaussian for λ � 1.

b) Pretend you did not know the input value of λ and determine it from a fit to the
data. Do this for several values of λ between 0.1 and 10.0, and plot the extracted
value versus the input value. Include error bars on the plot.

c) Fit the plot to a straight line. Plot the results as an error ellipse showing the 1σ
(68%CL) contour.

5. Multivariate Gaussian
Generate five independent random numbers {x1, x2 . . . x5} from a normal distribu-
tion, and from these generate the correlated variables:

v1 = 9x1 + 3x2 + 4x3 − 2x4 + 5x5

v2 = 3x1 + 2x2 + 5x3 − 2x4 + 2x5

v3 = 4x1 + x2 + 5x3 − 2x4 + 3x5

v4 = −2x1 − 2x2 − 2x35x4 + 0x5

v5 = 5x1 + 2x2 + 3x3 + 0x4 + 7x5 (16.39)

Then create a data set of approximately 1000 points and determine from a single
unbinned maximum likelihood fit the covariance matrix of the five variables
{v1, v2 … v5}. Check your fit by plotting a projection of the multivariate Gaussian
distribution onto each of these variables.

6. Particle Decay.
In Exercise 6 of Chapter 7, you generated the angular distribution of decaying
particles according to a series in Legendre polynomials. Apply orthogonal series
density estimation to extract the function:

ρ(cos θ) =
14∑

l=0

alPl(cos θ).
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Determine and tabulate the coefficients al with their errors, and overlay the function
you determine onto the data you have generated.

7. Mars.
The text file Mars01.dat in the directory DATA/CH16/EX5 contains data on the
celestial coordinates (the right ascension and the declination) of the planet Mars
taken over a two year period starting Jan 1, 2015.

This type of data can be obtained from the website

http://ssd.jpl.nasa.gov/horizons.cgi

which is maintained by the Jet Propulsion Laboratory. From these data, determine

a) The eccentricity of the earth’s orbit.

b) The eccentricity of Mars’s orbit.

c) The semi-major axis of Mars, in astronomical units.

d) The orbital period of Mars.

e) The inclination of Mars’s orbit relative to that of the earth.

f) The days in the two-year period during which the earth was at perhelion.

g) The days in the two-year period during which Mars was at perhelion.

h) Graph both the raw data and your fitted curve for both of the celestial coordinates.

See (Goldstein, 2001) for a discussion of the Kepler problem.

8. [P] Superball.
A superball is a familiar kid’s toy and also is frequently used in physics demonstrations.
The rebound of the superball is characterized by two numbers, α and β, called
coefficients of restitution, which relate the linear and angular velocity after a rebound,
v′

x, v′
y, and ω′, to their values vx, vy, and ω before the bounce. The radius of the

superball is a, x is the horizontal direction and y is the vertical direction. In the model
put forth by Garwin (1969), the relation is:

⎛

⎝
v′

x
v′

y
ω′

⎞

⎠ =
⎛

⎝
1
7 (5 − 2α) 0 −2a

7 (1 + α)

0 −β 0
− 5

7a (1 + α) 0 1
7 (2 − 5α)

⎞

⎠ ·
⎛

⎝
vx
vy
ω

⎞

⎠ (16.40)

Values of the restitution coefficients obtained for a superball of radius 3.0 cm by Cross
(2002) were α = 0.76 and β = 0.86. In this exercise, we assume these values.

• An air cannon is used to accurately fire a superball onto the hardwood floor of a
large gymnasium. The cannon fires superballs such that they strike the floor with
an average speed of 7.3 m/s and a standard deviation of 1.5 m/s. The average angle
of incidence is 45◦ with a standard deviation of 4◦. There is no forespin/backspin
on the initial impact, on average, but the angular velocity varies about zero with a

http://ssd.jpl.nasa.gov/horizons.cgi
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standard deviation of 5 radians/sec. Write a Monte Carlo program to simulate the
location and time of 25 successive impact points and plot these on a graph. Record
this information on an output file or in a database.

• The time between impacts is measured with an acoustic device that records the
rebounds and achieves a precision of 100 ms. In addition, the horizontal component
of the ball’s velocity is measured with a camera and strobe light with precision of 1.0
m/s. Simulate these measurements and add them to the output file.

• Now reconstruct, using the Kalman filter, the optimal estimate of vx, vy, and ω

immediately before each bounce, using all of the available information up to that
point. Also compute the covariance of these three quantities. Check your estimates by
producing pull distributions, computed for a few thousand simulated shots, verifying
that unit Gaussian distributions centered at zero are obtained. Then, plot the expected
precision on each of these quantities as a function of bounce number.

• Suppose that, in addition to the above mentioned effects, flaws in the surface cause
the x-component of the velocity to vary by 3% on each rebound, and the y-component
varies by 1.2%. Add these effects into the simulation, then treat them properly in the
Kalman filter fit. Repeat the checks of the previous section.

..........................................................................................
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17.1 Generic type parameters

Functions and classes are the two main building blocks of any program. These are built
upon constants and variables having specific datatypes. It happens frequently that some
of the classes and functions we write repeatedly are nearly identical, differing only by
the datatypes on which they are built, or upon which they act. For this reason C++
introduces two mechanisms, function templates and class templates that are built
from generic type parameters. A function template is not really a function, but
a recipe for generating a function once the generic type parameter(s) are specified.
Likewise, a class template is a recipe for generating a C++ class, given the generic type
parameter.

Class templates are already familiar. The class std::vector is our beloved collec-
tion class that allows us to put almost anything into a vector. The type of object to be
collected, a generic type parameter, is specified in one of two ways, e.g.

#include <vector>
...
std::vector<std::string> vectorOfStrings;

// declare an object

or

#include <vector>
typedef std::vector<std::string> VectorOfStrings;

// declare a data type
VectorOfStrings vectorOfStrings;

// declare an object

std::vector is a class template, while the entity std::vector<std::string>
is called a parameterized class, whose generic type parameter is std::string. The
std::string class itself is a parameterized type; it is defined as

typedef basic_string<char> string

The string class stores alphanumeric characters as char data.
Function templates are less familiar. An example is the function std::min, which

one may invoke like this:

#include <algorithm>
...
double x=std::min<double>(2.5, 3.8);

As might be guessed, this returns the value 2.5. A different result is returned if we
write
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#include <algorithm>
...
double x=std::min<int>(3.5, 3.8);

Can you guess what it is? If not, give it a try. Also, note that we may omit mention of the
generic type parameter in the function call:

#include <algorithm>
...
double x=std::min(3.5, 3.8);

The compiler is able to guess that the generic type parameter is double. When the
generic type parameter cannot be determined, don’t worry—you can count on the
compiler to complain about it.

17.2 Function templates

Function templates allow us to build functions that expect different kinds of arguments.
Below, for example, is a function that can be used for ordering many things, including
float, int, double, but also std::string; in the latter case the comparison is based
upon lexigraphical order of the two strings.

template <typename T> bool comparesGreater(T a, T b) {
if (a > b)

return true;
return false;

}

We have defined the datatype of the input variables in an abstract way, as generic types
using the keywords typename T1. The compiler will generate a parameterized function
according to the datatypes appearing in the function call.

std::string name1= " Philemon ", name2= " Leont ine ";
std::cout << comparesGreater(3.8, 3.4) << std::endl;

// --> true
std::cout << comparesGreater(name1,name2) << std::endl;

// --> true
std::cout << comparesGreater(‘c ’ , ‘ f ’) << std::endl;

// --> false

1 <class T> appears in older code and you are likely to encounter it. It is still legal but typename is
preferred in modern C++.
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When compiling the above code, the compiler first searches for a non-templated
function matching the signature of the function call; if it fails, it attempts to deduce the
template parameters from the arguments to the function.

Not all datatypes can be used with this function. The greater-than operator (>)
required by our function is not defined for std::complex<double>, so template
unification fails for the following lines

std::complex<double> c1 = -1; // -1 + 0i
std::complex<double> c2(1,2); // 1 + 2i
std::cout << " a > b : " << comparesGreater( c1, c2 )

<< std::endl; // --> compilation error!!

and the compiler generates an error. One can fix the error by defining the missing
operation, but in some cases, including this one, it may be better to decide if the
comparison operation really makes sense.

In the previous example, template parameters were used only as input arguments;
but a function may also have a generic return type. In the example below, we define a
function in which the two input parameters and the return value share the same generic
type T:

template <typename T> T getMin(T a, T b) {
if (a < b)
return a;

return b;
}
std::cout << " getMin ( a , b) : " << getMin( 2.8, 1.5 )

<< std::endl; // --> 1.5
std::cout << " getMin ( a , b) : " << getMin( 2, 7 )

<< std::endl; // --> 2

The parameters a and b, plus the return value, will also be of the same type in the
parameterized function generated by the compiler. The following code:

std::cout << " getMin ( a , b) : " << getMin( 2, 7.2 )
<< std::endl; // --> ERROR!

generates a compilation error, because argument deduction fails for a signature of type
(int, float). Automatic type conversion is not applied for template functions. On the
other hand, more than one template parameter may be used if needed:

template <typename Ta, typename Tb> Ta getMin(Ta a, Tb b) {
if (a < b)
return a;

return b;
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}
std::cout << " getMin ( a , b) : " << getMin( 2, 7.2 )

<< std::endl; // --> 2

In this case, argument deduction succeeds and the code compiles successfully.
Function overloading, wherein two functions with the same name are allowed and

considered to be distinct by the compiler, is also allowed for function templates. More
than one function may match the signature of the function call, in which case the compiler
does its best to find the best match by applying overload resolution rules, generating
an error in case it does not succeed. See

http://en.cppreference.com/w/cpp/language/overload_resolution

for more details.

17.3 Class templates

The second type of template is the class template, which allows the programmer
to parameterize a class on a generic type. The templates std::vector and
std::complex are two familiar examples. The class std::ostream, moreover, is an
example of a parameterized class, of which std::cout is an instance. In this section we
demonstrate how to write a class template. Our class template, which we call Pair, will
handle pairs of values, exposing methods to calculate the minimum and the maximum,
plus methods to insert and pop values.

To declare a class template, as with a function template, we use a template param-
eter which acts as a placeholder for the template argument. The typename key-
word defines the generic type parameter T, which is used as any other type in the
declaration of member data and member functions, as well as any local variables
required in the implementation of the latter. The declaration of the class template looks
like this:

template <typename T> class Pair {
private:

T items[2]; // array of two items

public:
Pair(); // constructor
setA( const T& ); // set first element
setB( const T& ); // set second element
T getA(); // get first element
T getB(); // get second element
T getMin(); // get minimum
T getMax(); // get maximum

};

http://en.cppreference.com/w/cpp/language/overload_resolution


Templates, the standard C++ library, and modern C++ 561

We have declared two methods that accept one argument to set the two values of the
pair. The definition of the member functions has a somewhat special syntax:

template <typename T> T Pair<T>::getMin() {
if (items[0] < items[1])
return items[0];

return items[1];
}

The type of our class is Pair<T>, which has to be used in defining the scope of member
functions that are template functions. The other member functions are defined in a
similar way.

The class we defined above can now be used to instantiate a pair of values of any type,
provided they have the same type. However, when an object of a parameterized class is
declared the compiler cannot deduce the template argument, which therefore has to be
specified explicitly:

Pair<int> iPair; // pair of int
Pair<double> dPair; // pair of double
Pair<std::string> sPair; // pair of std::string

The parameterized class (e.g. Pair<double>) can now be used like any other class.
It may be convenient to employ typedef to avoid writing long lists of template

parameters. The keyword typedef defines an alias for the actual type as shown in the
following example.

// define the alias ’IntPair’ as a ’Pair<int>’
typedef Pair<int> IntPair;

// a Pair<int>
IntPair ip;

// alternative definitions of functions accepting two pairs
of int values

void foo( IntPair a, IntPair b);
void bar( Pair<int> a, Pair<int> b);

An example which is likely familiar comes from the Eigen library. The datatype
Vector3d (in the namespace Eigen) is a typedef, defined as Matrix<double,
3, 1>. Several other typedefs are defined by the library for convenience, and others
can be added by programmers to simplify a particular project or use case.

17.3.1 Class template specialization

Class templates can be specialized to optimize the implementation for certain datatypes
or to address issues. Imagine, for example a class template designed to represent a
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square matrix, with a method to return the Hermitian conjugate. If the matrix is
parameterized on doubles rather than std::complex datatypes, a special imple-
mentation could be desirable to dispense with complex conjugation and simply per-
form the transpose. Whereas a parameterized class is derived from a class template
with a standard recipe, a class template specialization provides an exception from
the recipe.

To specialize a templated class, one has to specialize all its templated members. The
keyword template<> is used to declare a class template specialization. The empty
parameter list tells the compiler that we are specializing the class for a certain type. For
example, if we want to specialize our class for std::string, we can add the class below
to our program. The compiler will choose the right candidate based on the type used in
the call, with priority given to any existing specialized class.

template<> class Pair<> {
private:

std::string items[2]; // array of two items

public:
Pair(); // constructor
setA( const std::string& ); // set first element
setB( const std::string& ); // set second element
std::string getA(); // get first element
std::string getB(); // get second element
std::string getMin(); // get minimum
std::string getMax(); // get maximum

};

In case the class template takes multiple parameters, as in this variant:

template <typename Ta, typename Tb> class Pair {
private:

Ta valueA;
Tb valueB;

public:
Pair(); // constructor
set( const Ta&, const Tb& )
...

};

the template can be partially specialized, such that only a given subset of the arguments
are specialized, while the others are left as template parameters. In the code below we
partially specialize our modified class for different types: first, for a generic type plus an
int, and second, for pointers to two generic types:



Templates, the standard C++ library, and modern C++ 563

template <typename T> class Pair<T, int> {
private:
T valueA;
int valueB;
...

};
template <typename Ta, typename Tb> class Pair<Ta*, Tb*> {

private:
Ta* valueA;
Tb* valueB;
...

};

The compiler will choose the right candidate at compile-time based on the signature
of the function call. If there is no clear best candidate, the compiler will generate an
ambiguous declaration error. The programmer then has to resolve the ambiguity.

17.4 Default template arguments

In some cases, it can be useful to define default template arguments:

template <typename Ta, typename Tb, typename RETURN = Ta>
class Pair {

private:
Ta valueA;
int valueB;

public:
RETURN getMin();
...

};

Here we have defined a class in which the return type of the member function
getMin is assigned to a third template parameter; and, if not specified, its default
argument is the first parameter Ta. Here we use as default value another template
parameter; but we could have used another value as well, such as int, double,
std::complex<double>.

17.5 Non-type template parameters

It is possible to incorporate non-type parameters (generally variables of integer type)
in class definitions.
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For example, let us extend our Pair class into a more generic Sequence class that
can handle an array of items and that offers methods to get the minimum and maximum
values.

template <typename T, int LENGTH> class Sequence {
private:

T items[ LENGTH ]; // array of LENGTH items

public:
Sequence(); // constructor
T getMin(); // get minimum
T getMax(); // get maximum

};

Here we have used the non-type template argument int LENGTH to set the length
of a variable array. The value of the parameter is specified in the object instantiation, as
below:

Sequence<int, 10> iTenSeq; // a Sequence of 10 int
values

Sequence<std::string, 5> sFiveSeq; // a Sequence of 5 strings

The class can also be slightly modified to define a default Sequence:

template <typename T = int, int LENGTH = 10> class Sequence {
...

};

Thus if no LENGTH argument is specified the code will default to instantiating Sequence
with an array of 10 integers:

Sequence defSeq; // a Sequence of 10 int values
- DEFAULT

Sequence<double, 3> dThreeSeq; // a Sequence of 3 double

Non-type parameters may also be used for function templates as well, as in the
following brief function implementing a Legendre polynomial whose order is specified
at run time:

template <typename T, int ORDER> T Legendre(T x) {
T p[3]={1,0,0};
for (int i=0;i<ORDER;i++) {
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p[2]=p[1];
p[1]=p[0];
p[0]=((2.0*(i+1.0)-1.0)*x*p[1]-((i+1.0)-1.0)*p[2])/

(i+1.0);
}
return p[0];

}

The function can be defined with defaults and called with default or specified
parameters:

template <typename T=double, int ORDER=0> T Legendre(T x) {
T p[3]={1,0,0};
for (int i=0;i<ORDER;i++) {
p[2]=p[1];
p[1]=p[0];
p[0]=((2.0*(i+1)-1)*x*p[1]-((i+1)-1.0)*p[2])/(i+1);

}
return p[0];

}
...
double p0= Legendre(x); // gives P_0(x)
double p4= Legendre <double,4>(10.0); // gives P_4(10.0);

As of this writing, the C++ standard allows only integer datatypes to be used as non-
type template parameters.

17.6 The standard C++ library

The standard C++ library is a powerful collection of classes and functions that provides a
convenient and efficient way of accomplishing many routine programming tasks. These
range from simple tasks like taking the minimum of two values, to more complicated
procedures such as memory management, list ordering, and many others. It offers a
range of high-performance, optimized classes including data containers to store and
handle data objects, iterators to navigate through the containers, and algorithms to
execute a wide range of operations on objects stored in containers. We discuss the
standard C++ library here because much of it is based upon templates, a feature that
makes the library easy to apply in many contexts. Originally, the C++ standard library
was referred to as the Standard Template Library (Stepanov, 1994), or STL, a fact that
underscores the importance of the templating mechanism to the library. Some people
continue to confuse the names. Here, we will call it either the “standard C++ library” or
the “standard library”.
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We have already used some of the most common objects provided by today’s standard
library: std::string and std::vector. The purpose of this section is to give the
reader an overview of the rest of the library. The best documentation of the C++ standard
library that we have found is online, in the reference section of the website

www.cplusplus.com.

Other references can be found in the bibliography.
The design of the standard template library was the work of Alexander Stepanov of

Silicon Graphics and Ming Lee of Hewlett-Packard. Their original paper (Stepanov,
1994) describes the motivation for the library in the following terms:

The following description helps clarify the structure of the library. If software
components are tabulated as a three-dimensional array, where one dimension
represents different data types (e.g. int, double), the second dimension repre-
sents different containers (e.g. vector, linked-list, file), and the third dimension
represents different algorithms on the containers (e.g. searching, sorting, rota-
tion), if i,j, and k are the size of the dimensions, then i*j*k different versions of
code have to be designed. By using template functions that are parameterized by
a data type, we need only j*k versions. Further, by making our algorithms work
on different containers, we need merely j+k versions.

Moreover, you do not need to write most of these, since many are already provided in
the standard library. The standard library is not part of C++ itself, but is installed along
with the compiler in a standard location.

17.6.1 Containers and iterators

Perhaps the easiest part of the standard library to use are the container classes, (actually
class templates), into which one can insert almost any type of object and from which
one can later retrieve a specified object. The containers grow and shrink as needed while
handling all the required memory allocation and deallocation operations. The standard
containers consist of sequence containers such as std::vector and associative
containers, typified by the std::map class.

Sequence containers

A vector is a collection of items stored in a contiguous block of memory. The contiguity
makes random access to the elements very efficient. std::vector provides methods
to insert elements, to access a given element, and to get the length of the container. Any
type of element can be stored in a vector, from base types to instances of custom classes.
In fact, like all other containers in the standard library, vector is a class template that
defines a container of elements of some generic type T, that is, a vector<T>.

The basic usage of std::vector was discussed in Section 3.7. Empty vectors are
constructed with the default constructor. The push_back method adds a new element
at the end of the vector and increases the size of the vector. Since the new standard

www.cplusplus.com.
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C++11, a useful initialization mechanism named “list initialization” has been introduced:
a curly-braces initializer can be used to directly initialize containers with starting elements
at the same time as declaring them, as below:

vector<double> dVec = {1.5, 2.1, 2.7, 9}; // a vector of 4
doubles

An empty std::vector has a size of zero. If we insert an element in it with
push_back(), its size is increased by one; when an element is removed by using the
method pop_back(), its size is decreased by one. If a push_back operation cannot
allocate adjacent memory the entire contents of the vector are automatically moved
to newly allocated memory where all the elements can be stored contiguously. This can
be costly. If performance is important one can reserve the right amount of contiguous
memory slots. The method reserve() can be used to make or change the allocation.

std::vector<int> iVec;
iVec.reserve(1000); // memory

allocation

std::cout << iVec.size() << std::endl; //prints 0
std::cout << iVec.capacity() << std::endl; //prints 1000

iVec.push_back( 5 );
iVec.push_back( 50 );

std::cout << iVec.size() << std::endl; //prints 2
std::cout << iVec.capacity() << std::endl; //prints 1000

The size() method returns the number of elements in the vector while the
capacity() method returns the number of elements that will fit into the vector before
a memory reallocation becomes necessary.

Two removal operations are defined on a vector: pop_back and erase. The
former removes only one element from the back of the vector while the latter erases
one or more elements at an arbitrary position. This forces the container to relocate all the
elements after the deleted segment to fill the gap. This is a costly operation. If frequent
insert or erase operations are necessary, it may be better to use a different container such
as std::list.

The container std::list implements a doubly-linked list of elements. Each element
contains a payload and pointers to the next and previous elements. Insertions into, and
deletions from a list are efficient because only pointers need to be updated. This has
to be weighed against the lack of random access: the only way to access an element in
the list is iteratively, starting either at the beginning or at the end of the list.

Alternatively, the complexity of an erase call on a vector is O(n), (Josuttis, 2012);
while the same call on a list has a constant complexity of O(1), so that the speed of the
erasing operation does not depend on the size of the container.
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While vectors only allow efficient insertion and deletion from the end of the container,
the standard library provides the primitive class deque, whose name stands for “double-
ended queue”. Beside fast insertion and deletion at both ends of the container, deque
also offers automatic dynamical resizing of the container storage space2. On the contrary,
deque does not offer contiguous memory storage, its typical implementation being a
sequence of individually-allocated arrays.

Since the release of C++11, two new sequence containers have been introduced:
array and forward_list. The former is a static contiguous array (in contrast to
vector which is a dynamic contiguous array), which offers the performance and acces-
sibility of a C-style array. The latter offers fast insertion and removal of elements from
any position within the container when fast random access (vector) and bidirectional
iteration (list) are not needed.

Iterators

Here is a simple piece of code that instantiates an array of five integers and prints
them out:

int anArray[]={1, 4, 9, 16, 25};
for (int i=0;i<5;i++) cout << anArray[i] << end;

The loop is written in perhaps the most natural way, but not necessarily the best way. An
alternative is:

int anArray[]={1, 4, 9, 16, 25};
for (int *a=anArray;a<anArray+5;a++) cout << *a << end;

This accomplishes the same thing. We can carry out the loop in a function, passing in
only two pointers which one would write like this:

void printArray (int *begin, int *end) {
for (int *a=begin;a<end;a++) cout << *a << end;

}

invoked like this:

int anArray[]={1, 4, 9, 16, 25};
printArray(anArray, anArray+5);

2 For comparison, when using the erase method on elements of a vector, the elements are deleted, but the
memory slots are not released, and the memory footprint of the container does not change; one has to invoke
the methods resize or shrink_to_fit to resize the vector and free the unused memory. deque handles this
automatically and its expansion is cheaper, because it does not involve relocating the elements of the container.
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Now we make a simple modification with very important consequences. We rewrite
printArray as a function template:

template <typename T> void printArray (T begin, T end) {
for (int *a=begin;a<end;a++) cout << *a << end;

}

This requires no change to the client code, but because it is a template function, it is much
more general. It is able to print out int,double,std::complex<double>, and user-
defined types from an array of these datatypes. For template unification to succeed, the
operations operator *, and operator++ must be defined for type T. Also, in this
example, cout « (*T) must be defined.

A smart pointer is a C++ object that responds to the dereferencing operation, i.e.
operator *, which return a reference to an actual object, but may do more, according
to the objectives of the programmer. It might, for example, manage the lifetime of
the object it points to. Or it might retrieve the object from a sophisticated memory
management system or a database.

An iterator is a smart pointer that, in addition, responds to operator ++().
Iterators exist for the sequential containers defined above. The containers all have a begin
method returning an iterator (think: pointer) to the first element of the array, and an end
method returning an iterator to the end of the array. Conceptually, this is one element
past the block in which the data is stored; we have remarked already, however, that the
data is not always actually stored in a block of contiguous data.

The way in which our printArray method is invoked upon an std::vector is as
follows:

std::vector<double> vectorOfDouble={1.0, 4.0, 9.0, 16.0,
25.0};

printArray(vectorOfDouble.begin(), vectorOfDouble.end());

The return type of the begin and end methods is the same: std::vector<double>
::iterator. It gives read/write access to the elements of the container. If the vector
were declared const these overloaded methods return a std::vector<double>::
const_iterator, giving only read access to the elements.

Programmers should be aware that certain operations on containers may invalidate
iterators. For example, inserting an element into a vector may trigger a reallocation of
memory and a relocation of its elements to the newly allocated memory. This invalidates
any existing iterators previously returned from the vector. This behavior varies from
container to container so check the documentation if you are in doubt.

One can now imagine many algorithms (k), written as template functions so that
the (j) containers of (i) different datatypes can be written, realizing the design goals
of Stepanov and Lee, as quoted in Section 17.6. Some of the many convenient routines
for sorting, searching, partitioning, shuffling, etc, which make up the algorithm section
of the standard library, are described in Section 17.6.2.
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Associative containers

In a bygone era, a telephone book was used to obtain the telephone number of a person
residing in a specific metropolitan area. This ingenious piece of technology consisted of
hundreds of pages of bound paper with alphabetically listed names and their associated
phone numbers.

The alphabetical order was important; it implied that searching for a name in the
phone book was an operation of complexity O(log(n)), a significant improvement over
an unsorted list whose complexity is O(n). One only has to imagine the amount of
time required to find a name in an unsorted list containing phone numbers for all the
households in a major city.

The telephone book has a number of close equivalents in the standard library
called associative containers. The std::map is the closest parallel; it associates
a key to a value; the key can be any datatype which is ordered by the less than
(<) operator. An std::string, for example, is a valid key; the less-than operation
orders strings lexographically. The std::set is just a sorted set of keys, like a
list of names without phone numbers. One can only add one instance of a key to
either the map or the set; any other additions are ignored. The standard library
provides the multiset and multimap as well, where the notion of key uniqueness
is dropped.

In the following code we use an std::map, to record the mass of a few particles,
which can then be retrieved by name:

#include <map>
#include <string>
std::map<std::string,double> mass;

mass[ " e l e c t r o n "]=0.511;
mass[ " proton "]=938.0;
mass[ " neutron "]=940.0;
mass[ "W"]=80.4E3;
mass[ "Z"]=91.2E3;
mass[ "H"]=125.E3;

std::cout << " s i z e : " << mass.size() << std::endl;
//prints 6

std::cout << " mass of proton : " << mass[ " proton "]
<< std::endl; //prints 938

std::cout << " mass of neutron : " << mass[ " neutron "]
<< std::endl; //prints 940

To illustrate the list of the std::set, we create two empty sets, one for leptons,
and one for hadrons; we fill these two sets with the names of a few of the particles that
belonging to each category, and then access the particles in each set:
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#include <set>
std::set<std::string> leptons, hadrons;
leptons.insert( " e l e c t r o n ");
leptons.insert( " e l e c t r o n neu t r ino ");
leptons.insert( "muon");
leptons.insert( "muon neu t r ino ");

hadrons.insert( " p i p lus ");
hadrons.insert( " p i minus ");
hadrons.insert( " p i zero ");
hadrons.insert( " proton ");
hadrons.insert( " neutron ");
hadrons.insert( " a n t i p r o t o n ");
hadrons.insert( " a n t i n e u t r o n ");

std::set<std::string>::iterator it;
for (it=leptons.begin();it!=leptons.end();it++) {
std::cout << *it << " i s a l ep ton " << std::endl;

}

for (it=hadrons.begin();it!=hadrons.end();it++) {
std::cout << *it << " i s a hadron " << std::endl;

}

Container adaptors

The standard library also provides so-called container adaptors, which implement
various commonly used interfaces for sequential containers: queue, stack and
priority_queue. Primitive data structures are not part of these adaptors, which
merely provide different interfaces to the previously discussed sequence containers.

The class templates for those adaptors have two template parameters: one represents
the type of the variables stored in the container; the second one is the primitive container
that underlies the implementation.

The queue container implements the logic of a FIFO (“first in, first out”) list. Values
are inserted into the container from one end and retrieved from the opposite end. A FIFO
queue is a very common data structure, used in many patterns. The generation of
classical orthogonal polynomials using three-term recurrence relations, for example, can
be efficiently implemented with a FIFO. By default, the queue is implemented using the
deque as an underlying container, though a different container type may be specified as
a template parameter.

The stack interface, instead, implements LIFO (“last in, first out”) logic, which
is the logic of a stack: elements are removed from the top of the stack in the reverse
order they have been inserted, as in a stack of books. Like the queue, the stack is
implemented using the deque as the underlying container.
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The priority_queue is a container providing access to sorted elements. The
elements may be inserted in any order, and then retrieved the “largest” (by default) of
these values at any time.priority_queue provides constant time lookup of the largest
element, at the expense of logarithmic insertion and extraction. Priority queues work like
a heap, which in turn is basically a reversed array. They are implemented, by default, in
terms of the vector class template. In the following example we use priority_queue
to put a set of integers in decreasing, then in increasing, order:

#include <queue>

std::priority_queue< int > q1;
for(int n : {2,9,6,5,4,3,0,8,7,1})

q1.push(n);

std::priority_queue< int, std::vector<int>,
std::greater<int> > q2;

for(int n : {1,5,8,9,3,0,2,6,7,4})
q2.push(n);

while ( ! q1.empty() ) {
std::cout << q1.top() << " "; // get the top element
q1.pop(); // delete the top element

}
std::cout << std::endl;

while ( ! q2.empty() ) {
std::cout << q2.top() << " "; // get the top element
q2.pop(); // delete the top element

}
std::cout << std::endl;

In the above code, we declare two priority_queues to store a collection of ints.
For the first one we only declare the type of the collection items int; while for the
second we also define the two optional template parameters, the first of which declares
the container type to be std::vector<int>, the second of which declares the class
which is used to set the ordering of ints. The method top retrieves the top element,
without modifying the priority queue. The method pop removes the top element from
the queue. This will make the container push another element to the top: the largest value
for the first queue and the smallest for the second one. The output will look like this:

9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9

The class declaration illustrates how the template mechanism is used in a real example
from the standard library:
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template<
class T,
class Container = std::vector<T>,
class Compare = std::less<typename Container::value_type>
> class priority_queue;

As we can see, the class template is declared with three template parameters3:T, which
specifies the type of the items stored in the container; Container, which specifies the
container type. The third template parameter is a comparison class used to order the
elements in the priority queue; while constructing the second queue, we have set this
parameter to the class std::greater<int>. The default behaviour of the priority
queue, obtained with the default comparison class std::less<int>, is to sort from
the largest to the smallest.

There is another container-like templated class provided by the standard library,
which is the commonly-used std::string. Since many examples can be found in
other parts of the book, we will not repeat them here.

More on iterators

All of the standard containers support iterators and have common methods like begin
and end that return iterators. Moreover, the algorithms implemented in the standard
library, which will be discussed in the next section, use iterators as input arguments (like
the example printArray function discussed in Section 17.6.1).

Iterators are grouped in five categories according to the functionalities they offer:
Input and Output iterators are the most limited in that they only perform uni-
directional sequential input or output operations on the container; the Forward iterator,
which has both input and output functionalities but can incremented only in one
direction; the Bidirectional iterator, which acts forward and backward; and the
RandomAccess iterator, which, in addition, can access elements non-sequentially by
applying an offset to the current pointer, like an ordinary pointer.

Not all containers offer all the types of iterators. For example, vector offers a
RandomAccess iterator, which is not provided by map.

All types of iterators can be “dereferenced” with the dereference operator * to access
the element to which they currently point4, just as with a ordinary pointer. They can
also be incremented to point to the next element using the increment operator ++. All
iterators can be compared using the comparison operators == and !=. Other types of
operations, like decrementing the iterator with the operator−−, can be applied only to
the Bidirectional and RandomAccess iterator types.

The definitions of iterators are contained within the header file of the container with
which they are associated. Let us now turn our attention to the vector iterator.

3 We remind the reader that the usage of the keyword class T is equivalent to the keyword typename T,
even if the latter is preferred nowadays because it is less ambiguous.

4 The Input iterator can be dereferenced only as r-value (that is, a right value), to be used in reading
operations, like in var = (*iter); while the Output iterator can be only dereferenced as l-value (left value),
to be used in assignment (writing) operations, like in (*iter) = var.
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#include <vector> // the iterator is
defined here

std::vector<int> vec;

vec.push_back(1);
vec.push_back(2);
vec.push_back(3);

std::vector<int>::iterator vecIt; // a RandomAccess
iterator

// forward loop through ’++’ increment
for ( vecIt = vec.begin(); vecIt != vec.end(); vecIt++) {
std::cout << (*vecIt) << std::endl; // read the element

value (r-value)
}

std::vector<int>::reverse_iterator rVecIt; // a reversed
RandomAccess iterator

// backward loop through ’reversed’ iterator
for ( rVecIt = vec.rbegin(); rVecIt != vec.rend();

rVecIt++) {
std::cout << (*rVecIt) << std::endl; // read the element

value (r-value)
}

// write to vector
for ( vecIt = vec.begin(); vecIt != vec.end(); vecIt++) {
(*vecIt) = 10; // write to the vector element (l-value)
std::cout << (*vecIt) << std::endl;

}

In the code above, a vector is declared and populated, and then a vector iterator
is obtained. By default a vector returns a RandomAccess iterator5, which can be
incremented, decremented, read, and assigned.

The first loop iterates over all elements from begin to end, which are functions that
return pointers to the initial and final plus one elements. The iterator is dereferenced in
the loop body to read the relevant element.

5 You can always check the default type of iterator returned by the iterator method by looking at the code
of the container header in the on-line documentation of the C++ classes.
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The vector class offers a reverse_iterator as well, which is designed to loop over
the container in reverse order, as in the second loop in the code. This loop makes use of
the rbegin and rend functions, which return the reversed start and end points.

Finally, the third loop uses the l-value dereferencing offered by the RandomAccess
iterator to assign a value to the vector’s elements.

By default the map container uses a mutable BidirectionalIterator, as shown
in the following example.

#include <map>
std::map< std::string, int> iMap;
std::map< std::string, int >::const_iterator mapIt;

iMap[ "A"] = 5;
iMap[ "B"] = 50;

for ( mapIt = iMap.begin(); mapIt != iMap.end(); ++mapIt ) {
std::cout << " key : " << (*mapIt).first << " − va lue : "

<< (*mapIt).second << std::endl;
}

As we have seen, the map contained stores pairs of values: the first item is usually called
the key and the second one the value. In the code above we first declare a map which
handles a string key and an integer value and we populate it with a couple of example
values. In this case we do not plan to use the iterator to modify the elements stored in
the container, so a const_iterator is requested. This is an example of applying the
principle of least privilege to avoid unintended misbehavior.

While the for loop for the map looks the same as that of the vector example, access to
the elements is slightly different, namely, because a map stores pairs of values, the map
iterator has two different handles to access them: first and second.

17.6.2 Algorithms

The standard C++ library offers a set of algorithms ready to be used for different kinds of
operations on containers. They are not part of the containers themselves but, leveraging
the generality introduced with the template mechanism, they can be used on containers
through their iterators. Many of them can be even used on different containers. Here we
give a short overview only, referring the reader to the bibliography for more information.

Some of the most useful algorithms are those that sort elements and those that search
for a specific item in the container. Let us take a look:

#include <algorithm>

std::vector<int> intVec;
std::vector<int>::iterator it;
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intVec.push_back(3);
intVec.push_back(2);
intVec.push_back(5);
intVec.push_back(4);
intVec.push_back(1);

// sort the elements
std::sort( intVec.begin(), intVec.end() );

// print all container’s elements
for ( std::vector<int>::iterator vecIt = intVec.begin();

vecIt != intVec.end(); ++vecIt )
std::cout << (*vecIt) << std::endl;

// find the minimum value
it = std::min_element( intVec.begin(), intVec.end() );
std::cout << " min : " << *it << std::endl;

// find the maximum value
it = std::max_element( intVec.begin(), intVec.end() );
std::cout << "max : " << *it << std::endl;

// find the element whose value is 2
it = std::find( intVec.begin(), intVec.end(), 2 );
std::cout << " i tem : " << *it << std::endl;

// declare a new empty vector
std::vector<int> intVec_copy;
// resize its capacity to be able to store the element from

the first vector
intVec_copy.resize( intVec.size() );

std::copy( intVec.begin(), intVec.end(),
intVec_copy.begin() );

// print all container’s elements
for ( std::vector<int>::iterator vecIt = intVec_copy.begin();

vecIt != intVec_copy.end(); ++vecIt )
std::cout << (*vecIt) << std::endl;

In the code above we make use of some of the standard algorithms. Their usage
is self-explanatory, but there are a few points to which we can draw attention. The
header <algorithms> contains all the standard algorithms. Most of the algorithms
return iterators, thus we have declared a vector iterator at the beginning. The algorithm
min_element takes two iterators and looks for the minimum among the elements
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contained between them. The analogue is provided by max_element. To search for
a specific element within a container we can use the algorithm find, which accepts three
arguments: two iterators to set the input range and the item to search for; in this case
the algorithm searches for the integer equal to two. The copy algorithm is used to copy
all the elements from one container to another; before copying the elements, we make
use of the vector’s resize function to increase its capacity. Then, three arguments are
passed to copy: again, two iterators that define the set of items to be copied, and a third
iterator that sets the position of the first element of the destination vector which accepts
the copied elements.

The standard library offers many other algorithms and utility functions. For example,
a collection of numerical algorithms are defined in the numeric header. Among these are
accumulate, which can be used for performing iterator-based summation, as follows:

#include <numeric>
...
std::cout << " sum : " << std::accumulate( intVec_copy.

begin(), intVec_copy.end(), 0 ) << std::endl;
// prints ’15’

std::cout << " sum(−10) : " << std::accumulate( intVec_copy.
begin(), intVec_copy.end(), -10 ) << std::endl;
// prints ’5’

As can be seen, the accumulate function used above accepts three arguments: two
iterators to define the set of input elements, and a third argument which sets the base
value used in the computation of the sum.

One final remark on algorithms: those defined as general algorithms are sometimes
less efficient than those that are container-specific. For example, if a search operation
is made on a set using the generic std::find, it will be slower than the same search
made with the container-specific set::find method. In fact, std::find performs a
linear search, with an execution time of O(N), while the execution time of set::find
goes as O(log N). We suggest that the user check the standard library documentation
when choosing a container or an algorithm, particularly in time-critical operations.

17.7 Modern C++

So far, we have mostly used older C++ syntax because it is universally accepted and
because it is often encountered in legacy code. In this section we will present some of
the new features introduced by the most recent revisions of the C++ standard: C++11
and C++146. According to Bjarne Stroustrup, the creator of C++, “C++11 feels like a
new language”. Presenting all these features would require an entire book—you will find

6 At the time of writing, proposals have been presented for C++17.
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some of these in the bibliography. Here we will discuss the features you are most likely
to encounter.

17.7.1 Variadic templates

C++11 introduced functions that accept a variable number of template parameters.
These are resolved by the compiler at compile time to assure their type-safety. The
following excerpt shows a basic example of a function template that uses the new
mechanism:

// base version, with single argument
template <typename T> T add(T a) {
return a;

}
// The recursive version, with multiple arguments
template <typename T, typename... ARGS> T add(T a, ARGS...

args) {
return a + add(args...);

}

Two function templates are defined in the code above: one that handles a single
template parameter, and a second that handles a variable number of parameters. In fact,
variadic templates are written like recursive functions: one writes a base version, which
will be used by the recursive general version of the same template. The parameter list
contains the construct “typename... ARGS”, which is called a template parameter
pack, while the construct “ARGS... args” in the function signature is called a
function parameter pack. As for the parameter T, any name can be chosen for the
variadic parameter ARGS. The use of the variadic templated function is demonstrated in
the next example:

// sum of 5 integers
int iSum = add(1, 2, 3, 4, 5);

// sum of 3 doubles
double dSum = add(1.5, 2.3, 3.5);

// sum of 2 std::string
std::string a = " c++";
std::string b = " 11 ";
std::string c = add(a, b);

// output
std::cout << " out : " << iSum << " , " << dSum << " , " << c <<

std::endl;
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with output:

out: 15, 7.3, c++11

A call to the variadic function template with N arguments triggers the recursive
version of the template definition. In this version, N − 1 arguments are used to build a
further recursive call. At each level of recursion the argument list is reduced until it finally
consists of a single element, at which point the base version is called. The summation
occurs one step at a time as the recursion unwinds.

The mechanism by which all this happens can be exposed by using the __PRETTY_
FUNCTION__ variable provided by gcc on Linux/Mac platforms, which holds the name
and the signature of the function in which these variables appear. We modify our
functions to print out this information:

// base version, with single argument
template <typename T> T add(T a) {

std::cout << __PRETTY_FUNCTION__ << " \ n ";
return a;

}
// The recursive version, with multiple arguments
template <typename T, typename... ARGS> T add(T a, ARGS...

args) {
std::cout << __PRETTY_FUNCTION__ << " \ n ";
return a + add(args...);

}

This allows us to observe all the function calls that have been created recusively by the
compiler for the example above:

T add(T, ARGS...) [T = int, ARGS = <int, int, int, int>]
T add(T, ARGS...) [T = int, ARGS = <int, int, int>]
T add(T, ARGS...) [T = int, ARGS = <int, int>]
T add(T, ARGS...) [T = int, ARGS = <int>]
T add(T) [T = int]

T add(T, ARGS...) [T = double, ARGS = <double, double>]
T add(T, ARGS...) [T = double, ARGS = <double>]
T add(T) [T = double]

T add(T, ARGS...) [T = std::__1::basic_string<char>, ARGS =
<std::__1::basic_string<char>>]

T add(T) [T = std::__1::basic_string<char>]
out: 15, 7.3, c++11
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17.7.2 Auto

C++ is a statically-typed language, i.e., the type of each variable must be defined
statically; and the compiler assumes the type of a variable never changes throughout
the variable lifetime7. Thus, if we require an integer and a string variable, their types
must be specified at declaration:

int iVar = 1;
std::string sVar = get_string();

With the introduction of the auto keyword in C++11 it is possible to let the compiler
deduce type, as with template parameters. Of course, one cannot declare a variable with
auto without any initialization because the compiler would not be able to deduce its
type:

auto iVar = 1; // ok
auto sVar = get_string(); // ok
auto kVar; // compilation error!

With C++11 the keyword auto could not be used to define the return type of
functions. However, the new C++14 standard allows the use of auto as a return type
(for non-void functions). This is shown in the example below. The point, of course, is
that the compiler is able determine the appropriate return type based on information in
the function body.

auto get_string() {
...
std::string myStr;
return myStr;

}

The auto keyword was introduced to permit cleaner and less error-prone code. It is
particularly useful when handling iterators, which can be complicated objects. Consider
this example:

std::map<std::string, std::vector<double>> stringToVDouble;
for (std::map<std::string, std::vector<double>>::

const_iterator i=
stringToVDouble.begin(); i<stringToVDouble.end();

i++) {

7 This is not true in dynamically-typed languages like Python, where the type of some variables can be
changed during their lifetime.
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...
}

Using auto this rather obtuse construct can be written as:

for (auto i=stringToVDouble.begin(); i<stringToVDouble.
end();i++) {

...
}

which is more economical and readable, and less likely to be mistyped or cause
compilation errors.

17.7.3 Smart pointers

We have used the operator new to create a new object in the heap and to return a pointer
to the newborn object. We have also seen how to delete allocated memory with the
operator delete. And we have stressed that it is the programmer’s responsibility to
allocate and free memory in such a way that memory leaks do not occur.

With C++11 a new set of smart pointers have been introduced which relieve the
programmer of some of this responsibility. These pointers also feature different ways of
exposing the ownership of the allocated memory. Examples in old and new versions of
C++ follow:

#include <memory> // for smart pointers

// C++98
void useRawPointer() {

Widget* widget = new Widget();
// ... make something with the pointer
delete widget; // do not forget to delete! if not, a memory

leak occurs!
}

// C++11
void useSmartPointer() {

std::unique_ptr<Widget> widget( new Widget() );
// ... make something with the pointer

} // the pointer is automatically deleted here!

// C++11, with ’auto’
void useSmartPointerAuto() {
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auto widget = std::make_shared<Widget>(); // ’auto’
declaration

} // automatically deleted

In the code above we have used the declaration std::unique_ptr to define a
pointer that owns and manages a single object; when the pointer goes out-of-scope (as at
the end of our function), the object is automatically destroyed and its memory is freed.
There is another smart pointer, std::shared_ptr, which retains shared ownership
of the relevant object. Different shared_ptrs can manage the same object. In this case
the object is destroyed and its memory deallocated when the last shared_ptr pointing
to it is destroyed or assigned to another object.

In the final example we have used the auto keyword, together with the make_shared
templated function to create a shared object efficiently. There are other types of pointers
that offer different levels of ownership and that can be used in different use-cases. These
can be found in the C++ documentation on-line or in the references suggested at the
end of the chapter.

17.7.4 Range-based for loop

The new C++ standard has introduced a range-based for loop. This kind of
syntax is called a foreach loop in other languages, like Python or Java. Until
C++11 the foreach loop was only available through external C++ libraries, like
Boost or Qt.

The new loop declaration can be used, for example, to iterate over all items in a
container or in an array, as below:

std::vector<int> iVec;
iVec.push_back(5);
iVec.push_back(11);

// C++98
for( vector<int>::iterator it = iVec.begin(); it

!= iVec.end(); ++it ) {
std::cout << *it << std::endl;

}

// C++11
for( auto item : iVec ) {

cout << item << endl;
}

// C++11 on arrays
int iArr[] = {1,-3,2,4,10};
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for (int i : iArr)
{

cout << i << endl;
}

It is worth noticing that the variable in the new foreach loop does not have to
be dereferenced to access the underlying item, as it is for the iterator in the first
example. The new syntax leads to code that is more concise, readable, and easier to
understand.

17.7.5 Nullptr

The nullptr keyword is now the preferred way to instantiate a null pointer.

// C++98
int* iPointer1 = 0;
int* iPointer2 = NULL;

// C++11
int* iPointer3 = nullptr;

17.7.6 Iterators: nonmember begin and end

The new C++ standards have introduced non-member begin(v) and end(v) itera-
tors. They are now preferred compared to the member methods offered by a container,
v.begin() and v.end(), because they can be used with different containers or with
classes other than those in the standard library, like arrays, or with user-defined classes,
provided they offer a begin and an end method.

std::vector<int> iVec;
int iArr[10];

// C++98
sort( iVec.begin(), iVec.end() ); // container member methods
sort( &iArr[0], &iArr[0] + sizeof(iArr)/sizeof(iArr[0]) );

// array does not offer ’begin’ and ’end’ methods

// C++11
sort( begin(iVec), end(iVec) ); // container non-member

methods
sort( begin(iArr), end(iArr) ); // the new methods handle

arrays as well
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17.7.7 Lambda functions and algorithms

We have seen how to define functions to perform actions and to encapsulate functional-
ities. Functions must be declared with a function name and its body is normally defined
in a separate piece of code. Also, a function cannot be declared within another function
or within the main() function of the program.

Certain algorithms in the Standard Library require a function to modify their default
behavior, like sort. Unfortunately, defining this additional functionality can lead to code
cluttered with a plethora of tiny functions.

To deal with this problem, the C++11 standard introduces anonymous functions,
often called called lambda expressions or, simply, lambdas. Lambda functions are
a convenient way to encapsulate small functions and to define them exactly at the
place where they are used. This is especially useful when they have to be used by
other functions or algorithms. An example with the old and new function paradigms
follows.

// C++98

// defining a custom sorting function outside ’main()’
bool absReverse(int a, int b) {
return (std::abs(a) > std::abs(b));

}

int main() {
...
sort( begin(iVec), end(iVec), absReverse );
...

}

// C++11
int main() {
...
// defining the custom sorting function at the place where

it is used
sort( begin(iVec), end(iVec), [](int a, int b) { return (

std::abs(a) > std::abs(b)); } );
...

}

In the code above we have defined a custom sorting function for the sort algorithm.
In C++98 we are forced to define a whole function outside the main function of the
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program and then use the function name in the sort call. While this is fine if we use
the absReverse function in more than one place, it is redundant if the function is only
needed for one sorting operation.

C++11 lets one define the sorting function as a lambda expression exactly at the place
where it is used, within the sort call. The symbol [] is called the lambda-introducer,
or capture clause: it introduces the definition of the lambda expression and it accepts
capture options as we will see later. After that, the parameter list, also called the lambda
declarator, specifies the input arguments of the functions. The body of the function
follows.

The general form of a lambda expression is:

[] () mutable throw() -> return-type { ... }

Only the lambda-introducer [] and the body are needed, all the others are optional.
Lambdas are useful when combined with Standard Library utility functions. In the

example below we generate vector elements with the help of the std::generate
function and a lambda expression:

std::vector<int> iV(3); // --> 0 0 0
int value = 0;
std::generate(iV.begin(), iV.end(), [=] () mutable { return

value++; }); // --> 0 1 2

The capture clause [] also defines the variables the lambda function can capture
from the enclosing scope: an empty [] means that no variables from the enclosing scope
are accessible within the lambda. Two symbols are accepted by the capture clause: = and
&: [=] which means that all variables from the enclosing scope are accessible by value,
while [&] means that they are accessible by reference. A list of specific parameters can
be passed to the capture clause, too: for example [=, &sum] means that all variables
can be accessed by value except sum which can be accessed by reference. The mutable
optional keyword lets the programmer modify the variables captured by value within
the lambda function. The optional throw() statement may be used to provide a list of
exceptions that the function can throw, which may be left empty or, equivalently, omitted.
The last optional parameter -> return-type sets the return type of the lambda
function, which is by default deduced by the compiler when the return statement is
used in the lambda body.

In the example below we make use of the std::for_each algorithm to compute a
sum of the elements in a vector augmented by a quantity grain. The variable grain
is captured by value with the usage of the global = and the mutable keyword let us
increment it before adding it to the vector element in the lambda body; the variable sum
is explicitly captured by reference using the & and therefore its value in the enclosing
scope can be modified by the lambda:



586 Modern C++

int grain = 0;
int sum = 0;
for_each(iV.begin(), iV.end(), [=, &sum] (int& element)

mutable throw() { element += ++grain;
sum += element; } );

Since C++14, new variables can be declared within the lambda functions as well.

17.7.8 Initializer lists

With C++98 there was no direct way to initialize a vector or a map to a given set of
values. C++11 introduced the keyword initializer lists, which permits the use of braces
to define an initializing list.

// C++98
int iArr[] = { 1, 2, 3, 4 }; // arrays work

std::vector<int> iVec;
for( int i = 1; i <= 3; ++i ) // must explicitly initialize

vector elements
v.push_back(i);

std::map<int, std::string> sMap;
sMap[0] = "A"; // and map elements
sMap[1] = "B";
sMap[2] = "C";

// C++11
vector<int> iVec { 1, 2, 3 }; // everything works
int iArr[] { 1, 2, 3, 4 };
std::map<int,std::string> sMap { {0, "A"}, {1, "B"}, {2, "C"} };

Custom classes can make use of the new initializer lists as well, provided they accept
an object of the std::initializer_list<T> template class in their constructor.

#include <initializer_list>

template <class T> class MyClass {
public:

MyClass(std::initializer_list<T> l) : vec(l) {
std::cout << " MyClass o b j e c t cons t ruc t ed with a

" << l.size() << "−e lement l i s t \ n ";
}
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typedef typename std::vector<T>::iterator myIterator;
myIterator begin() {return vec.begin();}
myIterator end() {return vec.end();}

private:
std::vector<T> vec;

};

...

MyClass<int> myC{ 10, 15, 20};
for( auto item : myC ) {

cout << item << " ";
}
cout << endl;

Uniform initialization

C++11 also introduced the concept of uniform initialization, which expands on the
braces of the initializer lists to provide a uniform type initialization that works with any
object. For example, let us consider a simple structure and a simple class that holds three
coordinates:

struct PosStruct {
int x, y, z;

};

class PosClass {
public:
PosClass(int x, int y, int z): m_x(x), m_y(y), m_z(z) {};

private:
int m_x;
int m_y;
int m_z;

};

The struct is an aggregate class because it has no user-provided constructor, no
private or protected members, and no virtual functions. PosClass, on the other hand,
is an ordinary (i.e. non-aggregate) class. Consider the following code that creates a
PosStruct in correct and incorrect ways:

// C++98
PosStruct pos1; // invokes default constructor
cout << pos1.x << endl;
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PosStruct pos2(); // a function declaration (not
a constructor)

cout << pos2.x << endl; // error!
PosStruct pos4 = {2,5,11}; // invokes default constructor

With the old C++98 standard, an attempt to construct a PosStruct object with the
standard parentheses (as in pos2()) actually declares a new function8.

A new C++11 {} syntax has been introduced to help avoid the ambiguity. Now the
default constructor can be called with curly braces, as shown in the code snippet below.

// C++11
PosStruct pos5;
PosStruct pos6 {};
PosStruct pos7 {2,5,11};
PosStruct pos8 = {2,5,11};

Also, the curly braces can be safely used to declare all types of variables in a uniform
way. Thus one should compare the old standard, as shown here:

// --- C++98
PosStruct ps1;
PosStruct ps2 = {2,5,11};

PosClass pc1(2,5,11);
PosClass pc2 = {2,5,11};

std::vector< PosClass > vecPosClass;
vecPosClass.push_back( PosClass(1,2,3) );
vecPosClass.push_back( PosClass(4,5,6) );
vecPosClass.push_back( PosClass(7,8,9) );

// PosStruct is an aggregate class, we can initialize an
array this way

PosStruct arrOfPosStruct[] = { {1,2,3}, {4,5,6}, {7,8,9} };

// PosClass is an ordinary non-aggregate class, we have to
write a call to the constructor three times

PosClass arrOfPosClass[] = { PosClass(1,2,3),
PosClass(4,5,6), PosClass(7,8,9) };

8 Depending on the compiler and on the compilation settings, you can get a compilation warning when using
empty parentheses, something like warning: empty parentheses interpreted as a function
declaration. Just after the warning, some compilers print a suggestion like: note: replace paren-
theses with an initializer {} to declare a variable.
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// ordinary types
int ii = 3;
int jj = 1;
std::string str( "ABC");

to the new standard:

// --- C++11
PosStruct ps1{};
PosStruct ps2{2,5,11};
PosStruct ps3 = {2,5,11};

PosClass pc1{2,5,11};
PosClass pc2 = {2,5,11};

std::vector< PosClass > vecPosClass = { {1,2,3}, {4,5,6},
{7,8,9} };

// PosStruct is an aggregate class, we can initialize an
array this way

PosStruct arrOfPosStruct[] = { {1,2,3}, {4,5,6}, {7,8,9} };

// PosClass is an ordinary non-aggregate class, now we can
initialize the same way as the array

PosClass arrOfPosClass[] = { {1,2,3}, {4,5,6}, {7,8,9} };

// we can use it with ordinary types as well
int ii {3};
int jj {1};
std::string str{ "ABC"};

In particular, notice that it is possible to initialize non-aggregate classes with an iterated
curly brace construct.

In-class initialization of data members

Finally, we mention that C++11 now supports in-class initialization of data members, as
the following example illustrates:

class MyClass
{

int ii = 7; //C++11 only
...
public:
MyClass();

};
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There are many more features of modern C++ that we have not discussed here. The
intrepid reader is invited to explore these in the references given below. New capabilities
and constructs are regularly added to the C++ language—in general these are either
useful or permit more elegant and error-proof code to be written. Either way, it is
advisable to keep up as these features are introduced.

17.8 Exercises

1. Write a class that represents a floating point number to an arbitrary precision.
Overload operator « so that your floating point number can be printed to an
std::ostream. Using this class, compute the value of π using the techniques of
Chapter 2. Check your answer by comparing to the built-in datatypes float and
double.

2. Make a dataset of 1MB size containing the digits of a decimal representation of π . You
will have one million decimal characters in this file. Then, count the number of times
that each digit appears. Follow up on this by counting the frequency of occurrence of
every two-digit sequence, every three-digit sequence, and every four-digit sequence.
Compare these to determine whether there is any statistically significant difference in
the frequency of occurrence of the possible sequences.

3. Write a container class template representing a tree, i.e., a data structure of nodes;
each node may have children, and every node has a parent except for the “root node”.
The tree container should provide a way of organizing objects of a given type in a
hierarchical manner. Provide a means of navigating the tree (an iterator, for example).
Then test this by filling it with objects. These could include strings identifying the
names of officers in your organization, particle four-momenta in a decay chain, or
subroutine call graphs.

4. Indexing.
Use variadic templates to write an indexing function that maps D integers of ranges
[0, Ni] to a single integer. This is useful for dealing with D-dimensional discrete
spaces.

5. [P] Young Tableaux.
The special unitary group in N dimensions, SU(N), underlies the structure of
fundamental interactions and is useful in classifying hadronic matter. Irreducible
representations of these groups (henceforth irreps) can be studied with the aid of
Young tableaux. These are graphical representations of irreps that correspond to
tensors. Tableaux (the singular is tableau) are drawn as connected boxes. For example,
the fundamental rep is drawn as . A rank n symmetric tensor is written as a row of
n boxes: Sijk = i j k , whereas a rank n antisymmetric tensor is a column of n boxes,
eg, Aij = i

j . A general tableau will be of mixed symmetry. A tableau can consist of
any number of boxes provided that no more than N boxes occur in any column (for
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SU(N)), that the rows start at the left, and that no row is longer than a row above it.
Thus the following are valid tableaux:

whereas the following are not:

.

The dimension of an SU(N) irrep is given by the formula:

D =
∏

boxes

(N + dbox)

hbox

where dbox is assigned as shown here:

0 1 2 3
-1 0 1 2
-2 -1 0 1

,

etc. The hbox are called the hook lengths and are given by one plus the number of boxes
to the right of the box plus the number of boxes below the box. For example, hook
lengths for are given by:

4 2 1
1

.

Thus, in SU(N) we have the following dimensions (for example):

= N = 1
3

N(N +1)(N −1) = 1
80

N2(N2 −1)(N +2)(N +3)

Finally, tableaux can be combined to determine irreps of products of irreps, say T1 ⊗
T2. To do this:

(i) assign distinct labels to boxes in each row of T1 as follows, eg, a a a a
b b
c

.

(ii) attach boxes labelled by a to T2 in all possible ways such that no two as appear
in the same column and the result is still a Young tableau.

(iii) repeat with bs, cs, etc.:

(iv) after all the boxes of T1 have been added to T2 form the sequence for each
tableau by reading each row from right to left while going from top to bottom.
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Eliminate tableaux with inadmissable sequences, namely, when reading the
sequence (from left to right) there must be at least as many as as bs, bs as cs, etc.
at any point in the sequence. Any resulting tableaux with the same structure and
sequence are copies of each other and only one tableau should be considered.

Some examples:

N ⊗ 1
2

N(N + 1) = ⊗ = a ⊗ = a ⊕
a

= 1
6

N(N + 1)(N + 2)+ 1
3

N(N2 − 1).

For SU(3):

⊗ = a a
b

⊗ → a ⊕
a

⊕
a

→ a a ⊕ a
a

⊕
a

a
⊕ a

a

→ a a b ⊕ a a
b

⊕
a a

b
⊕ a b

a

+ a
a b

⊕
a

a
b

⊕
b

a
a

⊕ a
a b

+
a b

a
⊕

a
b

a
⊕

a

a
b

.

The sequences for these are baa, aab, aab, baa, aba, aab, baa, aba, baa, aba, aab. All are
admissable except baa so we remove tableaux 1, 4, 7, and 9. The remaining have the
following dimensions in SU(3): 27, 10, 10 (a different 10!), 8 (different from ), 1,
8 (notice another way to write the singlet), null. Thus

8 ⊗ 8 = 1 ⊕ 8′ ⊕ 8′ ⊕ 10 ⊕ 10′ ⊕ 27.

The two 8′ irreps have a different topology than the 8 and are distinguished by their
unique sequences, aab and aba.

Example irreps are the fundamental, F = , the conjugate of the fundamental, F̄ ,
which is represented as a column of N − 1 boxes, the adjoint, which is a column of
N − 1 boxes with an additional box at the top of the second column, and the singlet,
which is a column of N boxes.
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Write a program to compute the dimension of an irrep of SU(N), and to determine
the irreps of products of irreps. Use it to:

a) Compute F ⊗ F , F ⊗ A, and A ⊗ A for SU(2). Confirm that your results agree
with the spin algebra familiar from undergrad.

b) Compute 3 ⊗ 3̄, 3 ⊗ 3, 3 ⊗ 3 ⊗ 3, 3 ⊗ 6, and 6 ⊗ 6 in SU(3).

c) Compute F ⊗ F , 20 ⊗ 4̄ in SU(4). Use 20 = and 4̄ = .

..........................................................................................
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18.1 Introduction

Chemists, astrophysicists, cosmologists, and plasma physicists are interested in the bulk
properties of large numbers of particles. This is often called the N-body problem or
molecular dynamics and is primarily treated as a problem in classical dynamics. The
general approach will be direct integration of the equations of motion for all N bodies,
which is referred to as a “simulation” of the system. Because the system is followed in
time, molecular dynamic simulations are also useful for investigating non-equilibrium
problems, which Monte Carlo computations cannot address.

The first attempt at directly computing the N-body problem was an ingenious simula-
tion of 37 particles using an analogue computer built from lightbulbs and galvanometers
(Holmberg, 1941). Computational work started in the 1960s with simulations of a few
hundred particles. The effective treatment of the N-body problem is a relatively recent
development in science—it was only in the 1980s that computers became powerful
enough to simulate systems of useful size. At the same time efficient algorithms were

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001



Many body dynamics 595

developed that converted a rather onerous O(N2) problem to a more manageable
O(N log N) problem.

Contemporary effort takes advantage of specialized hardware and parallel computing
to simulate up to 106 bodies for planetary dynamics or an astounding 1010 bodies
for cosmological computations (Springel, 2005). Alternatively, only approximately 104

bodies can be accommodated in computations of the evolution of globular clusters, since
these require very long time scales.

In principle, the methods of Chapter 11 can be used to implement a simulation;
however, the existence of many degrees of freedom necessitates employing more spe-
cialized techniques. In this chapter these techniques will be presented as a means to
describe (i) properties of simple substances such as noble gases, (ii) gravitating systems,
(iii) systems with complex multi-scale dynamics. Most practical large-scale problems
fall into the latter category (climate modelling is a good example), which makes a
general discussion difficult because useful techniques depend on the details of the system.
Additional techniques discussed include the stochastic Langevin equation, particle-mesh
methods, and hierarchical models.

18.2 Relationship to classical statistical mechanics

The central goal is to follow the temporal evolution of many interacting bodies by
integrating the equations of motion. This is called performing a simulation, as we
have mentioned. A good computational method will (approximately) conserve energy
during this evolution and thus generates elements of a microcanonical ensemble. The
ergodic theorem implies that averages of quantities over their (real space) trajectories
are equivalent to expectation values of those quantities in microcanonical ensembles at
a temperature determined by the system energy. If the temperature is kept constant
by coupling the system to a heat bath then the time average is a weighted average
of configurations with fixed volume and particle number with weight given by the
Boltzmann factor, which yields the canonical ensemble average (Callaway and Rahman,
1982). Thus one has:

lim
τf →∞

1
τf

∫ τf

0
dτ O(τ ) →

ergodic
〈O〉(E = E(T))micro →

thermo
〈O〉(T)can. (18.1)

This equivalence establishes a connection to statistical mechanics which can inform the
numerical work to follow. For example, averages over trajectories will equilibrate as the
simulation proceeds, which means that the distribution of particle speeds will approach
the Maxwell-Boltzmann density:

ρMB(v) dv =
(

m
2πkBT

)3/2

4πv2 exp
(
− mv2

2kBT

)
dv. (18.2)

Evidently this expression can be used to obtain the system temperature. We recall a few
other quantities of interest that will be useful later.
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The specific heat is related to fluctuations in the internal energy, which do not exist
in microcanonical simulations:

CV =
(
∂E
∂T

)

N ,V
= 1

kBT2

∂2 log Z
∂β2 = 1

kBT2

(
〈E2〉NVT − 〈E〉2NVT

)
.

In this case one can obtain the specific heat from trajectory-averages of the fluctuations
in the total kinetic energy via Lebowitz (1967):

〈δK2〉 = kBT
(

1 − 3N
2CV

)
〈K〉.

Recall that the equipartition theorem relates the total (nonrelativistic) kinetic energy
and the temperature via (Pathria, 1984):

〈K〉 = (dN − Nc)
1
2

kBT

where we consider N particles in d dimensions with Nc constraints. For example, if
the system is at rest (so its center of mass velocity is zero) then Nc = d. Alternatively〈

1
2 miv2

i

〉
= d

2 kBT .
The pair correlation function is defined by a thermodynamic average over all

degrees of freedom (momentum has been integrated) except two positions (Pathria,
1984):

g(r, r′) = V 2

N ! h3N Z

∫

V
d3r3 . . . d3rN exp[−βV (r, r′, r3, . . . , rN )].

In an isotropic homogeneous system this is a function of |r− r′|. This is a useful quantity
because integrals over the correlation function give thermodynamic observables. For
example, the total energy is given by Pathria (1984):

E = 3
2

NkBT
(

1 + 4πρ
3kBT

∫
V (r)g(r)r2dr

)
(18.3)

Similarly,

PV = NkBT
(

1 − 2πρ
3kBT

∫
∂V
∂r

g(r)r3dr
)

.

The virial theorem will prove useful many times in the following discussion. The
theorem applies to averages of kinetic and potential energies for systems that are in
equilibrium or are stable and bound. For classical and nonrelativistic systems with two-
body velocity-independent interactions one has:
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2〈T〉 +
〈∑

i

�Fi · �ri

〉
= 2〈T〉 −

〈∑

i<j

rij · ∇V (rij)
〉
= 0. (18.4)

over sufficiently long times. For a power law potential V (r) ∝ rn the latter relationship
gives the familiar result:

2〈T〉 = n〈U 〉

where U = ∑i<j V (rij). Lastly, the virial theorem yields an expression for the pressure
in terms of the virial:

PV = NkBT − 1
6

〈∑

ij

�rij · ∇V (rij)
〉
.

18.3 Noble gases

Our goal will not be to construct world-class N-body simulation code as this would
require highly specialized algorithmic techniques and hardware. We will instead focus on
relatively simple methodologies that address most of the issues that arise in the N-body
problem. Our starting point will be in the context of the simplest physical N-body
system, namely the noble gases. The quantum mechanical stability of these elements
permits treating the system as a collection of identical classical particles that interact
via a short-ranged potential. Indeed, the equipartition theorem implies that the average
kinetic energy of any molecule at room temperature is around 0.03 eV. This is much
lower than typical electronic excitation energies which are of order 10 eV1.

The interaction between noble atoms is traditionally taken to be the Lennard-Jones
potential:

V (r) = 4ε
[(σ

r

)12 −
(σ

r

)6
]

. (18.5)

The second term represents a nonrelativistic induced dipole-dipole interaction, while the
first is a convenient way to incorporate a short range repulsion. Fitting to the properties
of argon yields σ = 3.405Å and ε/kB = 119.8 K.

As usual, it is useful to work in appropriate units, in this case given by:

r0 = σ = 3.4 Å

and:

t0 = σ
√

m/ε = 1.9 ps.

1 This energy is sufficient to excite rotational modes of molecules, but, of course, we do not need to worry
about that for a noble gas.
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Finally, although we refer to Noble gases, we shall also have opportunity to consider
phase transitions to the solid and liquid states.

18.3.1 The Verlet method

Our method, and the workhorse in the field, will be to discretize the equations of motion:

mi
d2�ri

dt2 = −∇
∑

j �=i

V (rij).

where the index i refers to the ith particle, rij = |�ri − �rj |, and the sum is over all
other particles in the system. It is important that the discretization be accurate and
easy to compute since time evolution must typically be carried out for many time
steps. Fortunately, Verlet (1967) constructed an algorithm that meets these criteria. The
method steps forward in time according to:

�r(t + h) = 2�r(t)− �r(t − h)+ h2 �F(�r(t))/m + O(h4). (18.6)

The error is at worst O(h2) when iterated over many time steps. This simple algorithm
meets our criteria because it is both reversible and symplectic (refer to Section 11.7 if you
have forgotten what this means) and therefore exactly conserves a good approximation
to the total energy of the system.

Notice that the initial step requires knowledge of �r(−h) which is not known. Thus the
algorithm really starts at t + 2h; we recommend setting �r(h) according to:

�r(h) = �r(0)+ h�v(0)+ h2

2m
�F(r(0))+ O(h3). (18.7)

If the velocity is required during the simulation (and it almost always is) use:

�v(t) = �r(t + h)− �r(t − h)
2h

+ O(h2). (18.8)

The desirable qualities of the Verlet scheme exist in the fantasy world of perfect
arithmetical computations where no round off error occurs. Variants of the Verlet scheme
that are slightly more stable with respect to round-off errors are the Verlet leap frog
algorithm (Hockney, 1970):

�v(t + h/2) = �v(t − h/2)+ h �F(r(t))/m

�r(t + h) = �r(t)+ h�v(t + h/2), (18.9)
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or the velocity Verlet algorithm, defined by Swope (1982):

�v
(

t + 1
2

h
)

= �v(t)+ h �F(r(t))/2m

�r(t + h) = �r(t)+ h�v
(

t + 1
2

h
)

�v(t + h) = �v′(t)+ h �F(r(t + h))/2m. (18.10)

Both versions are useful because the velocity is manifestly available; however, the leap
frog algorithm does not evaluate the position and velocity at the same time, and therefore
is slightly less accurate when tracking total energy.

Pseudocode for the velocity Verlet algorithm is:

step
v = v + h a/2
r = r + h v
a = a(r)
v = v + h a/2

end

It will not have escaped the reader that the first and fourth statements in the loop do
precisely the same thing and can be safely combined. The only effect of splitting these
statements is in the first and last passes through the loop. The last pass is not important
so this algorithm is equivalent to

v = v + h a/2
step

r = r + h v
a = a(r)
v = v + h a

end

Furthermore, the velocity Verlet and standard Verlet algorithms produce the exact same
sequence of positions if �r(h) is chosen according to Eq. 18.7. This is also true for the leap
frog algorithm if one sets v(−h/2) = v(0) − ha(0)/2. If the initial velocity statement is
extracted from the leap frog loop this algorithm becomes equivalent to that above, and
therefore to velocity Verlet. There is therefore no substantive difference at all between
these variants of the Verlet method.

Coding considerations

It is clear that molecular dynamics of any type must deal with many three-vectors (or,
more generally, D-vectors): position, momentum, acceleration, angular momentum, and
forces all play major roles in the method. For this reason it is desirable to create a class that
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permits simple and encapsulated manipulation of three vectors. One could for example
employ Vector3d from the Eigen library or the class ThreeVector mentioned in
Section 14.4.1.

Initial conditions

We return to the task of implementing a Verlet solution to the molecular dynamics
problem.

Some care should be exercised when setting the initial configuration. The low
temperature spatial configuration is a face-centered-cubic lattice, and it can be useful
to chose this option2. Alternatively N3 particles can be placed on a uniform grid in a
box of size L3. An initial period of thermalization will then seek out the preferred spatial
configuration. In this case it is useful to offset the initial coordinates by random small
amounts to help thermalize. Initial velocities can be set by drawing from a Maxwell-
Boltzmann distribution. An alternative is to set the velocity of each particle to:

�v =
√

DkBT
m

v̂ (18.11)

where D is the number of spatial dimensions and v̂ is a random unit vector. Subsequent
thermalization will be bring the system into a Maxwell-Boltzmann distribution.

Boundary conditions

It is traditional to implement many-body simulations with periodic boundary conditions.
This is conceptually easy in systems with short ranged interactions. In this case; however,
we have Np particles interacting via, say, the Coulomb force on a torus. If one considers
two particles separated by a distance r along the x axis, the closed topology implies that
they will interact infinitely many times, once at a distance r, again at a distance r+L, and
so on. In view of this, it is common to adopt the minimum image convention where
one evaluates interactions between particle pairs using the minimum distance between
the particles:

r(min)
ij = min

�n
|�ri − �rj + L �n|.

An alternative is to place a system in a physical box, which requires implementing
collisions with walls. Issues involved in taking this approach are explored in Ex. 4. It
is sometimes convenient to implement periodic boundary conditions that correspond to
other geometrical forms. See Ex. 10 for more on this.

2 Although the FCC configuration is preferred in nature, a Lennard-Jones potential yields the closely related
hexagonal-close-packed ground state.
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Parameter selection

It is easy to break many-body code with poor parameter selection. To start, choosing the
number of particles to simulate is something between you, your code, and your computer.
The box size L is fixed by the desired particle density. This leaves the time step h and the
total run times to fix. A prime cause of trouble is when the step size is chosen too large: a
particle can suddenly find itself very near another, and the subsequent large acceleration
can send the particle streaking out of the torus. It is therefore a good idea to monitor
particle acceleration, especially in the code development stage. In this regard it helps to
know the mean free path which is given in terms of the particle density n = Np/V and
the collision cross section in D dimensions σ ∼ aD−1:

� = vrel

nvrelσ
∼ V

Np

1
aD−1 .

One typically does not want a particle moving beyond the mean interaction length in a
time step, so issuing a warning when h2ai > � is a good idea. In the case of argon it is
traditional to choose h = 0.005 for “typical” run conditions (not too dense or hot).

As the time step is increased, the fluctuations in total energy become larger, leading
to a drift in the energy (Hansen and McDonald, 2006). Notice that any finite time step
leads to error in the temporal evolution of the system. These are analogous to uncertainty
in the initial conditions and therefore give rise to chaotic behavior (Chapter 13). In
principle this does not cause a problem as long as the dynamics is ergodic and one only
asks statistical questions (i.e., one makes measurements with ensembles or long time
sequences).

Thermalization should proceed for long enough that a particle can traverse the torus,
thus ttherm > L/v where v is a typical particle speed (which is set by the temperature).
It is important to monitor quantities of interest to detect long term drift in observables
(recall the Monte Carlo maxim: make a few long runs). This is because of the quasi-
ergodic problem where smaller systems can become trapped in a localized region of
phase space.

Finally, measurements should include enough time steps that thermodynamic aver-
ages can be evaluated to the desired level of precision. Using tmeas ≈ ttherm is not a bad
choice. One should be aware, however, that periodic boundary conditions imply that
temporal correlation functions will have spurious effects over time intervals that are larger
than the “recurrence” time for phenomena of interest. Thus, for example, a disturbance
that propagates through the system with a characteristic speed c will reappear at a time
of order L/c and make corresponding contributions to an autocorrelation function.

Speeding things up

The chief expense in solving a molecular dynamics problem lies in computing the N2/2
pair-wise forces that contribute to the acceleration of the particles, which swamps the
O(N) computations required in the Verlet steps. The problem becomes even worse if
three-body forces are present as these represent an additional N3/6 computations per
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time step3. We trust that the reader will have noted that the force calculation loops are an
ideal opportunity to apply the omp parallel construct of openMP (see Section 9.3.2),
or any of a host of other parallelization strategies.

If one is willing to make approximations it is possible to ameliorate the situation. The
simplest step would be to neglect the interaction beyond a certain cutoff, rc. One would
still need to loop over all N2/2 force pairs, but at least the computation of most of the
pairwise forces would be avoided. Since the Lennard-Jones potential is an approximation
to a complicated inter-atomic interaction, one could simply regard the truncated potential
as a different model and declare victory. Alternatively, if one insisted on computing
with the full Lennard-Jones potential then one could use relationships like Eq. 18.3 to
correct for the error induced by the cutoff. Thus, for example, the internal energy can
be computed as:

〈U 〉 = 〈U 〉c + 2π
N(N − 1)

V

∫ ∞

rc

V (r) g(r) r2dr

with the additional approximation that g is 1 for large r. Lastly, all this fancy stuff can
be avoided by evaluating observables for a few values of rc and either extrapolating or
confirming that errors are within desired limits. We note that this trick comes with some
cost as it introduces an infinity in the force at r = rc. This can be avoided by shifting the
potential so that the derivative at rc is smooth (although, of course, higher derivatives will
not be smooth).

A more elaborate way to speed up the algorithm is to maintain a table of particle pairs
with separation less than some cutoff rn > rc (Verlet, 1967). The table can be updated
occasionally (clearly the update frequency will depend on the system density and the
temporal step size) and has the great advantage that the force calculation is now O(M2)

where M is the typical number of particles in a sphere of radius rn. A clean way to form
the neighbors list is to use the push_back member function of the vector <int>
container class, which has the great advantage of not requiring one to manage indices.
The following code can be used to create a neighbors list:

// obtain the neighbors list
vector <vector <int>> Nlist (Np);
for (int i=0;i<Np;i++) NList[i].clear();
for (int i=0;i<Np;i++) {
for (int j=i+1;j<Np;j++) {

if (rsqMin(i,j) < rcut*rcut) {
NList[i].push_back(j);
NList[j].push_back(i);

}
}

}

3 Pair-wise interactions tend to be inadequate for transition metals and semiconductors (Leach, 2001).
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Obtaining the forces acting on particle i amounts to iterating over elements of the ith
neighbors list, as follows.

// obtain F
for (int i=0;i<Np;i++) {

f[IJ(i,i)].setV(0.0,0.0,0.0);
for (int it=0; it<NList[i].size();it++) {
int j = NList[i][it];
// obtain force(r(i,j)) and rhat
f[IJ(i,j)] = force*rhat;
f[IJ(j,i)] = (-1.0)*f[IJ(i,j)];

}
}

Finally, the force f is an array of ThreeVectors that can be accessed via a
superindex, or managed as the coder wishes.

More elaborate schemes for speeding up molecular dynamics computations are
presented in Sections 18.5.2 and 18.5.3.

18.3.2 Temperature selection

Although we have recommended setting the initial particle speeds according to the
temperature (via either Eq. 18.11 or Eq. 18.2) there will be some exchange of kinetic
and potential energy as the system equilibrates; thus the temperature will drift from its
initial value. This is no surprise: we are implementing a microcanonical procedure, not
a canonical one. Here we discuss three techniques of varying degrees of rigor that are
used to set a desired temperature.

Speed rescaling

The simplest approach is to adjust the average particle speed towards the desired
temperature as the system equilibrates. Thus one executes code such as

double lambda = sqrt(temp0/temp());
for (int i=0;i<Np;i++) v[i] = lambda*v[i];

Here temp0 is the desired temperature and temp() returns the temperature of the
system as determined by the equipartition theorem. This method works for the leap-
frog or velocity variants of the Verlet method. For the canonical method one can reset
position vectors so that the desired speed is achieved.

While simple and effective, speed rescaling induces deviations from the canonical
Boltzmann distribution that are of order 1/

√
Np (Nosé, 1984).

Nosé-Hoover thermometer

A method that drives the system to the desired temperature while maintaining canonical
dynamics has been derived by Nosé (1984) and Hoover (1985). The idea to add a



604 Noble gases

frictional force that injects energy when the temperature is below the desired point and
absorbs energy when the temperature is high. Thus the dynamics is specified by:

m �̈x = F(x)− ξ �̇x

where ξ is independent of particle and specifies the frictional force. In the Nosé-Hoover
approach the parameter is determined by:

ξ̇ = (K − K0)/Q

where K is the total kinetic energy, K0 = 3NkBT/2 is the desired kinetic energy, and Q
is a parameter that controls the rate at which the frictional force changes. Unfortunately,
the Nosé-Hoover method appears to induce strange dynamics in certain conditions. For
example, the temperature can start to oscillate with a magnitude that is much larger than
expected (Holian, 1995).

Langevin dynamics

A physical solution to the temperature selection problem is to couple the system in
question to a heat bath. If the heat bath degrees of freedom have a much shorter time
scale than the ones in which we are interested, the details of the heat bath do not matter
and they can be “integrated out” (see Section 8.4 for the same concept in a different
context).

Paul Langevin (French physicist and anti-facist campaigner, 1872—1946) first
applied these ideas to Brownian motion (Langevin, 1908). He postulated that Brownian
particles experience their characteristic motion because they are suspended in a solvent
and are subject to perturbations induced by short time scale molecular impacts. Langevin
separated this force into an aggregate viscous drag, represented by a velocity-dependent
frictional force, and a rapidly fluctuating stochastic, or noise, force. Thus the equation
of motion for a particular Brownian particle of mass m is:

m �̈x = �F(x)− m
τ

�̇x + �η(t). (18.12)

The parameter τ is a measure of the strength of the frictional force and is the
characteristic time associated with the diffusion induced in the system.

In the simplest models the stochastic force obeys 〈ηi(t)〉 = 0 and

〈ηi(t) ηj(t′)〉 = 2
m
τ

kBT δij δ(t − t′). (18.13)

This equation relates the frictional dissipative force with stochastic fluctuations, and
hence is called the fluctuation-dissipation theorem (Pathria, 1984). For the indus-
trious, a more general account of integrating out degrees of freedom can be found in
Hansen and McDonald (2006).
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Our goal is to use the Langevin equation to couple an argon gas to an effective heat
bath, thereby maintaining the system at a desired temperature. To start, we note that the
molecular dynamics algorithm steps in temporal units h, which implies that one should
consider the average noise over a time interval (t, t + h):

η̄i = 1
h

∫ tn+h

tn
ηi(t)dt. (18.14)

This implies:

〈η̄2
i 〉 =

2mikBT
τ h

, (18.15)

which indicates that average noise forces can be chosen from a Gaussian distribution:

ρ(η̄) = 1
√

2π〈η̄2〉 · e−η̄2/(2〈η̄2〉). (18.16)

Some minor changes need to be made to the Verlet formalism when frictional forces
are present (recall that the force in Eq. 18.6 must be velocity independent). Dynamics
described by Eq. 18.12 yields the formula (see Ex. 6 for the derivation):

(
1 + h

2τ

)
�r(t + h) = 2�r(t)−

(
1 − h

2τ

)
�r(t − h)+ h2η̄ + h2 �F(r(t))+ O(h4). (18.17)

The leap-frog version of this is:

(
1 + h

2τ

)
�p(t + h/2) =

(
1 − h

2τ

)
�p(t − h/2)+ hη̄ + h �F(r(t))

�r(t + h) = �r(t)+ h
m

�p(t + h/2)

Figure 18.1 shows thermalization for a system of 1000 argon atoms in a box of size 103

at a nominal temperature of 0.6. The particles are rather tightly packed and thus both
methods must shed excess energy; the rescaling run does so by lowering the kinetic
energy every 20 time steps; whereas the Langevin method dissipates the energy according
to the fluctuation-dissipation theorem.

18.3.3 Observables

In the development stage all simulations should track the temperature and the total energy
to verify the code and confirm that nothing untoward, such as quasi-ergodic motion, is
occurring. In this regard, it is useful to make a histogram of the speed or vx distribution
to confirm that it follows the dictates of Maxwell and Boltzmann (Eq. 18.2).
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Figure 18.1 Thermalization of an argon gas. Solid line: Langevin. Dotted line: rescaling.

Figure 18.2 2d argon.

As usual, error estimation is important. Do not make the mistake of using measure-
ments of observables at different times to compute errors as these are highly correlated. In
fact, Eq. 18.1 indicates that observables need to be evaluated over long temporal spans—
combining many of these measurements is a safe way to proceed.

It is amusing to plot (or make movies) of the particle positions. For example,
Figure 18.2 shows the configuration of argon atoms in a two-dimensional lattice at
relatively high density and low temperature. A hexagonal close-packed structure is
evident although several dislocations mar the landscape. The physics behind this is
explored in Exercise 11.

The pair correlation function is a central element of the description of simple
substances and is directly accessible experimentally. This can be obtained from the
number density as a function of distance via
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g(r) = 2V
Np(Np − 1)

n(r)
4πr2�r

where �r is the binning radius used to form n(r). Don’t forget to divide by the number
of measurements you make as well.

Useful physical parameters for the three-dimensional system are: liquid (T = 1,
ρ = 0.8), solid (T = 0.5, ρ = 1.2), and gas (T = 3.0, ρ = 0.3). Simulation results
for these parameters for 2744 particles with h = 0.005, 2000 thermalization steps, and
1000 measurements are shown in Figure 18.3. Notice that the solid line has clear peaks
that correspond to distances on a hexagonal close-packed lattice and these peaks are
substantially softened in the liquid phase. In the gas phase all peaks disappear except an
enhancement at r somewhat greater than 1.0 that appears due to the strong repulsion for
r < 1. All correlation functions tail off from the expected large distance behavior due to
the finite size of the confining torus. This is explored in more detail in Exercise 12.

Information about the phase structure can also be obtained from the average dis-
placement of a particle from its equilibrium position. At early times particle motion is
ballistic so that 〈|�r − �r0|〉 ∼ t, whereas for larger times particles should diffuse, hence
〈|�r − �r0|〉 ∼ √

t. This behavior is evident in Figure 18.4. A clear distinction between the
phases is evident. For particles in a solid there is no dispersion at all past approximately
1 ps. Alternatively, particles in a liquid execute random walks with a small diffusion
coefficient, while those in a gas have a much larger diffusion coefficient.

Another possible observable is the Fourier transform of the particle positions,∑
i cos �k· �ri . If the system is a solid the Fourier transform will peak strongly at a reciprocal

lattice vector that reflects the lattice structure. The peak will be of order the number
particles in strength. If the system is in the liquid phase the Fourier transform will
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Figure 18.3 Pair correlation function, g(r), for solid (solid line), liquid (dashed line), and gas
(dotted line) phases.
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Figure 18.4 Average particle displacement. Top to bottom: gas, liquid, solid.

oscillate (in time) about zero with an amplitude of order the square root of the number
of particles (Verlet, 1967).

Finally, measuring time-dependent observables is both possible and of interest.
A common example is the velocity auto-correlation, 〈�v(0) · �v(t)〉, which is sensitive to
memory effects. This refers to the possibility that the environment of a particle depends
on its past behavior; for example a moving particle will create a zone of high density in
front of it and leave one of low density in its wake. Memory effects can be incorporated
in the Langevin theory by generalizing Eq. 18.13 to read (Kubo, 1966):

〈ηi(t)ηj(t′)〉 = Mij(t − t′),

where the function M encapsulates the physical effects discussed. Exercise 13 explores
memory effects in a three-dimensional argon liquid (where it does indeed exist).

18.4 Multiscale systems

While we all love argon, it is not especially representative of the array of substances that
interest the scientific community. In particular, most substances are made of constituents
(we are thinking of molecules) that have important internal degrees of freedom. Simple
examples are diatomic molecules such as N2 and O2 that have rotational and vibrational
excitation modes. More complicated molecules also have torsional excitation modes.
Simulating enormous biological molecules is of obvious interest to the medical and
pharmacological communities.

Things can get complicated quickly: even a relatively simple molecule like propane
(C3H8) is typically modelled with ten bond-stretching, eighteen angle, eighteen torsional,
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and twenty-seven non-bonded interactions. The first three refer to possible motions of
three-dimensional collections of objects, while the latter are weak interactions and are
often modelled as an electrostatic Coulomb interaction or as a van der Waals interaction.
These interactions are typically written in terms of very simple functions such as the
Lennard-Jones potential for the van der Waals force, quadratic interactions for angular
motion, and functions of torsional angles such as:

V (ω) =
∑

n

vn

2
[1 + cos(nω − γ )] . (18.18)

Vibrational modes are often modeled with the Morse potential (named after American
physicist and operations research pioneer, Philip Morse, 1903—1985):

V (r) = De (1 − exp(−a(r − rc))
2 . (18.19)

This model accounts for anharmonicity observed in physical systems and permits bond
breaking. Some molecular forces are illustrated in Figure 18.5. A wide variety of force
models specialized in biomolecules, hydrocarbons, organics, etc., exist (Cramer, 2004).

In principle, interactions in large molecules need not be simply related to those in
smaller systems; it is therefore convenient that parameters determined in small molecules
approximate those in larger—a property called transferability (Leach, 2001). Thus, for
example, the Lennard-Jones potential that describes the vibrational spectrum of N2 can
also be used to describe the pair-wise interaction of nitrogen atoms in large biomolecules.
For a discussion of the state of the art, see Boas (2007).

Torsion

torsion angle

Lennard-Jones
Morse

bond length
distance

Figure 18.5 Some molecular forces. Figure by R. Williams.
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Naively, simulating large molecules (or systems of large molecules) is a matter of
applying the Verlet (or other) techniques in elaborate environments. However, the
differing scales associated with the different forces can cause serious problems. For
example, kinetic energies are 0.03 eV at room temperature while typical electronic
excitation energies are 1–10 eV, rotational energies are 0.001–0.01 eV, and vibrational
energies are 0.1–1 eV. These differing excitation energies correspond to different natural
time scales that must be accounted for in the simulation. Practical suggestions for time
steps are listed in Table 18.1. We see that integrating a system with vibrational degrees
of freedom can take ten to one hundred times longer than a comparable simple atomic
system (such as argon gas). This problem can become dramatically worse for systems
with widely varying scales. For example, climate models must deal with phenomena
ranging from energy transfer in atmospheric gases (angstroms) to hurricanes, spanning
an astonishing fifteen orders of magnitude.

Figure 18.6 shows the xy positions of 36 of the 216 N2 molecules in a leap frog Verlet
simulation. The system was simulated for 0.4 ps with a step size of 0.0002 ps and N2
bond vibration was modelled with a Morse potential fit to the experimentally measured
ground state vibrational spectrum (see Ex. 5 for details). As can be seen, the nitrogen
atoms tend to pair up with some deviation permitted in their inter-atomic distance
(this is enhanced in the figure since it presents a projection of the three-dimensional

Table 18.1 Time scales associated with different atomic forces (Leach, 2001).

System Motion Time step (10−14 s)

atoms translation 1

rigid molecule translation and rotation 0.5

molecules, fixed bonds translation, rotation, torsion 0.2

molecules, extensible bonds translation, rotation, torsion, vibration 0.1 − 0.01

Figure 18.6 Positions of a slice of N2 gas in the xy plane over 0.4 ps.
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atomic coordinates). The enlargement shows the path of each atom in the 15th molecule,
revealing the near harmonic motion of the nitrogen atoms.

18.4.1 Constrained dynamics

The behavior shown in Figure 18.6 leads one to suspect that, at least in some cases,
internal motion in a molecule is not important to bulk properties of a gas composed
of molecules. This observation motivates the strategy of freezing degrees of freedom
that are associated with very short time scales relative to those scales of interest. In the
case of the N2 molecule this implies fixing the interatomic distance to the equilibrium
value of 1.08 Å. One option at this stage is to switch to internal (i.e., intra-molecular)
and center of mass (inter-molecular) coordinates and simulate a gas of rigid diatomic
molecules by integrating the equations of motion for the center of mass motion and
the torque. However, this is already somewhat awkward, even for this simple case;
and it rapidly becomes unmanageable for more complicated objects. Even defining the
internal coordinates can be difficult for systems with cyclic constraints. Nevertheless,
using “internal coordinates” is efficient and should be considered as an option. More
information can be found in Jain (1993) or Fincham (1984).

A simpler approach is to implement (holonomic) constraints with Lagrange multi-
pliers. In this case constraints such as fixed bond lengths are imposed with subsidiary
equations:

σk({r}) = 0 (18.20)

where the index k labels the constraint. In the case of diatomic molecules there would be
one constraint per molecule. Constraints are incorporated in the system dynamics via an
additional term in the Lagrangian:

−
∑

k

∫
λk(t)σk dt

and yield an additional fictitious force in the equations of motion:

mi �̈ri = �f i −∇i

∑

k

λkσk. (18.21)

In this case the form of the equations of motion remain the same, but constraint equations
must be solved at each time step.

To illustrate we consider two particles A and B to be held a fixed distance d apart. The
constraint is:

σ = (�rA − �rB)
2 − d2 (18.22)
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and the equations of motion are:

mA �̈rA = �f A − 2λ(�rA − �rB)

mB �̈rB = �f B + 2λ(�rA − �rB).

The standard Verlet procedure reads:

�rA(t + h) = 2�rA(t)− �rA(t − h)+ h2 �aA(t)− 2h2 λ

mA
(�rA(t)− �rB(t))

�rB(t + h) = 2�rB(t)− �rB(t − h)+ h2 �aB(t)+ 2h2 λ

mB
(�rA(t)− �rB(t)) .

The final step is to impose the constraint of Eq. 18.22 by substituting the coordinates at
time t + h and solving the resulting quadratic equation for λ. This value is then used to
advance the coordinates to their new values.

While plausible, this approach becomes impractical for constraints that are even
slightly more complicated. In such cases one can consider solving the (coupled and
nonlinear) equations for the Lagrange multiplier with numerical procedures such as the
Newton-Raphson method. However this requires evaluating the inverse of a matrix in
the middle of a production loop, which is to be avoided if possible.

An elegant procedure for avoiding this headache was proposed by Ryckaert and
colleagues (Ryckaert, 1985). The idea is to linearize the constraint equations and solve
them by iteration. The algorithm starts with unconstrained coordinates defined by:

r̃i(t + h) = 2�ri(t)− �ri(t − h)+ h2 �ai(t). (18.23)

One proceeds by setting rold
i = r̃i and then iterates:

�r new
i = �rold

i − h2λk∇iσk({r(t)}) (18.24)

where:

h2λk = σk({r(t)})
∑

i
1

mi
∇iσk({rold}) · ∇iσk({r(t)})

. (18.25)

The latter equation is obtained by expanding σk(rnew
i ) to first order in h2 and solving for

λk. Once the iteration has converged to the desired tolerance the new particle coordinates
are simply �r new

i .
We illustrate the general procedure for the simple case of a fixed diatomic molecule

bond length. The constraint is given by Eq. 18.22 and the Ryckaert iteration loop is
given by:
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�r new
A = �r old

A − 2
h2

mA
λ(�rA − �rB)

�rnew
B = �rold

B + 2
h2

mB
λ(�rA − �rB) (18.26)

with:

h2λ =
(�rold

A − �rold
B

)2 − d2

4
μAB

(�rold
A − �rold

B ) · (�rA − �rB)
. (18.27)

Notice that the gradient ∇i selects only those particles that are involved in the kth
constraint; thus the sum over constraints simplifies dramatically and the totality of
constraints can be resolved sequentially.

Implementation code is:

// impose Lagrange constraints via Ryckaert iteration
for (int m=0;m<Nmol;m++) {

ThreeVector Dr;
Dr.setV(r[IM(m,0)]-r[IM(m,1)]);
ThreeVector r0 = rnew[IM(m,0)];
ThreeVector r1 = rnew[IM(m,1)];
ThreeVector Drold=r0-r1; // starting value for Ryckaert

iteration
double lambda = 1000.0;
int it=0;
while (abs(lambda) > tol) {
lambda = (Drold.magSq() - d*d)*mu/(dt*dt*4.0*Drold*Dr);
r0 = r0 - 2.0*dt*dt*lambda/mass*Dr;
r1 = r1 + 2.0*dt*dt*lambda/mass*Dr;
Drold = r0-r1;
it++;
if (it > 100) {
cout << " i t e r a t i o n t r o u b l e " << lambda << " " << m

<< " " << t << endl;
abort();

}
}
rnew[IM(m,0)] = r0; // rA(m)
rnew[IM(m,1)] = r1; // rB(m)

We see that some bookkeeping effort is required to keep track of (i) the ith particle, (ii)
the mth molecule, and (iii) the ath atom of a molecule. The function IM maps the indices
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(m, a) → i. Finally, a way to bail out if convergence appears to be failing has been added
to the iteration loop.

During development it is a good idea to track the distance between atoms A and B
to ensure that convergence is being achieved and that no bugs have crept into the code.
We have found that the method converges very quickly (only a few iterations are needed
in most cases). However, there is no guarantee that the iteration will converge. A crucial
point is that the starting coordinates, r̃i , are close to the final constrained coordinates.
Since the coordinates obey the constraints at earlier times, this is assured if the time step
is sufficiently small (in fact, the panacea for all molecular dynamics difficulties appears
to be “reduce your step size”).

A collection of variants of the Ryckaert algorithm has developed over the years. These
have names like RATTLE, WIGGLE, and MSHAKE and address other time evolution
schemes (such as velocity Verlet), more complicated constraints, or improved iteration
procedures. See Leach (2001) for more details.

While it is easy to feel satisfied with this resolution to the problem of constrained
dynamics, difficulties lurk at the boundaries. For example, imposing constraints in some
systems leads to inconsistencies or singular matrices and further steps must be taken
when implementing numerical procedures. See Chapter 3 of Allen and Tildesley (1987)
for more details.

The reader should also bear in mind that a constrained system often does not yield
the same thermodynamic quantities as the analogous system with constraints replaced by
stiff springs. This is referred to as the metric tensor problem; it arises because changing
to generalized coordinates to resolve constraints can lead to coordinate-dependent
momentum tensors:

∑

i

1
mi

ṙi ṙi →
∑

αβ

q̇αGαβ(q) q̇β =
∑

αβ

pα(G−1)αβ(q)pβ .

This tensor is different (in coordinate-dependence and in size) depending on whether
constraints have been resolved or implemented as stiff springs, which gives rise to
different values of thermodynamic observables (Allen and Tildesley, 1987, Section
15.1.1). If the metric tensor is not coordinate-dependent, such as when all molecular
bonds are constrained, there is no difference. In the case of the commonly used bond-
length constraints, differences appear to be small in practice.

18.4.2 Multiple time scales

The metric tensor problem raises the original issue of integrating equations of motion
with differing time scales. We wager that the reader’s first thought upon running into
the multiple-time-scale problem was “Let’s try integrating the fast and slow degrees
of freedom with different time steps”. A possible leap frog implementation of this
idea is:
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loop in t
compute along
v = v + (nh)along
loop in i=1,n

compute ashort
v = v + hashort
r = r + hv

end loop
end loop

Here we imagine that the total force can be split into forces with fast and slow
components. For example, in the case of the N2 molecule, the Lennard-Jones interactions
comprise the slow forces while the Morse potentials comprise the fast. Note that “slow”
and “fast” have been rebranded as “long” and “short” respectively. This will be explained
shortly.

In fact a very similar algorithm has been suggested by Tuckerman et al. (1992):

compute ashort, along
loop in t

v = v + 1
2 (nh)along

loop in i=1,n
v = v + 1

2 hashort
r = r + hv
compute ashort

v = v + 1
2 hashort

end loop
compute along

v = v + 1
2 (nh)along

end loop

Recall; however, that these statements can be rearranged to reproduce completely the
standard or leap frog Verlet algorithms. Thus our naive guess corresponds to the
algorithm of Tuckerman.

Some care must be taken when implementing this algorithm. Consider first an N2
molecule with nitrogen atoms that are bound by a strong and short range Morse potential.
This molecule can interact with other molecules via weak Lennard-Jones potentials that
are assumed to act only between non-bonded atoms. One might be tempted to associate
ffast with the Morse potential; however, rapid motion in the intramolecular coordinate
will cause rapid fluctuations in the Lennard-Jones potential that cannot be ignored in
the inner loop. This is the reason that the forces have been split into long range and
short range components. The inner loop integrates over the short range Morse potential
and the short range component of all Lennard-Jones potentials. Because of this, there
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is no savings in computational effort, except by leveraging the short range nature of the
“inner” force with an interaction cutoff. For perspective see (Schlick, 1999).

18.4.3 Solvents

Medical and pharmaceutical researchers are rarely interested in the properties of large
molecules in vacuo because the environment can play an important role in determining
the molecular conformation. This refers to the particular spatial (spin, charge, . . . )
arrangement that atoms take in a given molecule. The conformation of proteins is central
to their biological function and is a function of how they fold as they are synthesized.
The subject of protein folding is an ongoing and challenging subtopic in the field of
molecular dynamics.

Of course, the “environment” mentioned above is often water (since humans are, to a
good approximation, bags of salty water that produce waste heat). The most direct way
to account for water as a solvent is to include a number (typically several hundred) of
water molecules in the simulation. The exact meaning of “water molecule” can change
depending on the simulation requirements. At the simplest level H2O is modelled as
a hard sphere. More complicated models assume three atoms with fixed bond angles,
or four or five “objects” to account for nuclear and some electronic properties of the
molecule.

An alternative to the direct approach is to incorporate solvent features analytically. For
example, the permittivity of space can be increased to account for electrostatic screening
induced by the H2O charge distribution. More elaborate schemes employ forces that
reproduce the average behavior of a water molecule. We have already seen one such
model in our discussion of Langevin dynamics. In fact, the model was built to address
Brownian motion, which describes a large molecule in a solvent. In applications to the
problem at hand the relaxation time τ can be set according to Stoke’s law for a spherical
particle of mass m and radius a moving through a fluid with viscosity η: τ = m/(6πaη).

18.5 Gravitational systems

The observable universe is a gravitational system with an estimated 1023 stars arranged
in superclusters of galaxy clusters of galaxies. Larger scale structures are suspected, while
smaller scale ones such as solar systems are important to ephemeral carbon-based life
forms. The total number of galaxies depends on the minimum size one takes in their
definition, with estimates ranging from 1011 to 1012 (Conselice, 2016). A particularly
famous spiral galaxy and a nearby dwarf elliptical galaxy are shown in Figure 18.7.

This section is concerned with simulating point particles that interact via Newton’s
gravitational force. If general relativity can be ignored then this is a classical problem
and the methods of the previous sections apply (with some drastic changes of scale).
Remarkably, this remains true for cosmological simulations, where homogeneity and
isotropy of large scale structure implies that classical methods can be used in the
appropriate coordinate system.
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Figure 18.7 Messier 51 and NGC 5195 as imaged by the Hubble Space Telescope. Credit:
HST/STScI/AURA/NASA/ESA.

When dealing with sub-cosmological scale problems the equations of motion will be
taken to be:

mi �̈ri = −G
∑

j

mimj

(r2
ij + ε2)3/2

�rij . (18.28)

Typically the index i refers to a star, an aggregate of stars, or a galaxy. Notice that the
equations of motion represent a drastic simplification of the dynamics; interstellar gas,
radiative energy transfer due to electromagnetic processes, stellar structure and evolution,
and a host of other processes are neglected. The parameter ε is a rough accommodation
of some of this reality. Namely, if one is modeling galaxy clusters then binary interactions
between galaxies should be softened at short distances (Hockney and Eastwood, 1988;
Binney & Tremaine, 1987). In this case ε is roughly the radius of a galaxy. See Ex. 20
for more on this.

Units are removed by introducing a distance scale r0 and a mass scale m0. In this case
Eq. 18.28 becomes:

�̈ri = −
∑

j

1

(r2
ij + ε2)3/2

�rij
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where now all quantities are dimensionless and a time scale:

t0 =
√

r3
0

Gm0
(18.29)

has been introduced. Notice that equal masses have been assumed, the conditions under
which this is true will be explained shortly. If m0 is the total mass of a system of linear
size r0 then t0 is the virial time needed for a system to evolve to a state that obeys
the virial relationship. Notice that this is consistent with our earlier estimate (page 601)
ttherm ∼ L/〈v〉 if one takes L = r0 and 〈v〉 ∼ √〈U 〉/m0 ∼ √

Gm0/r0.
The Milky Way contains about 1011 stars and another 1010 m� in gas. Most of

the stars move in nearly circular orbits in a disk of radius 10 kpc (1 kpc is 3 · 1019

m). The average speed for a star is 200 km/s so that the orbital time is around
300 million years. Thus the Milky Way has had plenty of time to equilibrate during
its evolution.

The rate at which our galaxy’s stars interact is approximately given by the mean free
path divided by the random component of the average star velocity, which is 40 km/s (the
free streaming velocity is not relevant to scattering). The mean free path is λ ∼ 1/(nσ);
with a mean density of n ∼ 0.3/pc3 and a cross section of 4πr2� we obtain a mean collision
time of 1019 years. The conclusion is that stars do not collide in the Milky Way. Such
systems are called collisionless. The motion of stars in the Milky Way (and in a typical
galaxy) is set by the mean local gravitational field, and is not influenced by the local mass
distribution. Alternatively, open clusters typically have hundreds of stars and one must
account for collisions. Globular clusters have 104 to 106 stars and hence are intermediate
in their collisionality.

Optimal numerical methods depend on the collisionality of the system in question.
The smooth response of collisionless systems and the great number of bodies present
implies that methods based on the gravitational potential are preferred to those based on
force summation. These will be discussed briefly below and in more detail in Chapter 19.
Alternatively, highly collisional systems require the machinery of N-body simulations to
account for the frequent interactions present.

18.5.1 N-Body simulations of galactic structure

Although we have stated that potential methods are well-suited for collisionless systems
like galaxies, direct simulations of galaxies were historically important in the development
of the cosmological concordance model. In particular, spiral galaxies are common
and stable at cosmic time scales4. For many decades it was thought that the spiral arms
were magnetic in origin and not due to gravitational dynamics. Further confusion existed

4 They comprise about 80% of all galaxies outside of the dense regions at the core of clusters (Binney &
Tremaine, 1987).



Many body dynamics 619

because, counter to evidence, spiral arms should “wind up” as the galaxy spins. It is now
believed that spiral arms are density waves, thereby resolving both issues.

A third issue concerned the stability of spiral galaxies. In particular, early numerical
investigations indicated that disk-like distributions of stars are unstable to the formation
of bars. This was most famously investigated by Ostriker and Peebles (1973), who
simulated several hundred “stars”, and noted that the bar instability forms when the
ratio of rotational kinetic energy to potential is larger than 0.14. More importantly, they
observed that adding a spherical “halo” to the initial mass distribution stabilized the disk.
These days the halo is regarded as being comprised of cold dark matter in a sphere
that is substantially larger than the visible disk.

We seek to reproduce the Ostriker-Peebles results with the Verlet formalism. Code
development is simplified with respect to molecular physics because boundaries need not
be considered. On the demerit side, the attractive nature of the gravitational interaction
implies that large accelerations can be experienced for masses in close contact. One way
to deal with this problem is to introduce variable temporal step sizes associated with each
particle. Of course the cutoff introduced in Eq. 18.28 helps as well. We remark that if the
simulation particles were stars the cutoff would not be relevant, since different dynamics
affects close stellar encounters. However, in practice a simulation particle represents
aggregates of millions or billions of stars, so the cutoff remains useful and valid. Because
of this it is also sensible to consider all particles to be of the same mass.

Before launching into the simulation it is prudent to confirm that two bodies interact
sensibly. This can be achieved by starting two particles at rest and following their
subsequent motion. If the step size is too large the particles will approach each other,
artificial energy will be injected into the system, and the particles will recoil to infinity
(rather than execute a closed orbit). Further details can be found in Ex. 19.

Our simulation is made with 1000 bodies in units G = 1 and mi = 1. Following
Ostriker and Peebles, we set ε = 0.05, assume no halo, and choose a step size h = 0.001.
The initial configuration was generated by placing particles randomly in a disk of radius 1
and width 0.1 with a mass density proportional to 1/r. Ostriker and Peebles implemented
a rather elaborate initial velocity distribution; we simply set the initial velocity for each
particle to be 20φ̂ where the unit vector indicates purely rotational motion. This gives an
initial ratio of rotational kinetic energy to potential energy of 0.2, above the critical value
of 0.14. Figure 18.8 shows the initial mass configuration on the left and the configuration
at time 0.256. It is apparent that a bar instability has developed.

It is useful (and pleasing) to visualize the temporal evolution of simulated gravitational
systems. Developing custom visualization programs from a graphics toolkit, such as we
discussed in Chapter 10, particularly Section 10.5 and Exercise 5, gives the most flexibil-
ity. Alternately, the VMD (Visual Molecular Dynamics) package, which is free software
for animating and analyzing large biomolecular systems developed at the University of
Illinois, can be installed. While designed primarily for sophisticated manipulation of
complex molecules, the code also functions well for displaying dynamical many-body
systems such as discussed in this chapter. A plugin can be used to create movies in a
variety of formats.
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Figure 18.8 Evolution of a disk to a bar morphology. Top view; 1000 particles.

As stated before, the addition of a halo increases the stability of a disk galaxy. This is,
however, rather indirect evidence for dark matter. More convincing evidence comes from
measurements of rotation curves, namely the average orbital speed of stars as a function
of distance from the disk center. In collionless sytems rotation curves are a function of
the mass density (see Ex. 18), and therefore provide a readily accessible measure of
the distribution of visible matter in a galaxy. A long history of astronomical observations,
most famously associated with Fritz Zwicky and Vera Rubin, have demonstrated that the
rotation curve for spiral galaxies tends to be flat, even beyond the bulk of the galaxies.
This implies the presence of gravitating matter with a mass density, ρ ∼ 1/r2, out to very
large distances from the disk center. We stress, however, that the dynamical imperative
for such a mass distribution is not established.

Finally, the reader will have noticed that we have not produced any spiral galaxies.
This is a rather difficult problem that relies on the coupling of gravitational dynamics at
several length scales. For example, the presence of supermassive black holes is thought
to play a role, as are galaxy-galaxy collisions. In fact, compared to other fields covered in
this book, numerical gravity is relatively nascent, with many unanswered questions for
enquiring numericists.

18.5.2 The Barnes-Hut algorithm

There are a lot of stars out there so it would be nice to avoid employing the O(N2) direct
summation method for evaluating forces. If one is stuck with this method, parallelization
can be easily achieved because terms in the force sum (the most expensive part of the
computation) are independent. Thus, as mentioned above, this code block is an ideal
candidate for parallelization with the openMP directive #pragma omp parallel
for or other techniques, such as multithreading.
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A variety of other methods that are O(N log N) are available if one is willing to accept
approximations. Unfortunately, the simplest approximation of employing a force cutoff
is unacceptably inaccurate for long range forces such as gravity.

It may have occurred to the reader that computing the force due to a distant clump
of matter on a given particle by summing over all the individual force pairs is rather
wasteful. It would certainly be more efficient to consider the clump as an aggregate
particle, possibly with multipole moments. This idea forms the basis of the Barnes-Hut
algorithm (Barnes & Hut, 1986), whose novel feature is the aggregation of particles in
a recursive tree structure. Recursion is central to the algorithm, so the reader may wish
to consult a reference such as Weiss (2014) before pressing on.

The Barnes-Hut algorithm uses a tree structure containing nodes that specify the total
mass, center of mass, and spatial size of a group of particles. The nodes also contain
pointers to subgroups within the group. This information is contained in a struct as
follows:

struct BHnode { // two dimensions
double mass; // total mass in the cell
double dx; // linear size of the cell
TwoVector r; // center of mass coordinate
BHnode *node0; // pointers to subcells in order
BHnode *node1; // 3 2
BHnode *node2; // 0 1
BHnode *node3;

};

In two dimensions each node is associated with a (square) region of the space.
The four subnodes are associated with the four quadrants of the parent square. This
procedure is repeated recursively until each square contains zero or one particles. In this
way a given node will contain the center of mass and total mass of all of the subnodes
within it.

The procedure is illustrated with an especially simple case of five particles in two
dimensions in Figure 18.9. If each particle has mass 1, the root node will have mass
5; its four subnodes will have masses of 1, 1, 1, and 2 respectively. The fourth subcell
only has one subcell with particles, and that has two subcells with one particle each.
Thus the entire tree has eight nodes arranged as shown in Figure 18.10. Center of mass
information has been suppressed in this figure. The left number refers to the total mass
in a cell, while the right is the linear size of the cell (with the entire system set to be
of size 1).

Some care must be exercised when designing an algorithm to create Barnes-Hut trees.
For example, if one simply scans all particles and recursively places them into a tree
the resulting algorithm is O(N2). Rather, particles should be added sequentially as is
traditional with binary search trees. Thus one defines a confining area and adds the first
particle, thereby filling in the coordinate and mass fields of the root node. If subsequent
particles fall within an occupied cell, that cell is subdivided and the original and additional
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Figure 18.9 A Barnes-Hut recursive decomposition of a simple mass distribution.

5 | 1

1 | 1/2 1 | 1/2 1 | 1/2 2 | 1/2

2 | 1/4

1 | 1/8 1 | 1/8

Figure 18.10 The Barnes-Hut tree corresponding to Figure 18.9.

particles must then be assigned to the appropriate subcells. If both land in the same
subcell the procedure must be repeated. Notice that this procedure creates empty nodes.
A useful feature of the BH tree is that all leaves must represent a single particle, which
we take to be of mass 1.

A generic implementation of the algorithm relies on recursion and looks some-
thing like

BHinsert(r,n)
// insert particle ri at node n
if n is empty

add r to n
else if n has multiple particles

determine the subcell ,n’, in which r belongs
BHinsert(r,n’)

else (n has exactly one particle)
create subnodes
move the original particle to its quadrant
determine the subcell , n’, in which r belongs
BHinsert(r,n’)

end
end
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It is likely that this is a little obscure so we provide an explicit implementation in C++.
First, a class representing two-vectors is useful. We call this TwoVector; one possible
implementation is simply

typedef Eigen::Vector2d TwoVector

or the user can roll his own. C++ code to implement the pseudocode is

void BHinsert (BHnode * rt, TwoVector r, TwoVector Rnode,
double dx) {
/*

[two dimensions]
rt = pointer to relevant BHnode
r = particle position
Rnode defines the cell via its center of mass
dx = cell radius ie R-dx < x < R+dx

*/
if (rt->mass == 0.0) { // insert at current cell

rt->mass = 1.0;
rt->r = r;
rt->dx = dx;

} else if (rt->mass > 1.0) { // more than one particle,
so an internal node

dx /= 2.0;
if (in(r,Rnode+dx*x0,dx)) {

BHinsert(rt->node0,r,Rnode+dx*x0,dx);
} else if (in(r,Rnode+dx*x1,dx)) {

BHinsert(rt->node1,r,Rnode+dx*x1,dx);
} else if (in(r,Rnode+dx*x2,dx)) {

BHinsert(rt->node2,r,Rnode+dx*x2,dx);
} else {

BHinsert(rt->node3,r,Rnode+dx*x3,dx);
}
rt->r = (rt->mass*rt->r + r)/(rt->mass + 1.0);

// update CM and mass
rt->mass = rt->mass + 1.0;

} else { // so m=1 therefore a leaf
dx /= 2.0;
rt->node0 = new BHnode; // split
rt->node1 = new BHnode;
rt->node2 = new BHnode;
rt->node3 = new BHnode;
if (in(rt->r,Rnode+dx*x0,dx)) { // move original

mass
rt->node0->mass = 1.0;
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rt->node0->dx = dx;
rt->node0->r = rt->r;

} else if (in(rt->r,Rnode+dx*x1,dx)) {
rt->node1->mass = 1.0;
rt->node1->dx = dx;
rt->node1->r = rt->r;

} else if (in(rt->r,Rnode+dx*x2,dx)) {
rt->node2->mass = 1.0;
rt->node2->dx = dx;
rt->node2->r = rt->r;

} else {
rt->node3->mass = 1.0;
rt->node3->dx = dx;
rt->node3->r = rt->r;

}
if (in(r,Rnode+dx*x0,dx)) {

BHinsert(rt->node0,r,Rnode+dx*x0,dx);
} else if (in(r,Rnode+dx*x1,dx)) {

BHinsert(rt->node1,r,Rnode+dx*x1,dx);
} else if (in(r,Rnode+dx*x2,dx)) {

BHinsert(rt->node2,r,Rnode+dx*x2,dx);
} else {

BHinsert(rt->node3,r,Rnode+dx*x3,dx);
}
rt->r = (rt->mass*rt->r + r)/(rt->mass + 1.0);

// update CM and mass
rt->mass = rt->mass + 1.0;

}
} // end of BHinsert

Notice that the center of mass of the cell associated with a node is tracked so that
locating subquadrants can be achieved. The TwoVectors x0, x1, x2, x3 point to the
relevant subquadrants. Thus, for example, x0 = (−1,−1). The variable dx keeps track
of the size of the cell for use in locating subquadrants and in force evaluation. As
promised, whenever cells are shared four subcells are created. In principle only filled
subcell nodes could be created, but this complicates the subsequent insertion of the new
particle, so we accept the mild inefficiency. Finally, it is useful to set dx = 0 in leaf
nodes because that eliminates an awkward conditional in the force evaluation, to which
we turn now.

The force on a particle at position R is evaluated by traversing the Barnes-Hut tree
from the root. If the size of the mass distribution at a given point in the tree divided
by |R − rCM| is less than an apparent angle θ then the force is evaluated using that
distribution. If this is not the case, the mass distribution is close enough to R that it
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should be decomposed at the next level. Recursion makes for a compact implementation
of this method:

TwoVector BHforce(BHnode * rt, TwoVector R) {
TwoVector f;
if ((rt != NULL) && (rt->mass != 0.0)) {
TwoVector r0;
r0 = R - rt->r;
double rsq = r0.magSq();
if (rsq == 0.0) return r0;
if ((rt->mass == 1.0) || (rt->dx/sqrt(rsq) < theta)) {

f = (-1.0)* rt->mass*r0/(sqrt(rsq)*rsq);
} else { // go deeper

f = f + BHforce(rt->node0,R);
f = f + BHforce(rt->node1,R);
f = f + BHforce(rt->node2,R);
f = f + BHforce(rt->node3,R);

}
}
return f;

}

The original implementation of force evaluation by Barnes and Hut required 100 lines
of code—thus this code snippet illustrates the efficiency of modern object oriented
languages. We wish to stress, however, that line counts are a particularly meaningless
metric for code quality. Barnes and Hut applied the algorithm to a simulation of two
galaxies with 4096 particles. They noted that a large opening angle of θ = 1 was sufficient
to gain 1% accuracy in the energy. The code itself ran in about one tenth the time of the
analogous direct force evaluation code.

We test the algorithm by making one force evaluation for all N unit mass particles in a
disk or radius 1. The direct summation method scales as N2, as expected. This is shown
as a line in Figure 18.11. When the Barnes-Hut algorithm is run with a small opening
angle all masses are resolved and the algorithm devolves to the direct summation method
(with additional overhead). Results for θ = 0.001 are shown as open squares in the figure
and confirm these expectations. As the opening angle is increased the algorithm becomes
dramatically faster since fewer force evaluations are required (tree creation is surprisingly
fast, even for trees with millions of nodes). Fits to the curves reveal that they follow the
expected N log N behavior very closely for N � 5000.

18.5.3 Particle-mesh methods

Another class of methods for speeding up N-body simulations employs the field
equations to evaluate forces on particles. We do not have space to describe the
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Figure 18.11 Time for complete force evaluation. Solid line: direct summation. Points: Barnes-Hut
results for θ = 0.001, θ = 0.01, θ = 0.1, θ = 1 (top to bottom).

techniques in detail; rather we will sketch the ideas and point the interested reader to the
literature.

Field-based methods are useful because, if the field is known, the O(N) operation
of computing the force on a particle at position r is replaced by the O(1) operation of
evaluating:

�f (�r) = −∇φ(�r). (18.30)

The problem, of course, is that one needs the potential. This can be obtained by the
formula:

φ(�r) = −G
∑

i

mi

|�r − �ri| ,

but this reduces the formalism to the O(N2) direct particle method and we have achieved
nothing.

But now a way forward becomes apparent: if one were to obtain the gravitational
potential via Poisson’s equation

∇2φ(x) = 4πG ρ(x).

by solving on a grid that is relatively small (of linear size Ng), then Eq. 18.30 can
be used with an ensuing savings in computational effort. In fact efficient methods of
O(Ng log Ng) exist for solving Poisson’s equation, so the whole thing is O(NNg log Ng).
This approach is called the particle mesh method. The cost is a, possibly drastic,
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misrepresentation of short range forces. However, collisionless systems tend to have
“smooth” matter distributions which imply smooth potentials and hence reasonable
accuracy of the method.

The source for Poisson’s equation is normally written

ρ(�r) =
∑

i

miδ(�r − �ri);

however, this tends to lead to large fluctuations in the force, so in practice one “smears”
particles over several (say eight) nearby grid cells.

If collisions are important in a given system it is natural to extend the method by
employing direct summation for nearby particles. This technique is called the particle-
particle particle-mesh method (Hockney and Eastwood, 1988).

18.6 Exercises

Molecular Dynamics

1. [T] Potential Cutoff.
Many sources say that cutting off the potential “creates problems, especially in
molecular dynamics simulations where energy conservation is required”. What is
really going on?

2. [T] Boundary Conditions.
Consider one liter of water in a cubic container.

a) How many water molecules are present (assume STP)?

b) If interactions with the wall extend to 10 molecular diameters (2.8Å), how many
water molecules “feel the boundary conditions”?

c) Would it be reasonable to simulate water in a box with, say, 1000 molecules?

3. [T] Initial Conditions.
Discuss whether any initial conditions can be used in a molecular dynamics
simulation. Can you come up with any that do not lead to ergodic motion?

4. [T] System in a Box.
Consider placing a system of N particles in a confining box. One possibility for
implementing this would be to model the box walls as a collection of static particles
interacting with the gas via some short ranged force. However, this is clearly
impractical since an N-body problem would be transformed into an N + M-body
problem where M � N . A cleaner approach would be to model the box walls as
static surfaces interacting with the gas particles via a hard core (i.e., particles bounce
when they hit the wall).
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a) Come up with a computational strategy to implement hard walls.

b) Are there rare situations where your strategy runs into trouble?

5. [T] N2 Morse Potential.
Parameters for the Morse potential can be fit to the vibrational spectrum for a given
molecular configuration. Parameters for the ground state of N2 (X 1�+

g ) are De =
9.904 eV, ae = 2.85/Å, and re = 1.080 Å (Konowalow, 1961).

a) Convert these to natural units for argon.

b) Determine the frequency of oscillation in the harmonic approximation.

c) What time step (in argon units) would be appropriate for this problem?

6. [T] Friction in the Verlet Formalism.
Derive Eq. 18.12 by expanding the equation of motion to obtain expressions for
�r(h) and �r(−h) in terms of �r(0) and the right hand side. Add the results and make a
sensible substitution for �̇r(0) to obtain Eq. 18.17.

7. Energy Fluctuations.
Code up argon in three dimensions with one of the Verlet methods. Plot the
fluctuation in total energy as a function of the step size. What is the general behavior?

8. Particle Diffusion.
Compute the diffusion of argon in three dimensions as in Section 18.3.3. Is it
possible to discern the location of the phase transitions with this observable? Try
to make a connection to Lindemann’s law, which states that melting occurs when
the root mean square deviation from equilibrium exceeds a critical fraction of the
crystal interatomic distance (Hansen and McDonald, 2006, pg 173). What is this
fraction?

9. Reversibility.
Code up argon in three dimensions and confirm that the Verlet method is time
reversible. You can do this by running for N steps, reversing the velocities of all
particles, and running for an additional N steps. Try plotting the trajectories of
individual particles, or determine 〈�r(0)− �r(2N)〉, or similar.

10. Octahedral Boundary Conditions.
Implement truncated octahedron boundary conditions for argon in three
dimensions. These are more appropriate than cubic boundary conditions for a
problem with spherical symmetry such as argon. Use the following algorithm
(Leach, 2001):

ri = ri − 2L ri
L "

if (
∑

i |ri| ≥ 3/2L) then
ri = ri − sgn(L, ri)

end if
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where ri is the ith component of the position vector,  x" is the integer part of x,
sgn(x, y) returns |x| if y > 0 and −|x| if y < 0, and the octahedron is contained in
a cube of side 2L. Other geometries are discussed in Leach (2001).

11. Ordering in Two-Dimensional Argon.
Peierls (1935) has argued that conventional long range order cannot exist in two-
dimensions because phonons cause the mean square deviation of a particle from its
equilibrium position to diverge logarithmically in the system size. Explore this claim
numerically. The subject does not end here: Kosterlitz and Thouless (1973) have
famously argued that long range topological order can exist in two-dimensional
systems. The numerical work can get fiddly; see Toxvaerd (1978) for help.

12. Particle Correlation Function.
Explore the particle correlation function for argon in two dimensions. Compare your
results to the analytic expression for a uniform particle distribution. This will be a
good approximation for large radii and will show how g drops off for r > L/2. Also
plot the expected location of peaks assuming a triangular crystal structure.

13. Velocity Autocorrelation.
Measure the velocity autocorrelation for a three dimensional argon gas:

Av(t) = 〈�v(0) · �v(t)〉
〈v2〉 .

Try the densities ρ = 0.86 and ρ = 1.4. Compare your result to the Langevin
velocity autocorrelation:

〈v(0)v(t)〉 = 〈v(0)2〉 exp(−t/τ).

Comment on what you see. What is going on for ρ = 1.4? See if you can determine
the large time behavior of the autocorrelation. Does it follow the Langevin result?

14. [P] DNA Under Duress.
The PBD model of DNA is written in terms of the deviation of the ith base pair
length from equilibrium, yi/

√
2 as:

miÿi = −U ′
i (yi)− W ′(yi+1, yi)− W ′(yi , , yi−1).

The Morse potential:

Ui(y) = Di[exp(−aiy)− 1]2

describes the hydrogen bonding between base pairs. Inter-pair interactions are
described by the stacking potential:

W (x, y) = 1
2

k (x − y)2 {1 + ρ exp[−β(x + y)]} .
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Consider coupling DNA to an external electric field and placing it in a dissipative
medium. Model these effects with the additional term:

−miγ ẏi + A cos�t.

Use the following parameters; m = 300 amu, DAT = 0.05 eV, a = 4.2 1/Å, k =
0.025 eV/Å2, β = 0.35 1/Å, and ρ = 2.0. A relaxation time typical for water is
γ = 1.0/ps.

a) Assume 64 AT base pairs and a driving force of A = 144 pN and examine the
behavior of the system in the neighborhood of � = 1 THz. Inject energy into the
system by perturbing it at t = 0. For sufficiently large perturbations you should
find long-lived ‘breather’ resonance modes at frequencies of 1.0 and 1.5 THz
(amongst others) (Swanson, 2011).

b) Consider a more realistic model with random AT/GC base pairs. Show that the
breather modes disappear. Take DAT = 0.05 eV and DGC = 0.075 eV.

c) Couple the system to a Langevin heat bath and explore the DNA melting
transition.

15. [P] Two-dimensional Electron Film.
Consider a two-dimensional film of electrons interacting via the Coulomb potential
in the presence of a uniform positive background that maintains electric neutrality
of the system. Compute the internal energy at a number density of 1014/m2 in the
temperature range from 1 to 10 K. You should find a phase transition. Refine your
result by computing the specific heat CV , which should exhibit a sharp “lambda
transition”. Determine the temperature of the phase transition. Choose a time step
of order 10−12 s. It might also be useful to truncate the Coulomb interaction at
short distances (i.e., set V (r) = V (rc) for r < rc). Try rc = 6 · 10−8m. A
handy way to explore temperature-dependence is to equilibrate the system at low
temperature, gather measurements, increment the temperature using rescaling, and
repeat.

16. [P] X-ray Scattering from Argon.
When light scatters from liquids the radiation scattered by each molecule tends to
cancel. Thus it is the fluctuations of the particles that drive the scattering intensity.
Fluctuations, on the other hand, are related to the pair correlation function in a
beautiful way (see Pathria, 1972, Section 13.2). We explore this numerically.

a) Evaluate the pair correlation function for argon at 94 K and a density of 1.474
gm/cm3.

b) Evaluate the scattering intensity obtained from the Fourier transform:

I(q) = N
V

∫ ∞

0

sin qr
qr

[g(r)− 1] 4πr2dr.
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c) Compare the peaks in intensity to those measured in (Eisenstein & Gingrich,
1942): qσ = 6.8, 12.3, 18.4, 24.4.

d) Measure the mean square particle displacement and determine the diffusion
coefficient using 〈r2〉 = 6Dt for large t. Compare your result to the experimental
value of 2.43 · 10−5 cm2/s.

Gravitational Dynamics

17. [T] Galaxies, Galaxy Clusters, and Scale.
Nondimensionalizing gravitational interactions implies that N galaxies in a galaxy
cluster should experience the same dynamics as N stars in a galaxy. But there are
no spiral galaxy cluster. Speculate on reasons for this.

18. [T] Mass and Velocity Profiles.
Consider matter with a mass density ρ(r) and a velocity profile v(r). Derive the
following relationship

ρ(r) = v2(r)
4πGr2

(
1 + 2

r
v

dv
dr

)
.

What mass profile gives rise to a linear rotation curve?

19. Step Size.
Check the minimal step size required for the sensible interaction of two particles of
unit mass interacting gravitationally. Set G = 1 and use the Verlet algorithm. Start
the particles at rest and follow their trajectories. Plot the total energy and comment
on its conservation. You should find hmin ∼ εν . Determine the power ν (this will not
be a precision measurement).

20. Galactic Force.
Compute the force between two spherically symmetric mass distributions and
compare your result to Newton’s law and its softened version. You should get results
like those in Figure 18.12.

a) Determine ε and the scales r0 for both fits.

b) Evidently our fit models are better representations of the force between galaxies.
Why would they not be used in practice?

21. [P] Tumbling of Hyperion.
The only satellite in the solar system that is not synchronized with its host planet is
Hyperion, a satellite of Saturn. This is likely because Hyperion has a highly elliptical
orbit and is shaped like a potato, which combine to make its motion chaotic.

We model this behavior by assuming that Hyperion consists of two particles
connected by a rigid rod. Follow the angle the mass dipole makes as a function
of time by either



632 Exercises
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Figure 18.12 Force between spherical galaxies of radius R. Open squares: 1/r2 mass density; solid
squares: uniform mass density; dotted line: Newton’s law; solid line: softened Newton law; short dash line:
fit (1 − exp(−r2/r2

0))/r2; dashed line: fit (1 − exp(−r3/r3
0))/r2.

(i) implementing the constrained dynamics of Section 18.4.1

(ii) solving for the torque and angular velocity directly.

In the latter case, if one calls the coordinate of the center of mass of Hyperion �r and
the relative coordinate between Hyperion’s masses �d, then the expression for the
rate of change of the angular velocity is:

d �ω
dt

= −3GMSat

r3 (r̂ × d̂) (r̂ · d̂)+ O(d2).

You should derive this and use it to simplify the numerical code.
Use the orbital radius of Hyperion to set the length scale and its orbital period to

set the time scale. In these units h = 0.0001 should suffice for accurate calculations.
Make plots of θ (d̂ ≡ (cos(θ), sin(θ), 0)) out to 10 Hyperion-years for

a) a circular orbit (what initial speed must be taken for this?)

b) and for an elliptical orbit (take v0 = 5).

c) The elliptical orbit will display chaotic behavior. Use the methods of Sec-
tion 13.4.1 to estimate the Lyapunov exponent.

22. Disk Galaxies.
Write Verlet code to simulate a disk galaxy. Set the disk radius to unity, the disk height
to 0.1, the initial velocity distribution to v0φ̂, and the initial mass profile to 1/r.

Determine the following properties of the disk:
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a) t = Tmean/U ; where U is the total gravitational potential energy and Tmean is the
bulk rotational kinetic energy. Ostriker and Peebles estimated this as:

Tmean = 1
2

∑

α

nαv2
α,

where α refers to an annular ring, n is the number of particles in the ring and v
is the average angular speed in the ring;

b) the pair correlation function;

c) the rotation curve;

d) the mass density profile.

23. Realistic Stars.
Examine the effect of employing a realistic stellar mass distribution on disk galaxies.
A possible mass distribution is given by ρ(m) ∝ m−α with

α =

⎧
⎪⎨

⎪⎩

0.3, m < 0.08M�
1.3, 0.08M� < m < 0.5M�
2.3, m > 0.5M�

.

(Kroupa, 2002). Simulate a disk galaxy with the parameters of Ex. 22 with
uniform and Kroupa mass distributions. Notice that this implies simulating very
small galaxies. Does the Kroupa distribution change stability with respect to bar
formation?

24. Cuspy Halos.
Observations seem to indicate an approximately constant dark matter density in
the inner parts of galaxies, while simulations indicate a matter density that scales as
ρ ∼ 1/r. This difference has become known as the “core-cusp problem”. Simulate a
spherical matter distribution with mass density ρ ∼ 1/r2 and track the mass density
profile as the system equilibrates. Confirm that ρ ∼ r−α for small r with α ∼ 1.
Consult De Blok (2009) for more information.

25. [P] Galaxy Clustering in an Expanding Universe.
We examine structure formation in an FLRW (Friedmann-Lemaître-Robertson-
Walker) universe. Consult (Carroll, 2004, chapter 8), or better, (Weinberg, 2008)
if you need to remind yourself about the basics of cosmology. If one assumes an
isotropic and homogeneous cosmological background, the spacetime metric can
only be a function of a single time-dependent variable. This is termed the FLRW
scale factor, a(t). The scale factor is given by reducing the Einstein gravitational
field equations to the Friedmann equation:

ȧ = aH0

[

�� +�k
a2

0

a2 +�M
a3

0

a3 +�R
a4

0

a4

]1/2

.
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The Hubble constant is defined as H = ȧ/a and present values of quantities are
denoted with “0” subscripts. The constants under the square root are parame-
ters that specify the relative density of differing materials in the universe. These
are vacuum (��), matter (�M), and radiation (�R). The curvature parameter,
�k, is introduced as a convenience. A good approximation to the current uni-
verse is �� = 0.73, �M = 0.23, and �R = 0. Assume a flat universe (�k = 0) in
what follows.

The equations of motion for a point particle in co-moving coordinates are
(Davis and Peebles, 1977; Efstathiou and Eastwood, 1981):

�̈xi + 2
ȧ
a

�̇xi = −Gm
a3

∑

j �=i

�xij

(x2
ij + ε2/a2)3/2

.

where �xij = �xi − �xj . Co-moving coordinates are defined by x = r/a, which
is convenient for numerical simulation. We have taken the liberty of adding a
smoothing parameter, ε, to the force law.

Solve the equations of motion using the friction Verlet algorithm of Eq. 18.18.
Of course, you should also integrate the Friedmann equation as you go. Assume a
uniform initial distribution of galaxies with zero peculiar velocities. Evolve to scale
factors of at least a = 10 and compute the pair correlation function g(x)− 1.

a) Why is ε/a rather than ε used in the force law?

b) How does the pair correlation function evolve with a?

c) Compare your correlation function to the theoretical expectations of Davis and
Peebles (1977), who find:

g(x)− 1 =
{

x− 9+3n
5+n , small x

x−(3+n), large x
.

Experimentally, n ≈ 0.

d) Repeat your analysis for a matter dominated universe.

e) Test sensitivity of your results to ε.

Further information can be found in Hockney and Eastwood (1988), Section 11.4

Algorithms

26. [T] Verlet Methods.
Verify that the variant Verlet methods yield the same sequence of position vectors.
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27. [T] Symplectic Verlet.

a) Show that the Verlet algorithm can be written as:

�p(t + h/2) = �p(t − h/2)+ h �F(r(t))

�r(t + h) = �r(t)+ h�p(t − h/2)+ h2 �F(r(t)).

b) Find the Jacobean matrix (see Eq. 11.60 for a reminder) and hence show that
the Verlet algorithm is symplectic.

28. [T] Leap-Frog Angular Momentum.
Conservation of angular momentum can be problematic. For example, it is ruined
by periodic images.

A convenient representation for angular momentum is:

�L(t + h/2) = m
∑

i

�ri(t)× �vi(t + h/2).

Show that:

d �L
dt

≡ �L(t + h/2)− �L(t − h/2)
h

gives the desired torque,
∑

i �ri(t)× �f i(t), under Verlet leap frog evolution.

29. Barnes-Hut Tree Size.
Determine the functional relationship between the number of particles and the
number of nontrivial nodes in a Barnes-Hut tree in two dimensions.

30. [P] Binary Expression Trees.
A binary expression tree is a data structure that facilitates the analysis and
evaluation of arithmetic expressions. An example tree is given in Figure 18.13.
Notice that numerical values are stored in leaves while operators reside in internal
nodes.

Evaluating the expression tree is reasonably simple, as the following code
illustrates.

double getValue(ExpNode *node) {
if ((node->left == NULL) && (node->right == NULL)) {

return node->number;
} else { // internal node

= operator
double leftVal = getValue(node->left);
double rightVal = getValue(node->right);
switch (node->op) {
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*

– /

8 3 + 5

7 2

Figure 18.13 Binary expression tree for (8 − 3) ∗ ((7 + 2)/5).

case ‘+‘: return leftVal + rightVal;
case ‘-‘: return leftVal - rightVal;
case ‘*‘: return leftVal * rightVal;
case ‘/‘: return leftVal / rightVal;
case ‘^‘: return pow(leftVal,rightVal);

}
}

}

a) Creating an expression tree is tougher. Consult Wikipedia or cplusplus.com
to get help on the algorithm and code it up.

b) Extend the method to handle trigonometric functions.

31. [P] Boids.
This chapter has focused on collective behavior of identical (or similar) particles
that obey Newtonian dynamics. It is, however, interesting to examine systems of
particles that do not obey physical laws as models of collective behavior of living
things. In particular, we seek to study flocking in everything from bacteria to birds
to humans.

The original model concerned schooling in fish (Aoki, 1982) and postulated
three “laws of motion”: (i) individuals are similar (ii) individuals move at nearly
constant speeds and attempt to match velocities (iii) individuals interact within a
characteristic length scale.

The model was subsequently popularized by C. Reynolds, who coined the word
boids to describe the individuals. Unlike physical collisions, boid “collisions” seek
to maintain velocities; thus these systems do not equilibrate and the velocities do not
approach a Maxwell-Boltzmann distribution. Nevertheless, they display interesting
collective behavior, including phase transitions, which we explore in this exercise
and the next.

We construct a boids algorithm with three rules for “collisions”: movement
towards the center of mass, (ii) collision avoidance, and (iii) velocity matching. A
specific implementation is:
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for (int t=0;t<T;t++) {
TwoVector R;
R = RCM();
for (int b=0;b<N;b++) {
v[b] = v[b] + (R - r[b])/movefactor + avoid(b) +

match(b);
r[b] = r[b] + v[b];
getBC(b); // enforce periodic boundary

conditions
}

} // end of the time loop

with routines

TwoVector RCM () {
TwoVector R;
for (int b=0;b<N;b++) {
R = R + r[b];

}
return R/N;

}

TwoVector match(int B) {
TwoVector vavg;
for (int b=0;b<N;b++) {

if (b != B) vavg = vavg + v[b];
}
vavg = vavg/(N-1);
return (vavg-v[B])/matchfactor;

}

TwoVector avoid (int B) {
TwoVector R;
for (int b=0;b<N;b++) {
if (b != B) {

if ((r[b]-r[B]).mag() < avoiddistance)
R = R - r[b] + r[B];

}
}
return R/avoidfactor;

}
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Figure 18.14 Twenty-five two-dimensional boids on an android phone.

Useful parameters are movefactor = 50, avoiddistance = 6, avoidfactor
= 1, and matchfactor = 6. The box size can be taken to be several hundred.

Write your own version that displays N boids in real time in a periodic two-
dimensional box. Consider adding flourishes like: (i) display the boids direction (see
Figure 18.14), (ii) add a color attribute that is a function of the boid speed, (iii)
a maximum boid speed, (iv) perching (attraction to a given point), (v) obstacle
avoidance. Plot the center of mass location as a function of time. Note the random
behavior that emerges from a completely deterministic system!

32. [P] Vicsek Model.
A simple variant of the boids model, called the Vicsek model, combines the three
laws above and adds a stochastic component. The algorithm can be summarized by
(Vicsek and Zafeiris, 2012):

for all boids

�vi(t) = v0
〈 �vj(t−h)〉R
|〈 �vj(t−h)〉R| + η̂

�ri(t + h) = �ri(t)+ h �vi(t)
end

The angle brackets refer to averaging over velocities within a radius R of boid i. The
stochastic element is denoted by η̂. In two dimensions it can be chosen as a uniform
random angle in the range (−η/2, η/2), which is then added to θ = arctan(vx/vy).

Remarkably, this system is rich enough to experience phase transitions with
the parameter η acting as temperature. A useful order parameter is the average
normalized velocity:

ϕ = 1
Nv0

∣∣∣∣∣

N∑

i=1

�vi

∣∣∣∣∣

where v0 is the boid speed.
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The approach to the bulk limit is very slow. Runs with N ∼ 104 will give a good
idea of what is going on, but you really want N ∼ 105 and very long runs of order
105 steps. On my laptap a single-process run with N = 80000, at ρ = 2, for 10k
steps takes about 45 hours. Do what you can. As a final point, it is useful to define
the product of two unit vectors in your two-vector class:

TwoVector TwoVector::operator*(const TwoVector & other){
// multiply two unit vectors
return TwoVector(x*other.x - y*other.y,x*other.y

+ y*other.x);
}

a) Code up!

b) Set R = 1 and h = 1, work in a 100× 100 box, take order 105 boids, v0 = 0.1 in
these units. Fix the boid density to ρ = N/L2 = 2 and evaluate ϕ over very long
runs for η between 0 and 6. You should be able to locate a phase transition near
η = 3.

c) Extrapolate in 1/
√

L to determine ηc to two digits accuracy.

d) Determine the phase diagram in the η − ρ plane.

e) For amusement, plot the boid positions and velocity vectors (determined from,
say, �r(T) − �r(T − 40) so that you can see what is going on) for N = 4000,
L = 40, v0 = 0.01, η = 0, at time T = 50. You should get something
vortexy like Figure 18.15; this pattern will disappear after several hundred
time steps.

Figure 18.15 4000 boids shortly after initialization.
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19.1 Introduction

Most physical phenomena are described by fields, and it is partial differential equations
that specify how those fields behave. It is therefore no exaggeration to claim that the
ability to obtain numerical solutions to partial differential equations underpins much
of the technological revolution that has swept the world in the past seventy years.
Thus, for example, the ability to obtain accurate solutions to Maxwell’s equations in
complex environments has transformed the electronics industry. Similarly, the finite
element method for solving the partial differential equations of structural engineering
has revolutionized that field. The Navier-Stokes equations occupy a central place
in the science of fluid dynamics and find application in automotive and aeronautical
development, modeling weather, combustion research, heat flow, and a host of other
fields. Applications in chemistry, biology, geology, and social sciences such as economics
abound.

This chapter will discuss the main workhorses of the field, namely the finite difference
and finite element methods, in sufficient detail that the reader will be able to write code
from scratch that is capable of solving an enormous range of problems. We will also learn
how to analyze the stability of numerical solution techniques, methods for speeding up
convergence and for working in multiple dimensions, efficient ways to apply the Fourier
transform, and a powerful approach to dealing with multi-scale problems.

In the following, the generic, physics, and mathematics notations:

∂u
∂x

= ∂xu = ux

will be used interchangeably with little attempt at uniformity or even rationality.

19.2 Initial value problems

We shall be primarily concerned with solving linear partial differential equations of
the sort:

R(x, y)fxx + 2S(x, y)fxy + T(x, y)fyy = F(x, y; f , fx, fy).

The equation can be generalized to higher dimensions and made nonlinear as desired.
Our partial differential equation is often categorized according to the sign of the
determinant of:

(
R S
S T

)
,
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with positive, negative, and zero determinants giving elliptic, hyperbolic, and
parabolic equations respectively (generalization to higher dimensions is possible).

This classification refers to the way in which information is propagated. In particular,
hyperbolic and parabolic equations permit causal propagation and therefore are suitable
for describing initial condition problems. The boundary conditions relevant to initial
value problems specify the unknown function on three surfaces (i.e., f (t = t0, x),
f (t, x = xL), and f (t, x = xR)) and permit computing the solution on the fourth. In
contrast, elliptic equations do not permit evolving the solution in one coordinate and
require that all boundaries are fixed. Equations like this are referred to as boundary
value problems. Thus from the numerical point of view, it is boundary conditions
that are relevant and that determine solution strategies. In this regard, we remind the
reader that Dirichlet conditions specify the field on the boundary while Neumann
conditions specify normal gradients at the boundary.

19.2.1 Differencing

For the moment we choose to emulate the techniques of quadrature (Chapter 5)
and ordinary differential equations (Chapter 11) by differencing. Thus we discretize
spacetime with a temporal grid spacing of h and a spatial spacing �. The notation for a
function of x and t becomes:

ρ(x, t) → ρ(��, hn) → ρn
� .

With this notation, a temporal partial derivative can be written in terms of a forward
difference:

∂tρ(x, t) = ρn+1
� − ρn

�

h
+ O(h),

a backward difference:

∂tρ(x, t) = ρn
� − ρn−1

�

h
+ O(h),

or a central difference:

∂tρ(x, t) = ρn+1
� − ρn−1

�

2h
+ O(h2).

Notice that the central difference is more accurate but requires knowledge of the relevant
function at time slices that are separated by two units.
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Second derivatives can be obtained by iterating the expressions above. Thus, for
example,

∂2
t ρ(x, t) = ρn+1

� − 2ρn
� + ρn−1

�

h2 + O(h2). (19.1)

Higher order expressions can be obtained by expanding the range of indices considered
(ρn

� , ρn±1
� , ρn±2

� , etc). Whether this is worth the additional computational effort is a
strong function of the specific problem (in our experience it is rarely useful to go beyond
Eq. 19.1). Even greater flexibility in constructing finite difference approximations to
derivatives exists in multiple dimensions. Some of these are discussed in the following
sections and in the exercises.

19.2.2 Continuity equations

A fundamental class of differential equations deals with the temporal and spatial
evolution of conserved quantities. Mass, energy, momentum, and charge are typical
examples of these quantities. At an intuitive level, the rate of change of a conserved
quantity in a region must balance the rate at which the quantity is leaving the region.
If the quantity is denoted by a scalar field, ρ(�x, t), and the flux is specified by a vector
field �j(�x, t), then the continuity equation is:

∂ρ

∂t
+ ∇ · �j = 0. (19.2)

Consider first the motion of a fluid. In this case ρ is the fluid mass density and the
flux is given by �j = ρ �v, where �v is the fluid velocity field. For uniform motion in one
dimension Eq. 19.2 reads:

∂ρ

∂t
= −v

∂ρ

∂x
. (19.3)

This is called an advection equation since the solution is of the form ρ(x − vt).
The continuity equation is typically an initial value problem and we seek the temporal

evolution of the density. It is therefore convenient to choose the forward difference for
the time derivative, while central differencing can be used for the spatial derivative. Thus
Eq. 19.3 is:

ρn+1
� − ρn

� = −v
h

2�

(
ρn
�+1 − ρn

�−1
)+ O(h)+ O(�2). (19.4)

This is called the forward time centered space (FTCS) method. The usefulness of
forward differencing in time is now apparent since this is an equation for ρn+1

� in terms
of quantities known at time hn.
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Figure 19.1 Left: FTCS solution to ∂tρ = −∂xρ. Dotted line: t = 0, dashed line: t = 0.4, solid line:
t = 0.8. Notice the appearance of a spurious mode by t = 0.4. Right: Lax solution to ∂tρ = −∂xρ. The
lines are as in the left panel. Notice the rapid decrease in the solution amplitude.

The left panel of Figure 19.1 shows the time evolution of a pulse that is initially set
to be ρ(x, 0) = exp(−100(x − 1)2). We set v = 1 and algorithmic parameters were
� = 0.025 and h = 0.001. As expected, the pulse moves to the right at speed v = 1.
However, problems are apparent: the magnitude of the pulse appears to be slowly
decaying and, more alarmingly, a spurious mode is evident at t = 0.4 and is quite large
by t = 0.8. Some exploration in parameter space reveals that this anomalous behavior is
strongly dependent on parameter values. For example, using � = 0.008 resolves (to a
large extent) the spurious mode problem, but enhances the magnitude problem.

von Neumann stability analysis

It appears that we need to slow down and consider the consequences of differencing
more carefully. A central tool in this effort is von Neumann stability analysis, named
after the famed Hungarian polymath.

If the coefficients of a partial differential equation are slowly varying one can solve
the equation with a spatial Fourier transform. This also applies to the discrete equation,
which implies that solutions are of the form:

ρn
� = ξn(k) exp(−ik��) (19.5)

where k is a wave number and ξ(k) is a complex function. The form of this equation
makes it clear that modes with |ξ(k)|>1 will grow exponentially in time, leading to
instabilities. The wiggles that appear in the left panel of Figure 19.1 indicate that a high
frequency mode has become unstable in precisely this manner.

Substituting the Ansatz of Eq. 19.5 into Eq. 19.4 yields:

ξ = 1 − i
vh
�

sin(k�)
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which has a magnitude greater than unity for all wave numbers. The FTCS scheme is
therefore unconditionally unstable. Evidently, we must rethink our approach to numeri-
cally solving the advection equation.

The Lax method

The Lax method resolves this issue by replacing ρn
� on the right hand side of the time

evolution equation with:

ρn
� → 1

2
(ρn

�+1 + ρn
�−1).

This has the effect of replacing the “1” in the previous equation for ξ with cos(k�):

ξ(k) = cos(k�)− i
vh
�

sin(k�) (19.6)

which implies stability if:

h
�

≤ 1
|v| . (19.7)

This is known as the CFL condition and is generally true for all explicit differencing
schemes1. Notice that the CFL condition is a statement concerning numerical causality
wherein the speed at which information propagates on the grid must be greater than the
physical speed of advection.

The Lax method solution to the advection equation is displayed in the right panel
of Figure 19.1. It is apparent that instabilities no longer bedevil the solution. However,
the initial pulse (dotted line) suffers from severe dispersion with increasing time. Since
the advection equation admits no such effect, we appear to have broken something in
the numerical procedure. In fact, the Lax difference equation is equivalent to the FTCS
difference equation for:

∂ρ

∂t
= −v

∂ρ

∂x
+ �2

2h
∂2ρ

∂x2 ,

which contains a dispersion term that is a numerical artefact. Thus enforcing stability
with the Lax method has the unfortunate corollary of introducing dispersion.

Dispersion is closely related to the damping that is evident in the figure. Indeed, the
amplitude of Eq. 19.6 is less than unity when the CFL condition is upheld, and therefore
solutions die out. Setting v = �/h resolves the problem.

1 The distinction in differencing schemes will be explained shortly.
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19.2.3 Second order temporal methods

So far we have focussed on forward temporal differencing. Are other differencing
methods worth considering?

Backwards differencing the advection equation gives:

ρn
� − ρn−1

� = − hv
2�

(ρn
�+1 − ρn

�−1)+ O(h)+ O(�2).

In this case one must solve for all ρn{�} in terms of ρn−1
� at a stroke. For this reason the

backward difference equation is called an implicit method. Although the equation can
be solved by inverting a tridiagonal matrix, which is simple and fast, it is still substantially
more onerous than forward differencing. Nevertheless, the method is unconditionally
stable and therefore can be run for large grid spacings, which is good reason to take
on the additional overhead.

The other option is to employ central temporal differencing, which has the advantage
of yielding an algorithm that is second order accurate in time:

ρn+1
� − ρn−1

� = −hv
�

(ρn
�+1 − ρn

�−1)+ O(h2)+ O(�2).

This is called the leap frog method; notice that it does not require inverting matrices but
does require storing an additional array of densities. Von Neumann analysis reveals that
the CFL condition is again required for stability. An important bonus is that the method
does not suffer from numerical dispersion; however, it does suffer from instabilities that
are similar to those of the FTCS method because the even and odd mesh points are
uncoupled at neighboring time steps (Press, 2007).

19.2.4 The Crank-Nicolson method

A clever way to combine the stability of implicit methods with the accuracy of second
order methods was suggested long ago by John Crank and Phyllis Nicolson (1947). The
idea is to shift the backward method by one unit in time (n → n + 1) and average the
result with the FTCS scheme. The Crank-Nicolson scheme then reads:

ρn+1
� = ρn

� − vh
4�

(
ρn
�+1 − ρn

�−1 + ρn+1
�+1 − ρn+1

�−1

)
+ O(h2)+ O(�2). (19.8)

Both sides of this equation are centered at nh + h/2 (once ρn
� has been shifted to the

left hand side) so that the method is indeed second order in the temporal spacing. The
Crank-Nicolson method is unconditionally stable and exhibits much better control over
dispersion than the Lax method. Furthermore, |ξ | = 1 so the amplitude of any mode
does not decay with time, which implies that numerical dispersion is minimal.
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Tridiagonal Matrix Inversion

Implementing the Crank-Nicolson algorithm requires solving the tridiagonal equation
T �v = �r for �v many times. Fortunately, an algorithm due to Thomas (of precession
fame) provides an efficient way to achieve this. Since the algorithm is not implemented
in Eigen we provide code here.

void triDiag (const std::vector <double> &d,
const std::vector <double> &u,

const std::vector <double> &l,
const std::vector <double> &r,

std::vector <double> &v) {
/*
Thomas algorithm for solving T v = r for v. T is

tridiagonal: d u 0
with the last element of u l d u
and the first element of l unused 0 l d
*/
std::vector <double> gamma (v);
double beta = d[0];
v[0] = r[0]/beta;
for (int i=1;i<v.size();i++) {
gamma[i] = u[i-1]/beta;
beta = d[i] - l[i]*gamma[i];
if (beta == 0.0) exit(0);
v[i] = (r[i]-l[i]*v[i-1])/beta;

}
for (int i=v.size()-2;i>=0;i--) v[i] -= gamma[i+1]*v[i+1];
return;

}

Evidently the Thomas algorithm will fail if it should happen that beta is zero.
In practice this is an unusual occurence, and as Press et al. remark, “The tridiagonal
algorithm is the rare case of an algorithm that, in practice, is more robust than it appears
to be in theory.”

Application to one-dimensional advection

We test the Crank-Nicolson method on our advection problem with � = 0.01 and
h = 0.01. The result is shown in the left panel of Figure 19.2, where a beautifully stable
advecting density profile is evident.

In spite of this triumph, the Crank-Nicolson scheme is not immune to problems of
another sort. The right panel shows the temporal evolution of a square wave pulse under
the same conditions as the left panel. The rapid emergence of spurious modes is clear and
indicates that the method has difficulty dealing with discontinuities. A resolution to the
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Figure 19.2 Crank-Nicolson solutions to ∂tρ = −∂xρ. Left: Gaussian initial distribution. Right:
square wave initial distribution. Dotted line: t = 0; dashed line t = 0.4; solid line t = 0.8.

problem is to employ upwind differencing, which is designed to propagate information
from grid site � to �+1 (i.e., in the direction of the advection). In this case, the difference
equation is

ρn+1
� − ρn

� = −v
h
�

{(
ρn
� − ρn

�−1

)+ O(h)+ O(�), v > 0
(
ρn
�+1 − ρn

�

)+ O(h)+ O(�), v < 0
. (19.9)

Notice that the equation is lower order in the spatial spacing, which impacts accuracy;
however, this differencing enhances the fidelity (the physical reasonableness of the
solution) of the solution. Consult Press (2007) for more information and references on
this technique.

19.2.5 Second order equations

Many partial differential equations involve second derivatives; in particular the Laplacian
operator is ubiquitous because it is used to construct the local representation of net flux
through a surface. Typical equations of interest include the heat equation:

∂T
∂t

= α∇2T

where α is the thermal diffusivity, or the advection-diffusion equation,

∂ρ

∂t
= ∇(D∇ρ)− ∇(�vρ).
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To start the discussion let us consider the diffusion equation in one dimension with
constant diffusivity:

∂ρ

∂t
= D∇2ρ.

Implementing FTCS differencing yields the equation:

ρn+1
� − ρn

� = Dh
�2 (ρ

n
�+1 − 2ρn

� + ρn
�−1)+ O(h)+ O(�2). (19.10)

Stability analysis for this equation leads to the condition:

2Dh
�2 ≤ 1, (19.11)

which says that the “numerical diffusion” should be greater than the physical diffusion,
which is a reasonable analogue of the CFL condition. This result is problematic because
one generally wishes to allow the system to diffuse over large spatial scales, L. This
requires a time proportional to L2/D, and Eq. 19.11 then implies that L2/�2 time steps
are required. Clearly it is desirable to make larger time steps, which is only possible with
stable (and therefore implicit) methods.

As with the advection equation, the way forward is to average forward and backward
differencing, yielding the Crank-Nicolson scheme:

ρn+1
� − ρn

� = Dh
2�2 (ρ

n+1
�+1 − 2ρn+1

� + ρn+1
�−1 + ρn

�+1 − 2ρn
� + ρn

�−1)+O(h2)+O(�2)

(19.12)

This method is unconditionally stable and is our recommended technique for solving sec-
ond order parabolic or hyperbolic partial differential equations with simple boundaries.

19.2.6 Realistic partial differential equations

So far the partial differential equations we have considered have been rather restricted in
form. Strategies for dealing with more realistic cases (that require numerical solution!)
are discussed here. Multidimensional partial differential equations are discussed in the
next subsection.

If the velocity field in the advection equation is a function of space or time the natural
generalization of the FTCS equation (Eq. 19.4) is:

ρn+1
� − ρn

� = − h
2�

(
vn
�+1ρ

n
�+1 − vn

�−1ρ
n
�−1
)+ O(h)+ O(�2). (19.13)
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If v is slowly varying, this gives the stability condition:

h
�

<
1

|vn
� |

,

which is a reasonable extension of the CFL condition. When imposing this equation one
should ensure that the left hand side is smaller than the right hand side over all t and x.

Similar considerations apply for a position-dependent diffusion coefficient. In this
case it is convenient to discretize ∂xD at half-time steps. Doing so gives the FTCS
equation:

ρn+1
� − ρn

� = h
�2

[
Dn

�+1/2(ρ
n
�+1 − ρn

� )− Dn
�−1/2(ρ

n
� − ρn

�−1)
]

. (19.14)

See Ex. 5 for alternatives. Precisely the same expression can be used in any of the
other algorithms discussed here. As expected, the generalized stability condition for this
equation is:

h
�2 <

1
2|Dn

� |
,

which, of course, needs to hold for all n and �.
Nonlinear diffusion in which D = D(ρ) is not uncommon. Since ρ�±1/2 is not

available, one can map:

D�+1/2 → 1
2

[
D
(
ρn
�+1
)+ D

(
ρn
�

)]

with a similar expression for D�−1/2. This approach presents no problem for explicit
schemes. However, for implicit schemes one must solve nonlinear equations of the sort

ρn+1
� = ρn

� + f (D(ρn+1
{�} ); D(ρn{�})),

which is not recommended in code that must be repeated a great many times. A simple
expedient is to linearize this equation, which should suffice for sufficiently small grid
spacings.

19.2.7 Operator splitting

Until now the discussion has focussed on problems with one spatial dimension. This is
for good reason, as multiple dimensions introduce a set of new difficulties that must be
addressed. At the simplest level, in going from one to D dimensions storage requirements
of order 1/� become order 1/�D. It is therefore expedient to use methods that permit
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large spatial grid spacings. For this reason we focus on the implicit Crank-Nicolson
scheme in the following.

First, we introduce the differencing operator D2
μ to ease notational burden. This is

defined by:

D2
μρ

n
�� = ρn

��+μ̂
− 2ρn

�� + ρn
��−μ̂

.

Notice that the spatial index �� is now a vector and that differencing can happen along a
certain direction, μ̂, in space.

Applying this to the two-dimensional Laplacian gives:

1
�2D

2f�,m = 1
�2 (f�+1,m + f�−1,m + f�,m+1 + f�,m−1 − 4f�,m)+ O(�2),

where we have set �� = (�, m) to make the two-dimensional nature of the problem explicit.
The difference operator on the right hand side is called a five-point stencil and is often
written as:

D2 =
⎛

⎝
0 1 0
1 −4 1
0 1 0

⎞

⎠ (19.15)

in what we hope is a clear notation. The analogue in three dimensions is of course a seven-
point stencil. As in one dimension, differencing is not unique and other possibilities can
sometimes be useful for various reasons. For example the nine-point stencil:

D2
9 = 1

6

⎛

⎝
1 4 1
4 −20 4
1 4 1

⎞

⎠ (19.16)

better reflects the spherical symmetry of the Laplacian operator.
With this notation, the Crank-Nicolson version of the two-dimensional diffusion

equation:

∂ρ

∂t
= D∇2ρ (19.17)

is (we consider a constant diffusivity and equal x and y grid spacing for simplicity):

ρn+1
�,m − ρn

�,m = Dh
2�2

(
D2

xρ
n+1
�,m +D2

xρ
n
�,m +D2

yρ
n+1
�,m +D2

yρ
n
�,m

)

= Dh
2�2

(
D2ρn+1

�,m +D2ρn
�,m

)
. (19.18)
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The problem with this implementation is that the formerly manageable implicit tridiag-
onal matrix inversion has been replaced with a more onerous matrix inversion (although
the matrix remains sparse).

An elegant solution to this issue is to update each dimension separately. We develop
the formalism with the aid of the displacement operator defined by

ρ(t + h) = eh∂tρ(t), (19.19)

which is likely familiar to the reader as the translation operator from quantum mechanics.
The relationship can be established by Taylor expanding both sides of the equation. The
starting point will be the simple equation:

ρn+1 = eh∂tρn

or, adopting the Crank-Nicolson trick:

e−
h
2 ∂tρn+1 = e

h
2 ∂tρn.

The diffusion Eq. 19.17 implies ∂t = D∂2
x + D∂2

y which is approximated by

∂t ≈ D
�2D

2
x + D

�2D
2
y .

Let us refer to the right hand side of this expression generically as L1 + L2 + . . . .
Substituting into the Crank-Nicolson expression gives

e−
h
2L1− h

2L2+... ρn+1 = e
h
2L1+ h

2L2+... ρn.

Expanding both sides to order h2 then gives the Crank-Nicolson Eq. 19.18.
Operator splitting is implemented by factoring the displacement operators with the

aid of the Baker-Campbell-Hausdorff formula:

e
h
2L1+ h

2L2+... = e
h
2L1 e

h
2L2 . . . e

h2
8 [L1,L2] . . .+ O(h3)

= e
h
2L1 e

h
2L2 . . .+ O(h2). (19.20)

Crucially, this expression simplified drastically because central differencing in time is
order h2 and we therefore do not need to worry if some of the operators do not commute.
We now rewrite the Crank-Nicolson difference equation with the aid of the definition:

Ui = e
h
2Li ;
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with K operators we obtain:

U†
1 U†

2 . . .U†
K · ρn+1 = U1 U2 . . .UK · ρn. (19.21)

The operator splitting procedure consists of replacing this equation with the equivalent
set of equations:

U†
K−1 · ρn+1/K = UK · ρn

U†
K−3 · ρn+2/K = UK−2 · ρn+1/K

. . .

U†
K−2 · ρn+(K−1)/K = UK−3 · ρn+(K−2)/K

U†
K · ρn+1 = UK−1 · ρn+(K−1)/K (19.22)

Applying this scheme to Eq. 19.18 and rearranging slightly gives the equations:

ρ
n+1/2
�,m = ρn

�,m + Dh
2�2

(
D2

xρ
n+1/2
�,m +D2

yρ
n
�,m

)
(19.23)

ρn+1
�,m = ρ

n+1/2
�,m + Dh

2�2

(
D2

yρ
n+1
�,m +D2

xρ
n+1/2
�,m

)
.

This trick is called the alternating direction implicit (ADI) method. Notice that each
half time step requires the inversion of a tridiagonal matrix, as desired.

It is not necessary to split operators based on coordinates. For example an application
to the advection-diffusion equation could use an implicit update scheme for the diffusion
term while a faster explicit method could be used for the advection portion of the
equation.

An alternative splitting scheme updates fully according to U = exp( h
2L1 + h

2L2 + . . .)

but employs a different update method for each suboperator Ui . For example, Ui may
be stable with respect to the ith term in the difference operator. In this case updating is
done according to Eq. 19.22 with the replacement Ui(h) → Ui(h/K).

Finally, although Eq. 19.22 is equivalent to Eq. 19.21, it is not necessary to follow
this precise sequence. Alternate orderings will induce terms like [U1,U2] that behave as
exp( h2

8 [L1,L2]), which are 1+O(h2) and therefore do not affect the difference equations.
An example of this will be considered in the next section.

19.3 The Schrödinger equation

The Schrödinger equation is a parabolic equation that describes the spatio-temporal
evolution of a complex function. While it is common to separate the temporal evolution
via the relation ψ(x, t) = exp(−iEt)φ(x) sometimes it is convenient to solve the time-
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dependent Schrödinger equation. This is of interest, for example, to chemists who seek
to understand reaction dynamics.

While stability and accuracy remain desirable goals when differencing the Schrödinger
equation, retaining unitarity under evolution is also of paramount importance. Thus
we require that

∫ |ψ |2 = 1 at all times so that “probability” is not lost from the
system. Conveniently, the Crank-Nicolson scheme meets this additional constraint! If
the differenced version of the Hamiltonian is written as:

H = − 1
2μ�2D

2 + V��

then the Crank-Nicolson differenced Schrödinger equation can be written as:

ψn+1
�� = ψn

�� − i
h
2
Hψn+1

�� − i
h
2
Hψn

�� .

Solving for ψn+1
�� gives:

ψn+1
�� = 1 − i 1

2Hh

1 + i 1
2Hh

ψn
�� ≈ exp(−iHh) ψn

�� ≈ exp(−iHh)ψ(�x, t),

wherein we recognize the exact quantum mechanical evolution operator.
We shall use the motion of a free Gaussian wavepacket in one dimension for code

verification. In this case the initial condition can be taken to be:

ψ(x, 0) = 1√
aπ1/4 exp(ik0x) exp(−(x − x0)

2/(2α2)).

The free time-dependent wavefunction is given by:

ψ(x, t) =
∫ ∞

−∞
f (k) exp(i(kx − k2

2m
t)) dk

where f is the Fourier transform of the initial wavepacket.
A comparison of the exact result to the numerical one is shown in Figure 19.3. This

was evaluated with α = √
2, m = 1, k0 = 1, at a time of t = 4. Algorithm parameters

were � = 0.4 and h = 0.01 and the wavefunction was set to zero at the boundaries. As
can be seen, the agreement is excellent.

Let us move on to the more difficult problem of scattering off of a cylindrical
barrier of radius a in two dimensions. As we have just discussed, a variety of options
for implementing ADI updating are possible. In this case it is convenient to split the
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Figure 19.3 Crank-Nicolson solution of the time-dependent Schrödinger equation for a free
one-dimensional wavepacket. Plusses: real part. Crosses: imaginary part. Lines are the exact solution.

Hamiltonian into three pieces, −∂2
x /(2m), −∂2

y /(2m), and V . We also choose a slightly
different update order than that of Eq. 19.22. Namely:

(
1 + i

h
2�2D

2
x

)
ψ(n+1/3) =

(
1 − i

h
2�2D

2
x

)
ψn

(
1 + i

h
2�2D

2
y

)
ψ(n+2/3) =

(
1 − i

h
2�2D

2
y

)
ψ(n+1/3)

(
1 + i

h
2

V
)
ψ(n+1) =

(
1 − i

h
2

V
)
ψ(n+2/3). (19.24)

This order is convenient because the two dimensional indexing is simplified when the
same operator appears on the left and right hand sides of the equations. Notice that the
final equation is diagonal and is thus trivial to implement. It is, of course, possible to
include the potential in the first two steps. This has the minor disadvantage of requiring
a vector of diagonal matrix elements in the tridiagonal inversion rather than a single
number.

Figure 19.4 shows the magnitude of the wavefunction after scattering from a cylindri-
cal barrier of radius 0.5 and height 10 that is placed at the origin. Other parameters were
m = 1 and �k0 = (1, 2). The packet was centered at (−4,−4) originally, thus the collision
was rather oblique. Algorithmic parameters were h = 0.01 and � = 0.4. After the
collision the resulting probability density shows a complicated structure with a depletion
to the right (where the wave packet has impacted the barrier) and reflected waves moving
towards the lower left.
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Figure 19.4 Two dimensional scattering from a cylindrical barrier.

It is useful to remember that many solution strategies that trade one advantage for
another exist. Thus, for example, the Visscher method is unitary, second order accurate
in time, and has explicit updating, which makes it simple to code and fast to run. This
method is explored in Ex. 23.

Finally, unlike classical field problems that require discretization on a three-
dimensional grid, quantum problems with N particles must be solved (in general)
on a 3N-dimensional grid. This is a severe limitation that renders even the two- or
three-particle problem beyond reach. Thus when solving practical quantum problems
more sophisticated methods with varying degrees of approximation must be employed.
Some of these are discussed in Chapter 23.

19.4 Boundary value problems

Static field configurations are given by solutions to boundary value problems. The
canonical exemplar is the elliptic Poisson equation:

∇2u = ρ (19.25)

where u is a scalar field to be determined and ρ is a known source term. A solution
is selected via boundary conditions—as mentioned above, these are often Dirichlet
conditions that give the value of u on the boundary of the region of interest, or Neumann
conditions that specify the normal gradient u at the boundary. Equations of this sort
are ubiquitous in the sciences; they appear in the description of heat distributions,
electrostatics, gravitational fields, structural mechanics, fluid mechanics, and a variety
of other applications.
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Boundary value problems differ from initial value problems in that one cannot
“integrate inwards” and expect to obtain a consistent solution to the partial differential
equation. The problem is, in fact, a global one in the sense that the function u at one
location must be consistent with values at all neighboring locations.

19.4.1 The Jacobi method

We attempt a solution to the two-dimensional version of Eq. 19.25 by discretizing on a
square grid with lattice spacing �:

u�+1,m + u�−1,m + u�,m+1 + u�,m−1 − 4u�,m = �2ρ�,m. (19.26)

Evidently we seek the solution to the problem A�u = �ρ where A is a large and sparse
matrix. Carl Jacobi (1804 – 1851) invented an iterative scheme to solve matrix problems
such as this called the Jacobi method. The idea is to split the matrix A into its diagonal,
upper, and lower components:

A = D + U + L.

One then rewrites the matrix problem as:

�u = D−1[ �ρ − (U + L)�u ]

and solves it iteratively via the equation:

�u(k+1) = D−1[ �ρ − (U + L)�u(k) ].

The method works best for diagonally dominant matrices (which means that Aii is greater
than the sum of all the other elements in the ith row). More generally, Jacobi iteration
converges if the spectral radius2 of the iterator, −D−1(U + L), is less than unity. This
is important because the rate of convergence of the method depends on how close the
spectral radius is to unity, and generally this radius approaches unity as the grid size
grows. For a d-dimensional grid the spectral radius is 1−Cd/N2 where Cd is a constant
and N is the number of grid points along one direction. Thus the algorithm requires
O(Nd+2) steps to converge in d dimensions. We shall see shortly that it is possible to do
much better.

The iteration takes on an especially simple form for the two-dimensional Poisson
equation. In this case all the elements of D are −4/�2 and

(U + L) �u → (U + L) u�,m = (u�+1,m + u�−1,m + u�,m+1 + u�,m−1)/�
2.

2 This is defined as the largest value of the magnitude of all iterator eigenvalues.



660 Boundary value problems

Thus Jacobi iteration becomes:

u(k+1)
�,m = 1

4

[
u(k)
�+1,m + u(k)

�−1,m + u(k)
�,m+1 + u(k)

�,m−1

]
− �2

4
ρ�,m. (19.27)

This is an intuitively pleasing result: new values of the field are obtained from averages
over neighboring field values.

Perhaps it has occurred to the reader that iterating as is done in the Jacobi method
looks a lot like temporal evolution (to join notation, just let k → n in Eq. 19.27). This is
correct: one can replace an equation such as:

Lu = ρ,

where L is some differential operator, with

∂u
∂t

= Lu − ρ. (19.28)

With an additional step (see Ex. 1), FTCS differencing this equation yields the Jacobi
iteration equation.

This observation raises a subtle question. In general there are no uniqueness theorems
for boundary value problems. In contrast, initial value problems do have unique solutions
under quite general conditions. Thus Jacobi iteration converges to some solution, but it
is not necessarily unique. In practice, this seems to not be much of a concern; however,
the careful numericist might want to check the stability of her solution under a variety
of different initial function choices.

Despite the inefficiency of the Jacobi method, it still can provide useful results. As an
example, we compute the electric potential, V , in and around a parallel plate capacitor.
The capacitor is surrounded by a conducting box, hence V is zero there. The box and
the plates extend to infinity in the z direction, so this is an effective two-dimensional
problem. The capacitor and the potential derived from the Jacobi method are shown in
Figure 19.5.

It is convenient to track the global error

�V = 1
N2

∑

�,m

|V (k)
�,m − V (k−1)

�,m |

and terminate iteration once this falls below some tolerance. Values for this quantity are
plotted versus iterations for three grid sizes in Figure 19.6. With this one can confirm
that achieving a given error scales roughly as 1/N2, and hence the entire scheme scales
as N4 (in two dimensions).
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Figure 19.5 Parallel plate capacitor with electric potential.
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Figure 19.6 Error in jacobi iteration for the two-dimensional capacitor. Solid line: N = 40; dashed
line: N = 160; dotted line: N = 640.
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19.4.2 Successive over-relaxation

A simple improvement on the Jacobi algorithm, called Gauss-Seidel iteration, amounts
to overwriting values of the new field �u(k+1) as they are calculated. It transpires that this
can be accommodated in the iterator formalism by splitting the matrix A according to
the following (Press, 2007):

(L + D)�u(k+1) = −U �u(k) + �ρ. (19.29)

In this case the spectral radius of the iterator (in two dimensions with typical boundary
conditions) behaves as 1−Cd/(2N2) and thus a factor of two in efficiency is gained over
Jacobi iteration.

This is not much of an improvement; however, Gauss-Seidel iteration is important
because it is an element of an algorithm, called successive over-relaxation, that is
much more efficient than the Jacobi method. Successive over-relaxation was introduced
by Lewis Fry Richardson (of extrapolation fame)3 in 1911 (Reddy, 2006). The idea is
to “over correct” by weighting the proposed update with a factor, ω. The old value of
the iterand is also included with a factor of 1 − ω. Richardson’s original method applied
over-relaxation to the Jacobi method, but this was subsequently deprecated because it is
unstable. The technique is, however, stable and powerful when combined with Gauss-
Seidel iteration. In this case Eq. 19.29 becomes

�u(k+1) = (1 − ω) �u(k) − ω (L + D)−1 (U �u(k) − �ρ). (19.30)

This version of successive over-relaxation converges for any ω between zero and two.
It is important to choose the optimal value of ω, but if one has it, the method converges
to a given accuracy in O(N) iterations. This is an enormous advantage over Gauss-
Seidel or Jacobi iteration since the saved factor of N is typically much larger than one
hundred.

For a square two-dimensional problem with homogeneous Neumann or Dirichlet
boundary conditions, the optimal value of the over-relaxation parameter is given by
(Press, 2007)

ω = 2

1 +
√

1 − cos2 π
N

.

In general the optimal value is not known and one is advised to search for it numerically.
An example with Dirichlet boundary conditions and N = 200 is shown in Figure 19.7
(left). Over-relaxation exhibits a massive improvement over the Gauss-Seidel (ω = 1)
algorithm. The theoretical optimum parameter is 1.969 in this case, which is verified

3 British mathematician, physicist, and pacifist (1881 – 1953). He paid for his pacifism by being denied
academic positions for most of his life.
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Figure 19.7 Left: Error for a two-dimensional field problem by iterations. Right: Iterations required to
reach an error of 10−12 vs. the over-relaxation parameter.

numerically. Notice that the curve for ω = 1.97 exhibits a few “glitches”. These glitches
grow as ω approaches 2.0; at ω = 2.0 the algorithm fails and the error remains above
unity. The numericist should also be aware that the number of iterations required to reach
a given tolerance is a sensitive function of the over-relaxation parameter. Figure 19.7
(right) illustrates this by showing the number of iterations required to reach a tolerance
of 10−12 for a two-dimensional system with N = 200.

Although successive over-relaxation is a superior method, it is not the last word in the
subject. It is possible, for example, to resurrect Jacobi iteration by choosing an update
sequence that mixes over-relaxation and under-relaxation (0 < ω < 1) (Yang and Mittal,
2014). It is also possible to improve efficiency by varying the over-relaxation parameter
as the iteration occurs. This is called Chebyshef acceleration. The algorithm requires
the user to checkerboard update, which means (in two dimensions) that grid locations
are divided into even and odd squares and only one set is updated at each iteration. The
sequence of over-relaxation parameters obey the following:

ω(0) = 1

ω(1) = 1
1 − ρ2/2

ω(n+1) = 1
1 − ρ2ω(n)/4

(19.31)

with ρ = cos(π/N) on a uniform grid.
Implementing the checkerboard update is simple with the aid of the modulus operator

(%). An example follows.

for (int i=1;i<N;i++) { // leave boundaries untouched
for (int j=1;j<N;j++) {
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if ((i+j) % 2 == it % 2) { // checkerboard
double xi = -V[i][j] + ( V[i+1][j] + V[i-1][j] + V[i][j

+1] + V[i][j-1] )/4.0;
V[i][j] += omega*xi;

}
}}

Figure 19.7 (left) compares the efficacy of Chebyshev acceleration to successive over-
relaxation. Evidently it does somewhat better than over-relaxation in all cases (one must
remember to compare sweeps when making this comparison).

19.5 Multigrid methods

Let us look once more at Eq. 19.27: the averaging over nearest neighbors that is apparent
in this equation can be interpreted as smoothing the solution over short wavelengths.
In fact iterative methods are generally effective at reducing high frequency errors.
Alternatively, errors at longer wavelengths tend to be retained over very many sweeps
(naively, L sweeps would be required to affect wavelengths of order L). If the grid spacing
were doubled, the minimum wavelength supported by the grid would also double, and
iteration would reduce errors at twice the wavelength. Leveraging this simple observation
leads to the multigrid method, which is especially useful for multiscale problems
(Wesseling, 1992).

We shall develop the multigrid method by considering a problem:

Lu = ρ (19.32)

on two grids, one with spacing � and one with spacing �′ = 2�. Here L is some
elliptic differential operator and ρ is a fixed source term. Let L� be some appropriate
discretization of the differential operator so that the discretized version of Eq. 19.32 is:

L�u� = ρ�. (19.33)

One can solve this equation with a large number of smoothing operations (in practice,
checkerboard Gauss-Seidel iterations), but the idea is to only perform a few of these to
save computational effort. Call the resulting approximate solution to Eq. 19.33, ũ� and
introduce the error by:

ε� ≡ u� − ũ� (19.34)

and the defect via:

δ� ≡ L�ũ� − ρ�. (19.35)
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Notice that:

L�ε� = −δ�. (19.36)

Now consider a coarse grid with, say,�′ = 2�. We shall define all the quantities above
on the new grid; thus, for example,

L�′ε�′ = −δ�′ . (19.37)

The multigrid strategy will be to compute a correction to ũ�, namely ε�, that brings
the numerical solution closer to the exact result. The error at scale � is to be obtained
after several smoothing steps on the fine grid and several more on the coarse grid, which
requires being able to map information between the grids. In particular, we will require
the defect on the coarse grid after having obtained it on the fine grid. This can be
accomplished via an operator that downsamples the defect:

δ�′ = R�′,�δ�, (19.38)

known as the restriction operator.
We shall also need the error function on the fine grid as obtained from the coarse grid.

Evidently this requires interpolation, hence we define an interpolation operator via

ε� = P�,�′ ε̃�′ . (19.39)

The notation is because the interpolation operator is often called the prolongation
operator.

With the notation in place we are ready to specify a simple multigrid algorithm. In
pseudocode:

iterate
approximately solve L�u� = ρ� for ũ�

compute δ� = L�ũ� − ρ�
compute δ�′ = R�′,�δ�
approximately solve L�′ε�′ = −δ�′ for ε�′
compute ε� = P�,�′ε�′
set ũ� = ũ� + ε�

end

Again, the recommended method for smoothing is checkerboard Gauss-Seidel iteration.
Successive over-relaxation is not recommended because it does not smooth high fre-
quency modes.

This algorithm makes many passes through a pair of grids to arrive at a solution. Of
course, it is possible to extend the idea and introduce a series of ever coarser grids, each
of which is visited according to some protocol (notice the conceptual similarity to the
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A

B C

Figure 19.8 Two-dimensional prolongation.

spatial renormalization group discussed in Section 8.4). An additional option is to start
the algorithm on a very coarse grid and progress to finer grids after several iterations.
Thus there are many multigrid methods; which to choose is up to the user and his or her
specific problem.

The final task is to specify the restriction and prolongation operators. A simple choice
for prolongation is to employ bilinear interpolation (in two dimensions). Referring to
Figure 19.8 we see that the field at the point A will map to itself, thus, calling this point
(x, y),

u�(x, y) = u�′(x, y).

For point B we obtain:

u�(x, y +�) = 1
2

(
u�′(x, y)+ u�′(x, y +�′)

)
.

And finally, the expression at point C is:

u�(x+�, y+�) = 1
4

(
u�′(x, y)+ u�′(x +�′, y)+ u�′(x, y +�′)+ u�′(x +�′, y +�′)

)
.

These equations are often represented in terms of a prolongation stencil

P�,�′ = 1
4

⎡

⎣
1 2 1
2 4 4
1 2 1

⎤

⎦ , (19.40)

in a notation that we hope is clear.
Restriction is even simpler: one can set:

u�′(x, y) = u�(x, y).
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However, it turns out that this choice is not ideal, and a better option is to set:

R = 1
4
PT.

This works in well in cases where �′ = 2� and can be generalized to other cases (Press,
2007).

The multigrid method is readily applicable to nonlinear problems if a nonlinear
relaxation method is available for smoothing errors. Updating is done via:

ũ′
� = ũ� + P�,�′(ũ�′ −R�′,�ũ�)

where ũ�′ is obtained by solving a nonlinear equation on the coarse grid (Press, 2007;
Brandt, 1977).

Finally, we comment that parallelization of the multigrid method as presented is not
simple because Gauss-Seidel iteration overwrites values in place. However, one can
pay the factor of two price in speed and employ Jacobi iteration, which permits trivial
parallelization of the updating loops.

19.6 Fourier techniques

Differencing is not the only path to the solution of partial differential equations. It is
possible, for example, to expand the field in a basis and determine the coefficients of the
expansion via the relevant partial differential equation. An expansion in Fourier modes is
especially useful for differential equations with constant coefficients and boundaries that
coincide with the coordinate system. While it is possible to set, say, u(x) =∑i ai sin(iπx)
we shall develop the Fourier expansion for difference equations.

One may be tempted to expand in plane waves; however, it is important to respect
the problem boundary conditions. A sine expansion forces the solution to zero at the
boundaries. This is convenient for Dirichlet boundary conditions because nonzero
boundary values can be incorporated with a trick, as we shall see. Alternatively, Neumann
conditions can be accommodated with a cosine expansion. The technique for solving
partial differential equations with Dirichlet conditions will be developed here. Neumann
conditions follow a similar scheme; details can be found in Press (2007).

The method follows the traditional approach of undergraduate mathematical physics
by using a remarkable discrete analogue of the orthogonality relationship:

2
∫ 1

0
sin(iπx) sin(jπx) dx = δi,j ;
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namely,

2
N + 1

N∑

n=1

sin
(

inπ
N + 1

)
sin
(

jnπ
N + 1

)
= δi,j . (19.41)

Let us consider the problem:

∇2u = ρ (19.42)

in the two dimensional region [0, 1]× [0, 1] with Dirichlet boundary conditions. We take
these to be u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0 for the moment. Discretize in the
usual way

ui+1,j − 2ui,j + ui−1,j

�2
x

+ ui,j+1 − 2ui,j + ui,j−1

�2
y

= ρi,j .

Expand the field and the source in a sine series:

ui,j =
N∑

n=1

N∑

m=1

ûn,m sin
(

niπ
N + 1

)
sin
(

mjπ
N + 1

)
(19.43)

with a similar equation for ρi,j . Substituting into Eq. 19.42 and performing some simple
trigonometric manipulations yields the solution in Fourier space:

ûm,n = ρ̂m,n

2
�2

x

(
cos( nπ

N+1 )− 1
)
+ 2

�2
y

(
cos( mπ

N+1 )− 1
) . (19.44)

Substitution into Eq. 19.43 then gives the desired solution.

Dirichlet boundary conditions

So far we have obtained a solution to the Poisson equation that evaluates to zero on the
boundary. To incorporate boundary conditions we take the grid to run from i = 0 to
i = N + 1 with the former corresponding to x = 0 and the latter to x = 1. Consider the
case u(0, y) = w(y) so that u0,j = wj . Evaluating the difference equation at i = 1 gives

u2,j − 2u1,j + wj

�2
x

+ u1,j+1 − 2u1,j + u1,j−1

�2
y

= ρ1,j .

Dirichlet conditions correspond to setting u0,j = 0 so this equation can be brought to the
previous form by translating wj to the right hand side. Thus the condition on the bottom
surface can be incorporated into the formalism by making the replacement
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ρ1,j → ρ1,j − wj

�2
x

.

Of course a similar transformation can be made for the other three surfaces.

19.6.1 The fast Fourier transform

The method provides strikingly accurate solutions in cases where the source and
boundary functions are smooth. However, it is rather slow, requiring O(N2d) operations
in d dimensions. Performance can be improved considerably by employing the famed
fast Fourier transform (FFT) method, which performs one dimensional discrete
Fourier transforms in N log N time. FFT algorithms are traditionally designed for signal
processing; we therefore briefly review some of the conventions in that field.

FFT input is described by a function f (t) in the time domain that is sampled at uniform
discrete points, tj = �j. The sampling frequency is defined to be 1/�. A sawtooth
pattern represents the shortest wavelength possible on the temporal grid and therefore
the highest frequency that can be supported is 1/(4�). The Nyquist frequency is the
minimum rate at which a signal can be sampled without introducing errors and is twice
the highest frequency, fN = 1/(2�). Thus, if one wishes to reproduce the spectrum of a
signal with highest frequency 1/(4�), the signal must be sampled with at least twice this
frequency.

Consider N signal points fj with j ∈ [0, N − 1]. These correspond to N points in the
frequency domain given by

f̂ n =
N−1∑

j=0

fj exp
(
−2π i jn

N

)
(19.45)

with n ∈ [0, N − 1].
It is useful to keep the definition of the FFT in mind; for example, one might be

tempted to test FFT code by implementing the Fourier transform:

f̂ (ω) =
∫ ∞

−∞
e−iωt exp(−t2) dt = √

π exp(−ω2/4).

To obtain this one can set t = �(j − N/2) and sum over j as in Eq. 19.45. The result is:

f̂ (ω) = �(−1)nf̂ FFT
n

with ω = 2πn/(�N). Note also that this is a periodic function in the domain ω ∈
(0, 2π/�), which, when mapped to (−π/�,π/�), does indeed look like the expected
result.

The FFT method has a long history; however, it was popularized by James Cooley
and John Tukey in the 1960s at about the same time that digital signal processing
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became an industrial activity (Elliot and Rao, 1982). The Cooley-Tukey algorithm
is based on a series of clever observations that was made twenty years before by Gordon
Danielson and Cornelius Lanczos. First, note that the discrete Fourier transform is a
linear transformation:

�̂f = Z�f

where the matrix Z has a special structure, namely:

(Z)nj = znj

with z = exp(2π i/N).
Next we observe that the Fourier sum can be broken into even and odd subsums:

f̂ n =
N/2−1∑

j=0

f2j exp
(
− 2π ijn
(N/2)

)
+ zn

N/2−1∑

j=0

f2j+1 exp
(
− 2π ijn
(N/2)

)

≡ f̂ (e)n + znf̂ (o)n .

A student who has just read the section on multigrid methods or Chapter 8 will not fail
to see the possibility of recursing this expression down to sums over a single element, for
which the FFT transform is simply the signal value itself, fj . Thus for every j there is a
pattern of even and odd decompositions that maps to it.

The requisite pattern is given by bit reversal, namely the sequence of even and odd
sums is reversed, even sums are assigned 0 and odd sums are assigned 1, and the resulting
pattern is j in binary notation.

Given its ubiquity and power, the Cooley-Tukey algorithm has justifiably been called
one of the most important algorithms of all time. We cannot stress enough that the FFT
method is fast compared to brute force summing. A simple test on a mid 2014 MacBook
Pro reveals that naively summing to obtain the sine transform of a series with one million
points takes approximately 4.2 hours, whereas the FFT algorithm takes 0.18 seconds.
The numericist should never use brute force summing except in very simple cases.

19.6.2 The sine transform

The discussion makes it clear that it is useful to implement the sine transform using FFT
methods. Ideally, this will be provided by a software package; however, there appears to
be a paucity of quality C++ FFT software. We therefore use unsupported code4 from
Eigen that partially implements the KissFFT code suite of Mark Borgerding (2013).

4 Eigen contains contributed modules that are provided “as is”. Documentation and support for these can
be sparse.
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This code executes fast Fourier transforms and inverse transforms of one-dimensional
data. In skeletal form the protocol is as follows:

#include <unsupported/Eigen/FFT>
...
Eigen::FFT<double> fft;
std::vector<double> f(N,0.0);
std::vector<std::complex<double> > fhat(N,0.0);
...
fft.fwd(fhat,f); // Fourier transform f -> fhat
...
fft.inv(f,fhat); // inverse Fourier transform fhat -> f

Eigen::FFT scales the inverse transform such that the inverse of a transform yields the
initial function. Other datatypes supported are float and long double.

The sine transform of a series fj can be obtained from the FFT of a series that has
been doubled in length and is antisymmetric about the midpoint. Working through this
carefully (see Ex. 25) yields the following equality:

f̂ m ≡
2N−1∑

j=0

fj exp
(
−2π ijm

2N

)
= − 1

2i
f̂ sine

m

when one extends the series according to

f0 = 0, fN = 0, and f2N−j = −fj for j ∈ [1, N − 1].

An implementation using std::vector is:

void sineTransform(vector<double> & fk, const vector<double>
& fx) {

int N = fx.size();
Eigen::FFT<double> fft;
std::vector<double> f(2*N,0.0);
std::vector<std::complex<double> > fhat(2*N,0.0);
for (int i=1;i<N;i++) {
f[i] = fx[i];
f[2*N-i] = -fx[i];

}
f[0] = 0.0;
f[N] = 0.0;
fft.fwd(fhat,f);
for (int i=0;i<N;i++) fk[i] = -1.0*imag(fhat[i])/2.0;
return;

}
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The inverse of the sine transform is also a sine transform, so additional code is not
necessary. However, the user should divide a sine transform that is acting as an inverse
by N/2 to maintain normalization (see Eq. 19.41 for the explanation).

We seek to solve a two-dimensional Poisson equation and thus require the two-
dimensional sine transform. This can be achieved by transforming the rows of the input
matrix and then the columns of the resulting matrix (or vice versa).

19.6.3 An application

We will illustrate the Fourier transform method by solving the problem of viscous fluid
flow in a channel with a uniform rectangular cross section. The channel will be oriented
in the z direction and the fluid will be under pressure p. In this case the speed of the fluid
in the z direction is governed by the partial differential equation:

∇2v(x, y) = 1
μ

∂p
∂z

.

A constant viscosity μ has been assumed, and we will also assume that the rate of change
of pressure in the z direction is constant in x and y. The fluid speed at the channel
walls will be taken to be zero, while the speed at the top of the channel will be set to
vz. Finally, if the channel width is W and its height is H , the flow rate is given R =∫W

0

∫ H
0 dx dy v(x, y).

Following the procedure leading to Eq. 19.44 gives the following code. The bound-
aries have been labelled by i or j = 0 or N + 1, thus the degrees of freedom have indices
running from i/j = 1 to i/j = N .

Eigen::MatrixXd rho(N+1,N+1);
Eigen::MatrixXd rhoHat(N+1,N+1);
Eigen::MatrixXd uHat(N+1,N+1);
Eigen::MatrixXd u(N+1,N+1);

// obtain rho
for (int i=1;i<N+1;i++) {
for (int j=1;j<N+1;j++) {

rho(i,j) = Rho;
if (j == N) rho(i,j) = Rho - vz/(dely*dely); // implement

top BC
}}
// obtain rhoHat
sineTransform2D(rhoHat,rho);
// obtain uHat
for (int n=1;n<N+1;n++) {
for (int m=1;m<N+1;m++) {
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uHat(n,m) = rhoHat(n,m)/(2.0*(cos(n*M_PI/(N+1))-1.0)/
(delx*delx) +

2.0*(cos(m*M_PI/(N+1))-1.0)/
(dely*dely)) ;

}}
// invert to obtain u
sineTransform2D(u,uHat);
// multiply by 4.0/((N+1)*(N+1)) to normalize

The velocity field produced by this code for a modest 80 × 80 grid is shown in
Figure 19.9. Physics parameters were μ = 1, vz = 0.1, H = 0.5, W = 1, and pz = −6.
We stress that the code is extremely fast and stable; running with millions of grid points
is entirely feasible on a laptop.

Figure 19.9 Velocity field for a rectangular channel.

19.7 Finite element methods

Finite differencing is an effective and efficient method for solving partial differential
equations; however, its usefulness is severely hampered in applications with non-
rectilinear integration regions. This can exclude entire fields, such as engineering, where
one is typically interested in properties of objects of unlimited variety in shape and
composition. In this case the standard tool is the finite element method, which is
applied to stresses in materials, heat flow, fluid dynamics, and many other topics in
science and engineering.

At its simplest, the idea of the finite element method is to expand the unknown field
in a basis and choose the parameters of that basis variationally (in a way to be defined
shortly). In practice the basis is chosen to be a simple function with support over a
small region. Regions can be arbitrary but are often taken to be simplexes, which
are shapes that contain volume with the smallest possible number of sides. Simplexes
are particularly useful in approximating complex boundaries, which is desirable in
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engineering applications. In one dimension a simplex is a line segment, in two dimensions
it is a triangle, and in three it is a tetrahedron. All of these are called elements when
applied to the finite element method.

19.7.1 The variational method in one dimension

We introduce the finite element method by considering the solution to a one dimensional
differential equation such as:

d2u
dx2 = f (19.46)

with Dirichlet boundary conditions u(0) = uL and u(1) = uR. The function f is taken to
be a constant for the time being.

The first step is to convert the differential equation into a variational problem. One
can verify that the functional derivative of

J[u] =
∫ 1

0
dx
[1

2

(
du
dx

)2

+ fu
]

(19.47)

does indeed yield Eq. 19.46. For the moment we do not worry about boundary
conditions.

Finite elements are introduced by considering a basis of linear functions over line
segments. We take these elements to have length � for simplicity. Element j is defined to
extend from xj = x0 + j� to xj+1, while the last element runs from xN to xN+1. In our
case x0 = 0 and xN+1 = 1. Similarly, the values of the function at the node points are
denoted uj = u(xj).

The next step is to introduce basis functions that are defined over each element.
There is benefit in keeping these as simple as possible, and we therefore consider linear
functions. In general, an nth order partial differential equation should employ basis
functions that ensure continuity across interfaces of derivatives up to order n−1 (Fenner,
1996). Setting notation, we have:

φj(x) =
{

aj + bjx, x ∈ (xj , xj+1)

0, elsewhere
(19.48)

and

u(x) =
N∑

j=0

φj(x) ≡
N∑

j=0

φ̃j(x) θj , (19.49)

where θj is a step function on the interval (xj , xj+1) so that φ̃j is φj without the constraint
to the jth interval.
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Boundary conditions are imposed by requiring φ0(x0) = uL and φN (xN+1) = uR.
Furthermore, we require that u(x) is continuous so that uj(xj+1) = uj+1(xj+1). The net
result is a piecewise continuous approximation to u(x) that is determined by the values
uj for j between 1 and N . In detail, the basis functions are:

φ̃j(x) = uj + uj+1 − uj

�
(x − xj), (19.50)

with u0 = uL , and uN+1 = uR.
Inserting Eqs. 19.49 and 19.50 into Eq. 19.47 gives:

J({uj}) = 1
2
�
∑

j

(
uj+1 − uj

�

)2

+ f
�

2

∑

j

(uj+1 + uj). (19.51)

The variational principle is now implemented by minimizing with respect to the
unknowns, u1 → uN . Taking the derivative with respect to u� gives:

1
�
(u�+1 − 2u� + u�−1) = �f . (19.52)

This is a remarkable result: minimizing the functional J over a space of piecewise
linear functions is equivalent to finite differencing! Because of this equivalence we do
not pursue the one-dimensional case any further, except to note that generalizations
such as varying element sizes and higher order basis functions can be easily (in principle)
incorporated in the method. It is also possible to forget about elements entirely and use
an expansion such as u =∑j cjφj(x) where the basis functions are now defined over the
entire region. This is called the Ritz method.

19.7.2 Two-dimensional finite elements

It is in higher dimensions, where boundaries can be complicated, that the power of the
finite element method becomes apparent. We will develop the formalism using the simple
Poisson equation

∇2u = ρ (19.53)

as a reference point. The solution is required over a region � subject to boundary
conditions of some type.

The solution to Eq. 19.53 is an extremum of the functional:

J[u] =
∫

�

dx dy
[

1
2
(∇u)2 + ρu

]
.
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We ignore boundary conditions once more. As in one dimension, a solution will be pro-
duced by dividing the region of integration into simplexes—triangles—and expanding
u(x, y) in linear functions on these regions. If an element is labelled e then the basis
function can written as:

φe(x, y) =
{

ae + bex + cey, (x, y) ∈ eth element
0, elsewhere.

(19.54)

Thus

u(x, y) =
∑

e

φe(x, y).

The three constants in the basis function map to the values of u at the three nodes
of the element, which we will label ue0, ue1, and ue2. Specifying the basis function in this
way serves the important role of guaranteeing continuity over the element boundaries
because shared edges will also share values of uei .

For a given element, the contribution to the equivalent functional evaluates to:

J[ue] = Ae

2
(b2

e + c2
e )+ ρAeūe

where Ae is the area of the eth element and:

ūe = 1
3
(ue0 + ue1 + ue2).

If ρ is a function of location this will be replaced with

ρAeūe → ae〈ρ〉e + be〈xρ〉e + ce〈yρ〉e

where we have introduced some new notation that is hopefully clear.
Since ae, be, and ce depend linearly on ue0, ue1, and ue2 the derivatives of J[ue] are easy

to obtain:

∂J[ue]
∂uei

=
2∑

j=0

K (e)
ij uej + f (e)uei

where K (e) is the local stiffness matrix and f (e) is the local force. Expressions for
these are:

K (e)
ij = 1

4Ae
(β

(e)
i β

(e)
j + γ

(e)
i γ

(e)
j ) (19.55)
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and:

f (e) = ρ
Ae

3
. (19.56)

The subsidiary variables are geometrical factors associated with the simplex e and are
given by

β
(e)
0 = ye1 − ye2, β

(e)
1 = ye2 − ye0, β

(e)
2 = ye0 − ye1,

γ
(e)
0 = xe2 − xe1, γ

(e)
1 = xe0 − xe2, γ

(e)
2 = xe1 − xe0. (19.57)

19.7.3 Mesh generation

The next step in the finite element method consists of gathering the local stiffness
matrices into a global stiffness matrix. This depends crucially on the layout of the
elements, which brings us to the topic of mesh generation. A mesh is defined by the
coordinates of its nodes and their triangulation and this information must be carefully
tracked to construct the global stiffness matrix.

A typical mesh for a two-dimensional magnetic field problem with a ring of shielding
material (at the lower left) is shown in Figure 19.10. Several things should be noted about
this figure: (i) all internal nodes must have at least three edges emerging from them,
and can have arbitrarily many (although more than six is rare), (ii) triangles that are
overly elongated are not preferred as they do not yield reasonable distributions of nodes,

Figure 19.10 A two-dimensional mesh for a magnetic shield. Figure by R. Williams.
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Figure 19.11 Element and node labels for a rectangular region.

(iii) most importantly, every element has exactly three nodes associated it. Elements that
obey the last condition are called conforming; see Exercise 32 for why this property is
important.

Generating complex meshes such as in Figure 19.10 is not an easy task. We therefore
start with meshes for simple geometries, such as a rectangle. In this case one can create
a mesh in a uniform pattern by placing evenly spaced nodes throughout the region, as
shown in Figure 19.11. Here we have chosen to place Nx = 4 nodes along the x direction
and Ny = 3 along the y axis. There are NxNy nodes and 2(Nx − 1)(Ny − 1) elements in
total. Nodes are numbered according to the order in which they were created and their
coordinates are stored. Lastly, elements should be numbered and, most importantly, the
nodes associated with each element need to retained. One way to do this is to assign three
node numbers to each element. These can be stored in a custom Eigen array as follow:

typedef Matrix<int,Dynamic,3> eMat; // custom Eigen matrix
of ints with

// dynamically
determined row size

eMat nL; // track nodes
associated with
element

// 0,1,2 label nodes in
the CCW direction

For example nL(0,0)=0, nL(0,1)=5, and nL(0,2)=4.
An alternative method is to associate elements with a node. For example, node 5 is

related to elements as follows: 5 → {0, 1, 2, 9, 8, 7}. We will employ the first method in
the following since it is slightly less awkward. Assigning node numbers is a matter of
indexing for regular meshes.
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Once node coordinates and node labels have been assigned it is simple to assemble
the global force vector:

// assemble force vector [constant rho]
for (element e=0;e<Nelements;e++) {

double ff = rho*area(e)/3.0;
for (int i=0;i<3;i++) f(nL(e,i)) += ff; // sum force

contribution each node
}

It is also relatively simple to evaluate the full stiffness matrix:

// assemble FEM stiffness matrix, K
for (element e=0;e<Nelements;e++) {

double beta[3],gamma[3];
for (int i=0;i<3;i++) {

int j = (i+1)%3;
int k = (i+2)%3;
beta[i] = rNode[nL(e,j)].y - rNode[nL(e,k)].y;
gamma[i] = rNode[nL(e,k)].x - rNode[nL(e,j)].x;

}
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {

K(nL(e,i),nL(e,j)) += (beta[i]*beta[j] + gamma[i]*
gamma[j])/(4.0*area(e));

}}
}

Here rNode is a vector of TwoVectors that is indexed by node number.
The next step is to apply boundary conditions. In the case of Dirichlet conditions one

way to achieve this is to set boundary nodes to their appropriate values and eliminate
them from the stiffness matrix. If n labels a boundary node a simpler approach is to set
K(n,n) equal to a large number and set f(n) = K(n,n) * α(n), where α is the
boundary function. This has the effect of forcing the solution vector to take on the value
α at node n, which is the desired result.

Finally, the solution is obtained by matrix inversion:

u = K.inverse()*f;

We have found this to be effective for matrices with linear dimension as large as
several tens of thousands. In general, the stiffness matrix is sparse (since only adjacent
elements contribute) and therefore employing sparse matrix methods can be profitable,
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or even necessary (millions of nodes are not uncommon in industrial applications).
Of course it is also possible to use iterative solution methods such as Gauss-Seidel or
over-relaxation. Other techniques such as the conjugate gradient method are also
commonly employed. The latter is a powerful iterative method for solving large sparse
matrix problems of the type K �u = �f that leverages the fact that �u minimizes 1

2 �uT K �u−�uT �f .
The library Eigen contains a class that implements the technique. A skeleton showing
its application follows.

int n=100000;
VectorXd u(n), f(n);
SparseMatrix<double> K(n,n);
// fill K and f
ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg;
cg.compute(K);
u = cg.solve(f);

Futher information on the class can be found in the Eigen documentation while more
information on the conjugate gradient method can be found in (Saad, 2003).

An application

We will illustrate the finite element method by considering the fluid flow problem of
Section 19.6.3. Thus we seek to solve:

∇2v(x, y) = 1
μ

∂p
∂z

(19.58)

where the viscosity and pressure are taken to be constant. Boundary conditions are v = 0
along the bottom and side walls and v = vz on the top surface. Finally, the flow rate
through the channel is given by R = ∫W

0

∫ H
0 dx dy v(x, y), where H and W are the

channel height and width.
We solve the problem with the triangular mesh of Figure 19.11 with NxNy nodes.

Simple rescaling yields a rectangle of size H × W . The velocity profile and the mesh for
the case H/W = 1/2, μ = 1, p′ = −6, vz = 0.1, and Nx = Ny = 20 are shown in
Figure 19.12. We remark that the velocity is only known on the nodes; the contours are
interpolated by the plotting code.

Figure 19.13 shows a variety of algorithmic and solution properties relevant to this
problem as a function of Nx = Ny. The number of elements in the stiffness matrix
trivially scales as N4

x , while the number of elements (simplexes) and the number of
nonzero elements in K scale as N2

x . The clock time to obtain a solution scales as N5.5
x ,

which is somewhat worse than the expected N4
x .

Lastly, the curve labeled “1/relative error” refers to the (inverse) relative difference
between the estimated flow rate and the exact result (Fenner, 1996):

R = 1
2

WHVzFD − WH3p′

2μ
FP
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Figure 19.12 Velocity profile in a rectangular channel.
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Figure 19.13 Various properties of the channel flow problem as a function of Nx = Ny.

with

FD = 16
W
H

∞∑

n=0

tanh((2n + 1)πH/(2W ))

π3(2n + 1)3

and

FP = 1 − 192
H
W

∞∑

n=0

tanh((2n + 1)πW/(2H))

π5(2n + 1)5
.
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The relative error scales as 1/N2
x which is as expected (since the discretization error

follows this relationship).

Nonuniform meshes

Our application, while useful and illustrative, does not concern variegated shapes where
the finite element method excels. Creating meshes for general surfaces is a complex
problem, hence the discussion will be restricted to some simple observations and pointers
to references. One of the key aspects of mesh generation is the ability to refine meshes
by creating more elements at crucial areas in the surface. This will be discussed in the
next subsection.

Perhaps the simplest way to tile a general shape is to fill in a bounding rectangle with
a uniform mesh, as in Figure 19.11. Nodes outside of the shape can be removed, and
then the nodes closest to the boundary can be translated to the boundary. This method
will work well for shapes with smooth boundaries.

Another, more robust, algorithm starts by enclosing the region in a bounding simplex.
Then a point within the region is added to the mesh and connected to each vertex. A
second point will lie within one of the simplexes, which should then be divided. Once
as many points as desired have been added, the enclosing triangle and connecting edges
can be deleted. The result will be a mesh with conforming elements, as desired.

This is fine; however, it is possible that some of the elements will be malformed in that
one angle is highly acute. This is an undesirable situation since the basis function must
interpolate over a large distance along two edges of the element. The solution is to adjust
the nodes to form elements that are as equilateral as possible. Formally, this is called a
Delauney triangulation, which is a mesh in which the minimum angle in each triangle
has been maximized.

Some thought, which we need not replicate, leads to the following algorithm for
forming a Delauney triangulation of an arbitrary mesh:

repeat until converged
select an edge

if the sum of the edge angles exceeds 180 degrees
flip the edge

The meaning of “edge angles” and “flip” is clarified in Figure 19.14.
This algorithm has complexity O(N2), which can be improved. At this stage

it is probably best to rely on professionally constructed code as provided by, for
example, the Computational Geometry Algorithms Library. This library, located at
http://www.cgal.org, is the product of a global collaboration of academic and
business developers who seek to create quality open source C++ code dealing with
geometrical algorithms.

An attractive alternative is provided by code developed by Persson and Strang (2004).
The code relies on a signed distance function, which gives the distance of any point
to the nearest boundary and is negative inside the region of interest. For example, for
a circle one can use d(x, y) = √

(x2 + y2) − R. The signed distance function is used

http://www.cgal.org
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Figure 19.14 Delauney triangulation of an edge. The edge AC has associated angles (ABC) and
(ADC) that sum to an angle greater than 180 degrees. Thus edge AC is flipped to BD.

to define the region and to move nodes to the boundary surface. The algorithm starts
with a uniform grid that covers the entire region of interest. External nodes are then
truncated and an iterative procedure that places nodes and fixes the mesh is initiated.
Node placement is achieved by connecting nodes with an artificial force and stepping
the many-body difference equation forward in artificial time. Persson and Strang have
found that an asymmetric repulsive spring law works well for this purpose:

f (�) =
{

k(�0 − �) if � < �0

0 if � > �0
. (19.59)

Here �0 is an equilibrium edge length (or node separation) that can be set by the user
to obtain the desired element density. Once the nodes have been placed, a Delauney
triangulation is made to establish the mesh geometry. The entire process is iterated until
convergence.

Mesh refinement and error estimation

Take a look at Figure 19.12 again: notice that the velocity contour lines bend sharply
near the top left and right corners. This is because the speed is constrained to be zero
on the vertical surfaces and vz on the top surface. Thus all contours with v(x, t) between
zero and vz must merge at the top left or top right corners. It therefore appears prudent
to place more nodes near these locations.

In general, one would like to be able to increase the density of nodes in places where
the field is expected to vary rapidly. With some intuition, these areas can be anticipated
and the density of nodes can be adjusted accordingly. For example, in the Persson-Strang
method one can make the equilibrium node lengths a function of position, �0 → �0(x, y).

Absent intuition, error estimation is useful, both for assessing the reliability of a
numerical result and for deciding where additional elements are needed. A simple way
to estimate errors on a uniform grid is to halve the grid scale, thus for example, one can
use 2Nx × 2Ny nodes in Figure 19.11. Since the original nodes will correspond to one
half of the nodes on the refined grid, one can compare solutions and determine where
the solution has most changed.



684 Conclusions

1 2 1
2

3

Figure 19.15 Left: Bisecting an element with shared longest edge. Edges 1 and then 2 are added to the
mesh. Right: Bisecting an element without a shared longest edge. Edge 1 and 2 are added, at some later
time edge 3 is added, making the visible elements conforming. Additional bisections must occur in the
remainder of the grid to ensure that the elements along the top right edge are also conforming.

For general meshes it is expeditious to use an algorithm that bisects triangles along
their longest edges. This will make a nonconforming element in the neighboring triangle
so if that edge is also the neighbor’s longest, it must be bisected as well (see Figure 19.15
left). If it is not the longest, then the neighboring element should be bisected along its
longest edge, and the process should be repeated until convergence (Figure 19.15 right).
All of this can be achieved with a recursive algorithm, such as that in the following
pseudocode.

refine(E) {
let L = longest edge of E; N = neighbor element with the

shared edge
if L != longest neighbor edge {

refine(N)
}
bisect L: {

add new node
add new element
reset node labels for the old element
set node labels for the new element

}
}

For more detailed information, the reader is directed to Mitchell (1989), who
summarizes the properties of a variety of error estimation and adaptive mesh generation
methods.

19.8 Conclusions

The breadth of physical problems that are defined in terms of fields is nearly matched by
the range of relevant numerical techniques. The method to be used will depend on the
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way in which information is propagated (initial or boundary values), the dimensionality
of the problem, the complexity of the region of interest, coordinate-dependence in the
partial differential equation, and whether the problem is nonlinear. We recommend
starting with Fourier transform techniques because they are fast and robust. If boundary
conditions are uncooperative then finite differencing, especially the Crank-Nicolson
scheme, can be considered. Finally, complex problems can be solved with finite element
methods, although this will require some investment in grid generation and refinement
technology. It is clear that choosing wisely will require some experience on the part of
the numericist — hopefully this chapter will have started the reader on his way to gaining
this experience.

19.9 Exercises

Finite Difference Methods

1. [T] The Jacobi Method and FTCS Discretization.
We pursue the analogy made in the lead up to Eq. 19.28, wherein it was claimed
that iterative methods are related to time-dependent partial differential equations.

Perform an FTCS differencing of Eq. 19.28 with L = ∇2. Impose the two-
dimensional version of the CFL condition and show that the Jacobi scheme results.

2. [T] Nine-point stencil.
Perform a Taylor series analysis of the nine-point stencil (Eq. 19.16) and show that
it is of order �2. Show that the coefficient of �2 is proportional to ∇2(∇2ρ) and
comment on the importance of this when solving Laplace’s equation.

3. [T] Alternate Nine-point Stencil.
Consider a nine-point stencil that is defined on the points (x, y), (x±�, y), (x±2�, y),
(x, y ± �), and (x, y ± 2�). Obtain the coefficients at these points such that the
Laplacian operator is estimated to an accuracy of O(�4).

4. [T] CFL condition in d dimensions.
Perform stability analysis for a typical explicit scheme in d dimensions.

a) Show that the CFL condition becomes

h
�

≤ 1√
d|v|

for the advection problem. Use ρn
�� = ξn(�k) exp(i �k · ���).

b) What is the analogous expression for diffusion?

5. [T] Position-dependent Diffusion.
Consider discretization of the equation ∂tρ = ∂x(D(x)∂xρ).
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a) Confirm that Eq. 19.14 is a viable discretization.

b) Find the analogous form of the FTCS difference equation if one were to use
∂xD = (D�+1 − D�−1)/2�.

6. [T] Stability of the Wave Equation.

a) Write the one-dimensional wave equation

∂2u
∂t2 = c2 ∂

2u
∂x2

as coupled first order equations of the advection type.

b) Perform von Neumann stability analysis of the coupled equation and determine
the stability condition.

7. [T] Efficiency in ADI.
Consider the ADI method applied to the problem

∂iDij∂ju − �v · ∇u = ∂tu

with a constant diffusivity tensor in two dimensions.

a) Obtain the stability condition from von Neumann analysis.

b) Consider the x step portion of the ADI method. How would you obtain un+1/2
ij ?

Specifically, is it better to map the matrix to a vector, uij → uI(i,j), or to solve the
tridiagonal problem many times in the index j?

8. Complex Tridiagonalization.
Write a version of the tridiagonalization routine that operates on tridiagonal matrices
with constant complex diagonal entries.

9. Circular Symmetry.
Use finite differencing to solve for the electric field of a point particle in a large box.
Box boundary conditions ruin the circular symmetry of the problem. Compare your
solutions using five-point and nine-point stencils and comment on the symmetry.

10. FTCS Instability.
Solve the one-dimensional advection equation ∂rρ = −∂xρ in the region x ∈ (0, 1)
with initial condition ρ(x, 0) = sin(πx).

a) What boundary conditions should be used for ρ0 and ρN ?

b) Plot the solution at t = 0, 5, and 10. Try h = 0.01 and � = 0.01. Note the
appearance of unstable modes as time increases.
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11. Jacobi Successive Over-relaxation.
Implement successive over-relaxation with Jacobi iteration and try it on the capacitor
problem of Section 19.4.1. You should find that the method fails. Examine the von
Neumann amplification factor and comment.

12. Successive Over-relaxation Efficiency.
Code up the two-dimensional capacitor of Section 19.4.1 with SOR and Gauss-
Seidel iteration.

a) Plot the error vs. iteration and confirm that Gauss-Seidel iteration is O(N2) while
SOR (with optimal over-relaxation parameter) is O(N).

b) How does the SOR algorithm scale if ω is fixed to, say, 1.95?

13. The Heat Equation.
Consider the heat equation in one dimension

ut = 1
π2 uxx

in the region x ∈ [0, 1] with boundary condition u(x, 0) = sin(πx) (and therefore
u(0, t) = u(1, t) = 0).

a) Find the analytic solution.

b) Solve the equation using the Crank-Nicolson scheme and compare to the exact
result.

14. The Black-Scholes Equation.
The Black-Scholes equation is a financial model that yields the price of a stock option
(Black and Scholes, 1973). The equation reads

∂tV + 1
2
σ 2S2 ∂

2V
∂S2 + rS

∂V
∂S

− rV = 0,

where V (S, t) is the price of the stock option, S is the price of the underlying stock,
σ is the stock volatility, and r is the annualized interest rate.

The boundary conditions are V (S, t) → S as S → ∞, u(0, t) = 0, and
V (S, T) = max(S − K , 0) where K is the strike price of the option and T is the
strike time. The first condition need not be applied (although it is a useful check).
The constraint on the option price at time T is somewhat awkward at first sight, but
can be incorporated as a final condition, with the finite difference equation going
backwards in time.

a) Implement a backwards-time finite difference algorithm and obtain the solution
to the Black-Scholes equation. Take K = 1, T = 1, σ = 0.2, and r = 0.1. Plot
V (S, t) for various times between zero and T .
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b) An alternative is to nondimensionalize by setting t = T − τ
σ 2/2

, S = K exp(x),
and V = Kv(x, τ). Show that the resulting equation is:

∂tv = ∂2
x v + (k − 1)∂xv − kv.

Identify k. Obtain the initial conditions and solve.

Lastly, the Black-Scholes equation can be reduced to the heat equation, but we are
not interested in that here.

15. SIR Disease Dynamics Model.
A simple model of population dynamics was introduced in Ex. 15 of Chapter 11.
Here we generalize this to account for differing disease dynamics among different
age groups. In the limit in which age is considered a continuous variable, a, one
obtains coupled integro-differential equations (Rock et al., 2014):

∂tS(a, t) = bδ(a)− S
∫ ∞

0
β(a, a′)I(a′, t) da′ − dS − ∂aS

∂tI(a, t) = S
∫ ∞

0
β(a, a′) I(a′, t) da′ − γ I − dI − ∂aI

∂tR(a, t) = γ I − dR − ∂aR

a) FTCS difference these equations, dealing with the integrals in the natural way.
Find a way to handle the delta function.

b) Solve the SIR equations assuming β = β0 exp(−(a − a′)2) with β0 = 0.2, d =
10−4, γ = 0.1, b = 10−4. Take the initial condition to be I0 = 10−6, R0 = 0, and
S0 = 1 − I0.

16. [P] Stochastic Advection-Diffusion.
Diffusion is simply particles executing a random walk. Advection is particles in
a current. Thus it appears natural to forego the partial differential description of
advection-diffusion and directly simulate the process by following many particles as
they walk randomly in a moving background. Implement this idea in one dimension
and compare to the analytic solution for a simple source term. See Sections 21.3.1
and 22.4 for more information on random walks in a different context.

17. [P] A Nonlinear Partial Differential Equation.
This chapter has almost exclusively dealt with linear equations; however, differ-
encing can be usefully applied to nonlinear partial differential equations. As an
illustration consider:

∇2u + 1
λ2 u2 = ρ.

Work in the unit square with u = 0 on the boundary. Set ρ = −1 and λ = 0.1.
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Discretize to obtain:

D2u�,m + �2

λ2 u2
�,m −�2ρ�,m = 0.

We solve this equation by linearizing to implement the Newton-Raphson method
and by isolating the diagonal operators on the left hand side to implement Jacobi
iteration. To facilitate this let D2 = (D + U + L) as before, and:

�2

λ2 u2
�,m ≡ N(u)�u.

a) Linearize and obtain

�u′ = (D + 2N(u))−1
(
�2ρ + N(u)�u − (U + L)�u

)
.

b) Implement this scheme and confirm that the code converges to a solution.

c) Think about the Gauss-Seidel and SOR algorithms. Can you implement these
methods for this problem?

d) You might be tempted to forego linearization. Show that the resulting Jacobi
equation is now

�u′ = (D + N(u))−1
(
�2ρ − (U + L)�u

)
.

Does this lead to a viable solution? How does the code differ in behavior from
part (b)?

18. [P] Burger’s Equation.
Burger’s equation is a simple model of nonlinear effects in fluid flow that is based
on the Navier-Stokes equations for a homogeneous incompressible fluid. The one-
dimensional equation reads:

ut + uux = Duxx.

The equation is capable of describing shocks because the nonlinearity in the ∂x term
causes the top of a wavepacket to move faster than the base of the packet. Eventually
the top catches the base and a cusp is formed. These tend to occur at high Reynolds
number, R ≡ 1/D. The existence of possible discontinuities is a concern since
differencing is predicated on the smoothness of the fields! Nevertheless, let us press
ahead with hope in our hearts.

a) Forward-time-upwind-difference Burger’s equation. Remove the nonlinearity by
mapping
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u∂xu → un−1
�

un
� − un

�−1

�
.

Thus a linear problem is recovered the expense of an additional vector. What are
we assuming about u in this scheme?

b) Set u(x, 0) = exp(−(x−3)2) and D = 0.01 and explore the numerical properties
of the solution. Does the expected cusp develop? Make a simple estimate for
when this happens. What happens if you run for longer?

c) Intuitively the CFL condition becomes h/� < 1/u. Check this by performing a
von Neumann stability analysis. Simplify by setting D = 0 if you wish.

d) The Lax-Wendroff scheme provides a more stable difference equation. Con-
sider Burger’s equation in the inviscid limit:

ut + ∂xF(u) = 0,

where F = u2/2. The associated Lax-Wendroff difference equation is:

un+1
� = un

� − h
2�

(Fn
�+1 − Fn

�−1)+
h2

2�2

[
F ′(un

�+1/2) (F
n
�+1 − Fn

� )− F ′(un
�−1/2)

(Fn
� − Fn

�−1)
]
.

Code this up and compare to the naive approach of part (a).

e) The stability condition for the Lax-Wendroff scheme is:

|F ′(wn
�)| <

�

h

for all n and �. Use this to implement a variable time-step algorithm and compare
to (d).

19. [P] The FitzHugh-Nagumo Model for Cardiac Dynamics.
Heart muscle can be thought of as an excitable medium, meaning that small
external stimuli can induce large responses. In the case of the heart, the sinoatrial
node produces regular electrical impulses that are amplified and travel through the
heart causing a contraction.

The FitzHugh-Nagumo equations provide a simple model of this phenomenon
via the nonlinear partial differential equations (Winfree, 1991):

∂tV = ∇2V + 1
ε

(
V − 1

3
V 3 − W

)

∂tW = ε(V − γW + β)
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where V is the transmembrane potential, W is the recovery variable, and the Greek
letters are parameters with values ε = 0.2, γ = 0.8, and β = 0.7.

We will explore this nonlinear system in a series of steps.

a) Neglect the Laplacian term in the model and plot the lines along which ∂tV =
∂tW = 0 in the V −W plane. The point where these lines cross, (V , W ), is the
resting state of the heart (and the fixed point of the dynamics).

b) Stimulate the heart by starting a simulation at the point (V + δV , W ). Plot V
and W as a function of time. How large must δV be to obtain a pulse?

c) Communication between heart cells is emulated with the Laplacian term. Model
the heart as a two-dimensional box. Set V = W = 0 at the boundary. Solve the
full equations with the initial condition (V , W ) except in a small region at the
origin, where you should use (V + 3, W ). Describe the temporal evolution of
the system.

d) Mimic the sinoatrial node by periodically stimulating the heart in the region at
the origin. Make the period long enough that pulses finish before new ones start.

e) Stimulate random small regions of the heart with δV = 3 while pulses are active.
You should be able to generate spiral waves, which are interpreted as heart
arrhythmias.

f) Ponder extensions to the model: dead tissue, spatially-dependent parameters,
pacemakers, etc.

g) Consider making a realistic finite element model of the heart.

20. [T] Separable Two-particle Scattering.
Show that a two-particle wavepacket that is separable in coordinates

ψ(�r1, �r2) ∝ exp(−(�r1 − �a)2 + i �k1 · �r1) · exp(−(�r2 − �b)2 + i �k2 · �r2)

is also separable in the relative coordinates. You should obtain an expression like:

ψ( �R, �r) ∝ exp(−α( �R − �A)2 + i �K · �R) · exp(−β(�r − �B)2 + i �k · �r).

Specify the constants α, β, �A, and �B in this formula.
This result implies that simulating a two-particle scattering process is no more

difficult than a one-particle process.

21. One-dimensional Scattering.
Solve the time-dependent Schrödinger equation for the scattering of a Gaussian
wavepacket from a square potential barrier. Set the barrier height equal to the
average energy. Study the behavior of the system for sufficient time that the
transmitted and reflected waves have left the region of the potential. You should
observe residual probability density within the potential barrier. Follow this density
over time and describe its behavior.
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22. [P] The Double Slit.
Use the Crank-Nicolson method to solve for the time evolution of a wavepacket
interacting with a double slit. This might need some industrial strength computing
since the problem becomes quite large in three dimensions.

23. [P] Visscher Method for Quantum Scattering.
It is useful to remember that many solution strategies that trade one advantage for
another exist. Thus, while the Crank-Nicolson scheme is second order accurate,
stable, and unitary, other schemes that are not unconditionally stable, but are fast,
exist. We describe one such method, due to Visscher (1991), that has explicit
updating, is unitary, and is second order accurate in time.

The idea is to evolve the real and imaginary portions of the wavefunction in
alternating steps. Thus one setsψ = R+i I and rewrites the Schrödinger equation as:

∂R
∂t

= HI

∂I
∂t

= −HR

The equations are discretized as follows:

In+1
� = In

� − hHRn
�

Rn+1
� = Rn

� + hHIn+1
�

with boundary conditions:

R0
� = Reψ(x, 0)

and:

I0
� = Imψ

(
x,−h

2

)
.

Thus the algorithm actually makes half steps. The wavefunction norm defined by

|ψ |2 = Rn+1
� Rn

� + In+1
� In+1

�

is conserved under the discrete time evolution of the method. Finally, the stability
condition is:

−2
h
< V� <

2
h
− 2

μ�2

(h̄ has been set to unity).
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Code up the Visscher algorithm for one-dimensional scattering from a square
well and compare the results to those of the Crank-Nicolson scheme. What values
of h are required with respect to the Crank-Nicolson scheme to achieve comparable
results? What happens if � is made “too” small? How does the speed compare to
the Crank-Nicolson case?

Fourier Methods

24. Gaussian Fourier Transform.
Use the Eigen FFT package to compute the Fourier transform of exp(−t2) (recall
the discussion after Eq. 19.45). Explore the error as a function of N and �.

25. [T] The Sine Transformation.
Show that the relationship of the sine transformation to the FFT developed in
Section 19.6.2 is correct. Hint: start with the definition of the FFT, double N ,
split the sum into two pieces, relabel the index in the second piece according to
j′ = 2N − j, notice that the limits don’t quite agree so that a sine function is not
readily computable, fix this by separating certain summands.

26. [T] Discrete Green Functions.
The solution for the field ûm,n given in Eq. 19.44 contains the discrete Green
function for the Poisson equation.

a) Confirm that the two-dimensional Green function for the discrete Laplacian is
as given in Eq. 19.44.

b) Obtain the solution to the equation ∂xu(x) = ρ(x)with the discrete sine transform
method.

c) Derive the Green function for the nine-point stencil of Eq. 19.16 with the discrete
sine transform.

27. A Simple Equation.
Consider the boundary value problem:

u′′ = f

where f is a constant and u(0) = u(1) = 0.

a) Derive the exact solution.

b) Make a sine expansion u = ∑
n an sin(nπx) and obtain the expression for the

coefficients.

c) Graph the first few Fourier estimates of u along with the exact result.

d) Discretize the equation and solve it using the discrete sine transformation
method. Compare to the exact answer.
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e) Generalize the formalism to handle the boundary conditions u(0) = uL and
u(1) = uR and verify that it works.

28. Two-dimensional Sine Transform.
Create a routine to compute the two-dimensional sine transform,

f̂ mn =
N−1∑

ij=1

fij sin(imπ/N) sin(jnπ/N),

that leverages Eigen::FFT.

29. Two-Dimensional Poisson Equation.
Solve the equation ∇2u = exp(−(x2 + y2)/β) on the unit square using the two-
dimensional sine transform.

a) Set β = 0.1 and u = 0 on the boundaries.

b) Set β = 0.1 and u(x, 0) = α sin(πx) with α = 0.004. Make u zero on the other
boundaries.

30. [P] Image Processing.
Image data created by a camera can be characterized by a response function:

r(x, y) = 1
T

∫ T

0

∫
dtdx′dy′ d(x, y; x′, y′, t) s(x′, y′, t)+ η(x′, y′)

where T is the exposure time, η is random noise, and d is a distortion function.
Under ideal conditions there is no noise and no distortion so that:

d(x, y; x′, y′, t) = δ(x − x′)δ(y − y′).

Furthermore, if the subject is not moving then s is independent of time and one
recovers the signal, r = s. Examples of distortion are atmospheric turbulence that
can be modeled with:

d(x, y; x′, y′, t) = exp(−α(x′2 + y′2))

or blurring due to lack of camera focus with

d(x, y; x′, y′, t) =
{

1, x′2 + y′2 < r2

0, elsewhere
.



Continuum dynamics 695

Here we consider blurring due to uniform motion along the x axis. In this case the
response function is given by:

r(x, y) = 1
T

∫ T

0
s(x − vt, y) dt =

∫ ∞

−∞
d(x′)s(x − x′, y) dx′

where:

d(x) =
{

1
vT 0 < x < vT
0 otherwise

.

We seek to recover an unblurred image s from the camera data r. This is a difficult
process in space, but is simple in the frequency domain. In particular:

r̂(fx, fy) =
∫

exp(−2π ifxx) exp(−2π ifyy) r(x, y) dx dy

is given by:

r̂ = ŝ · d̂

by the convolution theorem. Thus the desired signal is given by the inverse Fourier
transform of r̂/d̂.

Find an appropriate blurred image, discretize it, perform the indicated Fourier
analysis, and obtain the unblurred image. You will need to adjust v to maximize the
image sharpness.

Finite Element Method

31. [T] Two-element Stiffness Matrix.
Consider a rectangular region with two elements and four nodes (Nx = Ny = 2 in
Figure 19.10).

a) Obtain the analytic expressions for the local and global stiffness matrices.

b) What happens for larger Nx and Ny?

c) Can you make sense of your findings?

32. [T] Bad Elements.
Explain why a mesh such as shown in Figure 19.16 is unacceptable in the finite
element method. Such a configuration is called nonconforming.

33. [T] One-dimensional Finite Elements i.
Generalize Eqs. 19.51 and 19.52 to the case f = f (x). How does your result compare
to the analogous finite difference equation?
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Figure 19.16 A poorly constructed mesh.

34. [T] One-dimensional Finite Elements ii.
Generalize Eqs. 19.51 and 19.52 to the case:

d2u
dx2 + gu = f .

How do your results compare to the analogous difference equations?

35. [T] One-dimensional Tent Functions.
Repeat the analysis of the one-dimensional finite element method with a tent function
basis. The tent function is defined to be:

φj(x) =

⎧
⎪⎨

⎪⎩

(x − xj−1)/(xj − xj−1), xj−1 < x < xj

(xj+1 − x)/(xj+1 − xj), xj < x < xj+1

0, elsewhere

.

Let u =∑j ciφj .

a) Use the finite element variational approach to determine the equation for the {cj}
for the equation u′′ = f , where f is constant. How does the result compare to the
finite difference equation?

b) How do things change if f is a function of x?

36. A Circular Mesh.
Write code to generate the nodes and node labels for a mesh in a circular region.
Node locations are easy to get; node labels are a bit of a bear. Consult Fenner (1996)
if you need help.

37. Laplace’s Equation i.
Solve Laplace’s equation in a unit square with u(0, y) = 0, u(1, y) = 0, u(x, 0) =
0, and u(x, 1) = sin(πx) using finite elements. Compare your answer to the exact
solution:
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u(x, y) = sin(πx) sinh(πy)
sinh(π)

.

38. Laplace’s Equation ii.
Solve Laplace’s equation in a unit square with u(0, y)= 0, u(1, y)= 0, u(x, 0)= 0,
and u(x, 1)= 1 using finite elements. Compare your answer to the exact
solution:

u(x, y) = 4
π

∞∑

n=0

sin[(2n + 1)πx] sinh[(2n + 1)πy]
(2n + 1) sinh[(2n + 1)π]

.

39. Beam under Torsion.
St. Venant’s theory of torsion yields the partial differential equation

∇2u(x, y) = 2Gk

for the torsional stress in a beam. Here k is the rate of change of twist k = dθ/dz
along the beam (defined in the z direction), θ is the twist angle, u is the stress
function (Prandtl’s function) defined on the beam cross section, and G is the
shear modulus of the beam. With these definitions, the total torsion is given by
T = −2G

∫
u(x, y)dxdy.

Use finite elements to find the stress function for a beam with a uniform triangular
cross section. Set u = 0 on the beam boundary.

40. [P] Fluid Flow Past a Disk.
Consider fluid flow through a uniform channel with square cross section, so that
Eq. 19.58 applies. Place a disk of radius one half the square dimension in the
center of the channel and use the finite element method to solve for the fluid
velocity field assuming that v = 0 on the surface of the disk and at the channel
boundaries.

41. [P] Laplacian Pac-Man.
We seek the solution to Laplace’s equation in a circular region of radius unity
centered at the origin. The region has its lower right quadrant removed and
has Dirichlet boundary conditions of u(r, θ = 0)= 0, u(r, θ = 3π/2)= 0, and
u(1, θ)= sin(2θ/3) for θ ∈ (0, 3π/2).

a) Show that the analytical solution is u = r2/3 sin(2θ/3). You will want to consider
the Laplacian in circular coordinates.

b) The rapid change in u at small r indicates that a nonuniform mesh is desirable.
Construct such a mesh using a reasonable node density in the radial direction.

c) Code, solve, and compare to the analytic result.
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42. Convex Hulls.
A convex hull is the subset of points that contains all other points in a set.
The convex hull is an important component of many algorithms that deal with
geometrical computation, with applications to finite element analysis, imaging,
graphics, and robotics. The simplest approach to obtaining a convex hull is called
gift wrapping or the Jarvis march. In two dimensions the idea is to start with
the left-most point of a set of nodes and sweep a line from this point until another
node is encountered. The process is repeated with the next node and terminates
when the original node is encountered. If there are N nodes in total and M nodes
in the hull, it is evident that the algorithm is O(NM). A (possibly) more efficient
algorithm, called the Graham scan, can achieve O(N log N) complexity via an
analogue of sorting. Chan’s algorithm achieves an optimal O(N log M) complexity
by combining the Jarvis march with the Graham scan. For more information see
(Corman et al., 2001).

The latter algorithms are fairly complex, and the numericist interested in
professional grade code is advised to consult online packages such as Qhull
(available at www.qhull.org) or the packages at www.cgal.org. Alternatively,
the Jarvis march is relatively simple to implement in two dimensions. C++
code to collect node labels (in the vector hullPoints) for a set of nodes
is given below. This code requires finding the left-most node and storing its
node label in hullStart. This is easy to do during node creation. The
algorithm given below does not handle collinear points; the required extension is
not difficult.

The function left returns true if the node m is left of the line joining nodes
hullPoints[n] and endPoint. Implement this function and the Jarvis march
and test your code on sets of random points in the plane. Output should look like
Figure 19.17.

Figure 19.17 The convex hull for 20 random points.

www.cgal.org
www.qhull.org
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// convex hull via Jarvis march
node endPoint;
node hullPt = hullStart;
node n=0;
do {
hullPoints.push_back (hullPt);
endPoint = 0;
for (node m=1;m<N;m++) {

if ( (endPoint == hullPt) || left(hullPoints[n],
endPoint,m) ) {

endPoint = m;
}

}
n++;
hullPt = endPoint;

} while (endPoint != hullStart);
cout << n << " h u l l p o i n t s found " << endl;

..........................................................................................
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20.1 Introduction

This chapter studies the behavior of collections of localized classical degrees of freedom,
which we generically call spin systems. Some, like the Ising model, are almost trivial to
describe, yet embody an amazing diversity of emergent phenomena. This is reminiscent
of the percolation models of Chapter 8, and indeed all of the general techniques
introduced there find application in the spin systems to be discussed here. In terms of
physics, the chief difference is that spin systems can be thermalized and often provide
accurate models of physical materials or more theoretical constructs. The original
application was, of course, to magnetic materials. Classical spin models also serve as
simplified exemplars of complex dynamical problems such as voter dynamics, disease
propagation, binary alloys, neural networks, cracking, avalanches, and the liquid-gas
phase transition. As discussed in Chapter 8, it is universality that underpins this breadth
of applicability.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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The Monte Carlo method is ideal for analyzing the properties of spin systems and we
shall focus exclusively on its application to a variety of problems in this chapter. Among
the topics addressed will be determining the order of a phase transition, finite size scaling,
and critical exponents. We will also explore a method to simultaneously compute an
observable at many parameter values called “reweighting”; examine the phenomenon
of “critical slowing down”, where algorithmic efficiency is impaired near critical points;
take a close look at error estimation; and introduce specialized Monte Carlo techniques
where blocks of spins are updated at the same time. These issues will be examined in the
context of various models known as the two-dimensional nearest neighbor Ising model,
the q-state Potts model, and the XY model, but are very general in applicability. Analytic
approximations and applications to a variety of problems are presented in the exercises.

20.2 The Ising model

In many ways the Ising model is the simplest possible implementation of a classical
many body system.1 In spite of this, its thermodynamic properties display an astonishing
richness. The Ising model can be considered as a simplified classical limit of Heisenberg’s
model of quantum ferromagnetism (see Chapter 22). In this case the quantum mechan-
ical spin operator is replaced with a classical “spin” that can take on two possible values:

�S = h̄�σ
2

→ h̄σ3

2
→ σ

2
. (20.1)

Since σ3 commutes with itself, it can be considered a classical variable and quantum
mechanics no longer applies. The model is then:

H = −
∑

ij

Jijσiσj −
∑

i

hiσi (20.2)

where σi = ±1 is a spin variable at site i. An external magnetic field is denoted hi in
this expression. Often the model is simplified by assuming a uniform external magnetic
field and by choosing coupling constants to be uniform and zero except when the sites i
and j are nearest neighbors. In this way the system becomes translationally invariant,
simplifying the analysis substantially. Standard notation for this “nearest neighbor”
problem is:

1 Ernst Ising (1900–1998), (pronounced “ee-zing”), German physicist. The eponymous Ising model was
suggested as a PhD thesis topic by his supervisor, Wilhelm Lenz. His paper on the model was published in
1925 and the model was subsequently developed by such prominent physicists as Rudolph Peierls, Hendrik
Kramers, Gregory Wannier, and Lars Onsager. Ising spent the years before WWII as a teacher before the Nazi
pogroms forced him to flee for Luxembourg, where he worked for some time as a shepherd. He settled in
Peoria, Illinois after the war and it was only at this time that he discovered that his model had become famous.
He never published again.
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H = −J
∑

(ij)

σiσj − h
∑

i

σi , (20.3)

where the symbol (ij) means sum over distinct nearest neighbor pairs.
When the coupling J is positive, spins tend to align at low temperature and the system

is called ferromagnetic. Alternatively, if the coupling is negative spins anti-align and the
system is called an antiferromagnet.

20.2.1 Definitions

We seek to evaluate the thermodynamic partition function

Z =
∑

{σ }
e−βH ≡ e−βF (20.4)

where β = 1/kBT , the sum is over all 2N possible spin configurations (N is the number
of spins), and F is the free energy. The reader is reminded that derivatives of the free
energy yield all thermodynamic quantities of interest. Henceforth we work in units J = 1
and often suppress writing the Boltzmann constant, kB.

The one dimensional Ising model can be solved exactly (see Ex. 2) and does not
exhibit a phase transition. Alternatively, the model defined on a two dimensional square
lattice has a second order phase transition at the critical temperature:

kBTc

J
= 2

log(1 +√
2)

≈ 2.269185 (20.5)

with an induced magnetic field of strength:

M =
(

1 −
[

sinh
(

2J
kBT

)]−4
)1/8

. (20.6)

Recall that the induced magnetic field is defined as:

M = −∂F
∂h

= 1
Z

∑

{σ }

∑

i

σie−βH ≡ 〈S〉. (20.7)

We have introduced the thermal average of a quantity as:

〈O〉 = 1
Z

∑

{σ }
O({σ })e−βH . (20.8)
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The magnetic field is an order parameter for the Ising model. Specifically, at large
temperature the spins flip independently and randomly, hence M → 0, while for a
ferromagnet at low temperature the spins tend to align (the state with all spins up
(σi = +) or down (σi = −1) minimizes the energy), and hence M = ±1. For finite
lattices one expects a smooth transition between M = ±1 and M = 0 as the temperature
is increased. As the lattice size goes to infinity this transition sharpens and a singularity
develops at T = Tc. When the system has zero magnetization (i.e., when T > Tc), it
is said to be in the symmetric phase, which means that the rotational symmetry of
the Hamiltonian is manifest in expectation values of observables. Alternatively, when the
system is magnetized (i.e., T < Tc), full rotational symmetry is no longer evident because
a special direction (of magnetization) has been selected. In this case the system is said to
be in the broken phase and the symmetry is spontaneously broken.

Other quantities of interest are the entropy:

S = − ∂F
∂T

= − 1
T2 〈H〉, (20.9)

while from F = U − TS we derive the internal energy:

U = −T2 ∂(F/T)

∂T
. (20.10)

The isothermal magnetic susceptibility is defined by:

kBTχ = kBT
∂M
∂h

= 〈S2〉 − 〈S〉2, (20.11)

and the specific heat is:

kBT2CV = kBT2 ∂U
∂T

= 〈H2〉 − 〈H〉2. (20.12)

20.2.2 Critical exponents and finite size scaling

At low temperature all the spins tend to align, and thus the correlation between widely
separated spins is close to unity. At high temperature β is small and there is little to
distinguish random spin configurations, thus the correlation between spins approaches
zero. In between there is a temperature at which the qualitative behavior of the system
changes from correlated to uncorrelated, which is the critical temperature, Tc, discussed
previously.

In general, correlations are characterized by a correlation length ξ , which is a
function of the size of the system and the temperature (we consider the case of
zero external magnetization). The completely correlated low temperature phase has a
correlation length of infinity (or L if the system is of linear size L). Alternatively, the
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Figure 20.1 An ising spin configuration at kBT = 2.5.

correlation length is small at high temperatures. As with percolation (see Chapter 8), the
system fluctuates at all scales at the critical temperature, and hence ξ diverges at Tc. This
is illustrated in Figure 20.1, which shows a spin configuration near Tc that is dominated
by fluctuations that appear to occur over a wide range of length scales.

Systems whose dynamics are dominated by a single scale obey scaling relations that
specify simplified behavior for various quantities. This concept was introduced in
Section 8.3, which the reader may want to peruse. In the case of spin (and other) systems,
this occurs near phase transitions. The functional form of the behavior is often written as
simple power laws. Thus, for example, the way in which the correlation length diverges
is parameterized as:

ξ → ε−ν ε → 0, (20.13)

with:

ε = |T − Tc|
Tc

. (20.14)

A critical exponent ν has been introduced to express the rapidity of the divergence of
the correlation length as the critical temperature is approached.

At criticality one expects ξ ∼ L, where L is the linear size of the system. Thus the
combination Lεν is invariant. A similar argument for the external magnetic field reveals
that the free energy must scale as (Fisher, 1971):

F(T , h; L) = L−(2−α)/ν F̂(εL1/ν , hL(γ+β)/ν) (20.15)

Differentiation with respect to h (and setting h = 0) then gives the finite scaling laws:

M = L−β/νM̂(εL1/ν), (20.16)

χ = Lγ /νχ̂(εL1/ν), (20.17)

CV = Lα/νĈV (εL1/ν). (20.18)

The powers in these expressions tend to depend solely on global properties of a system
(like its dimensionality) and thus their values label the universality class to which the
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Table 20.1 Ising model critical exponents (Pelisetto and Vicari,
2002).

Definition Exponent d = 2 d = 3 MFT

C → |T − Tc|−α α 0 0.110(1) 0

M → |T − Tc|β β 1/8 0.3265(3) 1/2

χ → |T − Tc|−γ γ 7/4 1.2372(5) 1

G → e−r/ξ

rd−2+η η 1/4 0.0364(5) 0

ξ → |T − Tc|−ν ν 1 0.6301(4) 1/2

system belongs. Thus determining critical exponents is an important part of analyzing
the structure of a given system.

The critical exponent η makes its appearance in spatial correlation functions as:

〈ρ(0)ρ(r)〉 ∼ 1
rd−2+η

r → ∞, T → Tc (20.19)

where it is dubbed the anomalous dimension. Here ρ is typically a density or, in this
case, the spin at position r. Away from the critical temperature one writes:

〈ρ(0)ρ(r)〉 ∼ e−r/ξ

r(d−1)/2 r → ∞, T > Tc. (20.20)

Part of the business of Monte Carlo computations is determining the critical exponents
of a model, and hence the universality class to which it belongs. A summary of critical
exponents for the Ising model is presented in Table 20.1. The column labelled “MFT”
gives mean field theory expressions for critical exponents. These can be thought of
as critical exponents in the limit of a large number of dimensions and are typically
obtained by considering the behavior of a single spin in the average environment of its
neighboring spins.

20.2.3 The heat bath algorithm and the induced magnetization

Our immediate goal is to evaluate the induced magnetization with the Monte Carlo
method in an attempt to determine the critical temperature. We will use the heat bath
algorithm of Chapter 7; although it should be noted that the Ising model is a rare instance
of a case where the Metropolis algorithm is more efficient.

Recall that the heat bath algorithm makes transitions to new configurations with
probability:

p(S → S ′) ∝ exp[−βH(S ′)] (20.21)
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We implement this with the Gibb’s sampling method by updating a single spin at a time.
Thus the heat bath probabilities are:

p(σI ) = eβJσI (hI+∑i∈I σi)

∑
σI

eβJσI (hI+∑i∈I σi)
(20.22)

where the sum in the exponential extends over nearest neighbors of spin I . In two
dimensions there are only five possible such spin sums and the heat bath probabilities
can be precomputed and stored in a matrix, saving much computational time.

As with the percolation problem, finite size effects are best minimized by adopting
periodic boundary conditions, wherein the system is placed on a torus. This is not the
only choice, and others may be more appropriate to the problem at hand. A short list of
possibilities includes:

periodic boundary conditions Map neighbors on the edges of the volumes.

free boundary conditions Spins at the edge of the volume have no neighbors.

fixed boundaries Set boundary spins to fixed values, which may depend on their
location. This is useful for creating interior interfaces for studying wetting and
similar effects.

twisted boundary conditions Map spins as with periodic boundary conditions but
invert the coupling for these spins. This is a translationally invariant boundary
condition that sets up a kink in the interior of the lattice.

We shall only consider periodic boundary conditions in the following.
Common choices for the spin configuration updating protocol are:

deterministic sweeps Scan through the lattice in a fixed order.

stochastic updates Choose a spin at random.

checkerboard update Split the lattice into even and odd sublattices and update one
sublattice at a time. This is very useful in parallel computing environments.

And lastly, the initial state of the simulation must be set. Two obvious choices are

cold start All spins are set to +1 or −1.

hot start Spins are assigned random states.

As a first exercise, we compute the magnetization M at kBT = 2.0 and kBT = 2.5
with hot and cold starts. The results are displayed in Figure 20.2 as a function of sweep
(one sweep is one heat bath update per spin for the entire lattice). The two curves for
kBT = 2.0 start at M = 0 (hot start) and M = 1 (cold start), as expected. By around 200
sweeps they have converged and thereafter fluctuate around M ≈ 0.9. This is an example
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Figure 20.2 Magnetization measured at kBT = 2.0 and kBT = 2.5. Sequences with hot and cold
initial states are shown.

of thermalization. All Monte Carlo computations require an initial period during which
the configuration loses memory of its starting state, called the thermalization time,
τth. Clearly it is undesirable to average quantities during this time. It is a good idea to
estimate τth and run the heat bath algorithm for at least this many sweeps before collecting
data. Notice that the thermalization time depends on the algorithm, the lattice size, the
temperature, and the operator being measured.

The two curves labelled kBT = 2.5 behave qualitatively differently from the lower
temperature data. In this case the thermalization time is roughly τth = 100, and the
equilibrium magnetization fluctuates around zero. Thus it appears the kBT = 2.0
belongs to the broken phase of the model, while kBT = 2.5 lies in the symmetric phase,
in agreement with Eq. 20.5. Finally, notice that the fluctuations present in the curves at
kBT = 2.0 are much smaller than those at kBT = 2.5. This is because kBT = 2.5 lies
just above the critical temperature, where the system undergoes large-scale fluctuations.

Armed with this preliminary result, we now compute the induced magnetization by
thermalizing, sweeping many times through the lattice, and averaging the total spin to
obtain M = 〈S〉. Doing this for many temperatures yields the result shown in Figure 20.3.
It is clear that the algorithm is working as intended, and that we can estimate that the
critical temperature is between Tc = 2.2 and 2.4. More importantly, it appears that
L = 64 is a good approximation to L = ∞! A close look at the figure reveals that
M approaches zero smoothly as T gets large. This is as expected for a finite system.
Obtaining a more accurate estimate of Tc will require performing computations on larger
lattices and carefully tracking the rapid transition to M = 0.

Because the Ising Hamiltonian is symmetric under spin reflection, it is possible for
the system to make excursions from a positive value of S =∑i σi to a negative value. In
fact very long runs of the type shown in Figure 20.2 would show tunneling transitions
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Figure 20.3 Magnetization vs. T with the Onsager exact result. These results were obtained on a
lattice of size 64 × 64.

between ±S. Thus M = 0 must hold (this was originally used as an argument against the
possibility of long range order in the Ising model). We avoid this awkward situation in the
following by considering the observable |M| = 〈|∑i σi|〉. That short Monte Carlo runs
fail to obtain zero for the magnetization can be regarded as a flaw of the algorithm, but it
reflects how symmetry breaking is manifested in nature. Namely, all physical systems are
finite in extent and therefore are analytic in their parameters. Discontinuous symmetry
breaking transitions only appear to happen due to inevitable experimental imprecision
and extraordinarily long metastability times.

It is evident that this method for determining the critical temperature will not yield
very precise results. We thus turn to the magnetic susceptibility (Eq. 20.11), which has
a peak at Tc(L). Plotting the susceptibility with respect to T for various lattice sizes then
permits extrapolation to the bulk limit via

Tmax(L) = Tc − aL−1/ν . (20.23)

Justify this relationship using the discussion of Section 20.2.2.

20.2.4 Reweighting

An accurate determination of Tc now requires an accurate determination of the peak
of the susceptibility, which requires measurements at many temperatures. This is very
expensive so it is fortunate that another trick, called reweighting, is available.

The idea of reweighting is to use a single Monte Carlo run to evaluate expectation
values at many parameter values. In this example the parameter is temperature and
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reweighting is achieved by shifting some of the Boltzmann measure into the observable.
Thus,

〈O〉β ′ ≡ trOe−β ′H

tr e−β ′H = trOe−(β ′−β)H e−βH

tr e−(β ′−β)H e−βH
= 〈Oe−(β ′−β)H 〉β

〈e−(β ′−β)H 〉β . (20.24)

The new notation, “tr”, represents the sum over all possible spin configurations,
∑

{σ }.
If one starts in the symmetric phase the only way in which sensible results can be

obtained in the broken phase is if the system size is relatively small. Thus the range
over which one can expect to use reweighting reliably must decrease with system size.
Furthermore, β ′ −β cannot be too large or one swamps the Boltzmann measure and the
Monte Carlo method fails.

The method is easily extended to other parameters, for example one can measure
quantities at many external magnetizations by including exp(βJ(h′ − h)

∑
σi) in the

observable.
With this refinement we are able to compute decent estimates of Tmax(L). Since

reweighting must be done over a restricted temperature range, the strategy will be to
compute χ on a small lattice of size L, obtain Tmax from this lattice, and center a new
computation of the susceptibility at Tmax(L) on a lattice of size 2L. In this way the
computation is kept in the region of the best estimate of the critical temperature.

20.2.5 Autocorrelation and critical slowing down

Unfortunately our quest to obtain the critical temperature now runs into a new problem,
namely it becomes exceedingly difficult to obtain good estimates for χ once the size of
the system grows beyond L ≈ 256. The problem arises due to critical slowing down,
which is an increase in the autocorrelation time due to proximity to a second order phase
transition.

As a quick reminder, the autocorrelation function for an observable O is:

C(t) = 〈OiOi+t〉 − 〈Oi〉2
〈O2

i 〉 − 〈Oi〉2
(20.25)

and the integrated autocorrelation time is:

τint =
∑

t

C(t).

More information is contained in Chapter 7.
Generally one computes autocorrelation times as measurements are made to ensure

that statistical inefficiency is not invalidating one’s efforts. A simple way to do this
is to store all measurements Ot and then perform the sums indicated to obtain the
autocorrelation function. This can be quite wasteful for large runs (we often perform 106
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sweeps in this chapter), especially when correlations tend to die off quickly. Thus it
is preferable to maintain a list of the past nXvalues measurements and compute the
correlation function as new values of the observable (called X below) are obtained. An
elegant way to do this is provided by the C++ list container class:

#include <list>;

double autoCorr[nXvalues+1];
list<double> Xvalues; // could also use a deque

void getAutoCorrs(double X) {
if (Xvalues.size() == nXvalues) {// we’ve filled the list
autoCorr[0] += X*X;
list<double>::const_iterator it = Xvalues.begin();
for (int i=1; i<=nXvalues; i++) {
autoCorr[i] += *it++ * X;

}
Xvalues.pop_back(); // pop the oldest X

}
Xvalues.push_front(X); // push the new X

}

A computation of the autocorrelation function for L = 64 lattices at various
temperatures is shown in Figure 20.4. One observes an exponential decay (which can
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Figure 20.4 Autocorrelation functions for the heat bath algorithm at different temperatures.
Autocorrelation for the Wolff algorithm (Section 20.2.6) at T = Tc is shown as a dashed line.
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Figure 20.5 Integrated autocorrelation time for the heat bath algorithm. (L = 32,O = |M|, 106

measurements).

also be used to characterize the autocorrelation time2), with a much slower decay at the
critical temperature. We stress that autocorrelation times depend on lattice volume, the
algorithm employed, the temperature, and the observable.

Figure 20.5 displays the autocorrelation time as a function of temperature. The peak
at the critical temperature is due to large scale fluctuations that occur in the vicinity of
Tc. Because the error in the magnetization grows as

√
2τint/N one needs to increase the

number of measurements by a factor of approximately 100 to achieve the same precision
as obtained at T � 2.0. The situation rapidly becomes worse for larger lattices and
temperatures near Tc. Unfortunately, it is precisely large lattices near Tc in which we are
interested!

The rate at which the autocorrelation time increases with system volume is of interest.
This is specified with a dynamical exponent as:

τint ∝ Lz (20.26)

(other definitions of the autocorrelation time can be used as well.) Overall, the compu-
tational effort scales as L2+z. For local algorithms like heat bath and Metropolis z ≈ 2,
thus if N32 sweeps are required to achieve a given precision on an L = 32 lattice, 212N32
sweeps are required on a 256 × 256 lattice! Factors like this can rapidly bring progress
to a halt. A computation of the dynamical exponent for the Metropolis algorithm as
measured with |M| is shown in Figure 20.6. A fit gives z ≈ 1.95.

2 See (Landau and Binder, 2000) for a detailed discussion of various correlation times.
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Figure 20.6 Integrated autocorrelation time vs. lattice size at T = Tc. (106 measurements,O = |M|).
Rough fits give z(HB) = 1.95 and z(W ) = 0.5.

20.2.6 Cluster algorithms

Critical slowing down is clearly a substantial impediment in our attempt to compute Tc.
Continuing progress relies on accommodating the large scale fluctuations seen near Tc.
In the case of the Ising model, this can be accomplished with algorithms that flip large
groups of spins at one time, called cluster algorithms.

The breakthrough was initiated by Fortuin and Kasteleyn (1972) who realized that
the Ising model3 could be mapped to a percolation model with percolating probability
pFK = 1 − exp(−2βJ) by considering the bonds formed between like-spin states. The
importance of this observation is that percolation clusters are uncorrelated (because
percolation sites are uncorrelated) and hence percolation simulations suffer no critical
slowing down.

Swendsen-Wang algorithm

The first practical algorithm to employ these ideas was due to Swendsen and Wang
(1987). The idea is to sweep through a lattice placing bonds between pairs of spins
with probability pFK. Clusters of connected spins are then flipped with probability 1/2.
Clusters can be identified using the percolation algorithm presented in Chapter 8. The
crucial point is that many spins can be flipped at one time, and critical slowing down is
largely evaded.

Wolff algorithm

The Swendsen-Wang algorithm considers all clusters, including single-site ones. An
alternative, first suggested by Ulli Wolff (1989), concentrates effort on identifying and

3 More generally, the q-state Potts model, which is discussed in the next section.
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flipping large clusters and is generally more efficient than the Swendsen-Wang algorithm.
The procedure is as follows:

// Wolff Algorithm

choose a seed spin at random, flip it, mark it as a cluster
spin

grow the cluster:
visit neighbors

if neighbor is not a cluster spin and if it is parallel
to the original seed
add it to the cluster with probability pFK = 1 − e−2βJ

flip the spin
visit this spin’s neighbors

As with the percolation cluster algorithm, clusters are labelled with elements of a
matrix, cluster. Spins in the cluster are tracked with a stack:

int spin[L][L];
int cluster[L][L];
int Istack[L*L];
int Jstack[L*L];

void growC (int i, int j, int seed) {
if ((cluster[i][j] == 0) && (spin[i][j] == seed))

// not in the cluster and parallel to seed
if (ran() < p_FK) {
spin[i][j] = -spin[i][j]; // flip spin
cluster[i][j] = 1; // place in cluster
stackp++; // and in the stack
Istack[stackp] = i;
Jstack[stackp] = j;
}

}

The full update process is

void wolffUpdate (int N) {
int i, j, seed;
for (int nn=0;nn<N;nn++) {

// zero cluster spin markers
for (i = 0; i < L; i++) {
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for (j = 0; j < L; j++) {
cluster[i][j] = 0;

}}
// initialize stack
stackp = -1;
// choose a random spin
i = (int) (L*ran());
j = (int) (L*ran());
// grow cluster
seed = spin[i][j]; // save the seed spin
spin[i][j] = -spin[i][j]; // flip the seed spin
cluster[i][j] = 1;
stackp++; // push the seed spin onto the

stack
Istack[stackp] = i;
Jstack[stackp] = j;
while (stackp > -1) {
i = Istack[stackp];
j = Jstack[stackp];
stackp--;
// try to add each neighbor to cluster
growC(pl[i], j, seed);
growC(mn[i], j, seed);
growC(i, pl[j], seed);
growC(i, mn[j], seed);

}
}

}

We still need to prove that the Wolff algorithm is a valid Monte Carlo procedure.
It is clearly Markovian and ergodic. In order to demonstrate detailed balance consider
a cluster, C, that has as its seed a spin up at site r. Assume that the cluster has n↑
(n↓) neighbors of spin up (down). The change in energy due to flipping the cluster is
�E(C → C′) = 2(n↑ − n↓)J. Let Pr be the probability that the cluster in question grew
from site r. The transition rates for the cluster flip C → C′ is then

WC→C′ =
∑

r

Pr(1 − pFK )n↑
(20.27)

and

WC′→C =
∑

r

Pr(1 − pFK )n↓
. (20.28)
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The second factors in these expressions count the number of times the cluster did not
grow when starting from the up seed spin (for C → C′) or from the down seed (for
C′ → C). We then confirm that:

WC→C′

WC′→C
= e−β�E = e−2βJn↑

e−2βJn↓ (20.29)

holds when pFK = 1 − exp(−2βJ) and hence have established that the Wolff algorithm
correctly thermalizes the Ising model.

We return to the computation of the susceptibility for |M|. Using reweighting and
the Wolff algorithm we are now able to generate estimates of Tmax with relatively
small effort up to lattices of size 512 × 512. Results are shown in Figure 20.7. The
final step is extrapolating to the bulk limit and is shown in Figure 20.8. The result
is Tc ≈ 2.26927(21) which is in nice agreement with the exact expression. This was
obtained using the Ansatz Tmax = Tc − a/L. Using Tmax = Tc − a/L1/ν (see Eq. 20.23)
gives the same result for Tc with a slightly larger error and 1/ν = 1.00(7), in agreement
with the theoretical value for this critical exponent.

As expected, the Wolff algorithm is much more efficient than the heat bath algorithm,
especially near the critical temperature. This is illustrated in Figure 20.4 where the
autocorrelation function for the Wolff algorithm is displayed as a dashed line. The rapid
decrease in autocorrelation is evident. Scaling of the integrated autocorrelation time
versus lattice size is shown in Figure 20.6. Again, the autocorrelation times are always
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Figure 20.7 Susceptibility vs. T. From bottom to top L = 32, 64, 128, 256, and 512. The squares
indicate the location of maxima.
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Figure 20.8 Extrapolation of the peak susceptibilities (see Figure 20.7) to infinite volume. The result is
Tc ≈ 2.26927(21) (exact result: 2.269185).

much smaller than those for the heat bath algorithm, and they grow more slowly (with a
dynamical exponent of approximately 0.5) with lattice size.

20.3 The Potts model and first order phase transitions

So far our attention has been focused on systems exhibiting second order phase
transitions. These are characterized by self-similarity, fractal dynamics, and infinite
correlation length at the critical point. First order phase transitions are quite different:
correlation lengths remain finite, scaling tends to be with the system volume rather than
with critical exponents, phase coexistence is common (think of boiling water), and latent
heat is associated with the transition between phases.

The two-dimensional Ising model exhibits a first order phase transition in the
magnetization as the external field is brought from positive to negative values. Recall that
the system is symmetric under inversion of the spins, and in fact, will make excursions
from +M to −M over large algorithmic times. Setting h > 0 breaks this symmetry and
forces the magnetization to be positive, regardless of the magnitude of h. Once h passes
through zero, the −M state is preferred and the system makes a first order transition to
the −M phase. Things need not work this way, for example the induced magnetization
could smoothly run to zero as the external field is sent to zero. In fact this does happen for
T > Tc, and there is no phase transition above the critical temperature. This is illustrated
in Figure 20.9, which shows magnetization curves for various temperatures. Evidently
M(h) shows no dramatic change in behavior near h = 0 when T = 4, well above the
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Figure 20.9 Magnetization in the Ising model while sweeping in h for kBT = 4 (solid line), 2 (dashed
line), and 1 (dotted line). L = 128; 1000 sweeps per point.

critical temperature. However, a sudden jump from +M to −M is apparent for the cases
T = 2 and T = 1.

The Potts model is a well-known spin system that exhibits first and second order
phase transitions4. Like the Ising model, degrees of freedom are restricted to take on
discrete values and to reside on a fixed lattice. The Hamiltonian is

H = −J
∑

(i,j)

δσi ,σj (20.30)

where the sum is over nearest lattice neighbors and there are q degrees of freedom at
each site: σi = 1, 2, . . . , q (Potts, 1952). Many experimental realizations of the Potts
model exist. An interesting one represents the q = 3 model as a mixture of ethylene
glycol, water, lauryl alcohol, nitromethane, and nitroethane (Wu, 1982). Notice that the
Potts model reduces to the Ising model in the case q = 2 and thus exhibits a second order
phase transition in the magnetization as the temperature is increased. As with the Ising
model, many properties are known analytically, especially for low dimensional systems.
For example, the critical temperature for 2d square lattices is (Wu, 1982):

kBTc

J
= 2

log(1 + √
q)

. (20.31)

4 Named after R.B. Potts, the model was suggested by his supervisor Cyril Domb as a D.Phil. research
project.
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It is also conjectured that the Potts model exhibits a first order phase transition for q > 4
in two dimensions (and q > 2 in three dimensions).

The order of the phase transition at q = 4 can be difficult to determine numerically
because the latent heat is very small. It is therefore fortunate that a simple extension of
Wolff ’s Ising algorithm permits efficient computation with the Potts model: the algorithm
should form clusters of a given q-value and should flip to a new cluster with a uniformly
chosen q-value.

Although it is traditional to assign site states to the integers 1 . . . q, the connection to
the standard definition of magnetization is better made by labeling the states according
to elements of Zq (the group formed by the qth roots of -1):

σj = exp
(

i
2π j

q

)
, j = 0 . . . q − 1. (20.32)

Using this definition leads to ready confirmation of Eq. 20.31, with all magnetization
curves rapidly running to zero near kBTc. The rapidity with which this happens increases
with larger q, however, this observation is not sufficient to determine the order of the
phase transition. A more telling observable is the internal energy, shown in Figure 20.10.
A smooth transition is evident for q = 4, while a definite latent energy of around 1.1 (in
units of the coupling) is visible for q = 20, with something more ambiguous at q = 8.

Phase separation and latent heat are associated with metastability in the system;
namely, the system can exhibit memory due to long transition times between local
minima of the free energy. This behavior can be exposed in stochastic computations
by adjusting an external variable while collecting measurements. The resulting curves
demonstrate hysteresis, wherein the system remains in a ‘false’ phase once passing
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Figure 20.10 Internal energy for the q-state Potts model, showing hysteresis. From left to right q = 20,
8, 4. Critical temperatures are indicated with bursts.
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through a transition point. This behavior is made more evident by passing through the
phase transition in both directions, making a hysteresis loop. Figure 20.9 shows hysteresis
loops for the Ising model obtained by making a relatively small number of measurements
(in this case 1000) for each value of the external field, h, without rethermalizing. As
expected, the curve obtained at kBT = 4 shows no evidence of hysteresis; however those
at T < Tc show an increasing memory effect as the temperature is dropped, which
agrees with the statement that the phase transition at h = 0 for T < Tc is first order.
Similar curves can be obtained with the Potts model, except that it is the temperature,
not the field, that is changed. Examples are shown in Figure 20.10 where one sees little
or no evidence for a first order phase transition for q = 4 and definite evidence for one
at q = 20 and q = 8.

We stress that hysteresis is a nonequilibrium effect and thus is present in any system
in which the rate at which the system thermalizes is slower than the rate at which the
external parameter is changed. The physical effect is observed for systems that exhibit
macroscopically long times tunneling between local minima. Real magnets, for example,
contain many domains that are magnetized in different directions. A slowly varying
external field flips one domain after another as it increases in strength. The resulting
induced magnetization exhibits small discrete jumps in its value – an effect known as
Barkhausen noise. Kuntz et al. (1999) have developed a method to simulate this with
a Hamiltonian:

H = −J
∑

(ij)

σiσj −
∑

i

(H(t)+ hi)σi . (20.33)

The idea is that each spin represents a coarse-grained domain that is coupled to a random
external field, hi . The other external field H is increased in magnitude, flipping domains
as it goes. Since the model is meant to simulate nonequilibrium physics, the authors
set the temperature to zero and deterministically flip spins as H increases when this
decreases the energy:

�E = J
∑

j∈i

σj + hi + H(t) > 0. (20.34)

Notice that this can happen when the increasing magnitude of H or a spin flip causes
the local field to change sign. Thus a single spin flip can lead to an avalanche of spin
flips and Barkhausen noise (Sethna, 2006).

20.4 The planar XY model and infinite order phase
transitions

The Ising and related models possess a discrete inversion symmetry σi → −σi . This
can be generalized to a continuous symmetry by considering the interaction of classical
vectors:
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H = −J
∑

(ij)

�σi · �σj −
∑

i

�hi · �σi . (20.35)

We specialize to the case of two-dimensional vectors in the following. Thus this model
is often called the “planar XY” or “2d XY” model. If the vectors are taken to be of unit
length and the external field is aligned along the ẑ axis then the Hamiltonian can be
rewritten as:

H = −J
∑

(ij)

cos(θi − θj)−
∑

i

hi cos(θi). (20.36)

When �h = �0, the Hamiltonian possesses a U (1) (2d) or SO(3) (3d) symmetry under
rotations σν → Rνμσμ. Magnetizing the system (either with an external field or
spontaneously) permits fluctuations of spins called spin waves. The quantized versions
of these are called magnons, and are generically called Goldstone bosons. In two-
dimensions these fluctuations are sufficient to completely disorder the system, thus
preventing a second order phase transition from occurring. This result goes by the name
of the Mermin-Wagner theorem.

Nevertheless the 2d XY model5 exhibits a low temperature ordered phase with a
power law spin-spin correlation function and a high temperature disordered phase with
an exponentially decaying correlation function. This phase transition was discovered by
British physicists J. Michael Kosterlitz and David Thouless (1973) and is topological in
nature. Specifically, the XY model generates vortex spin configurations in which spin
fields rotate through 2π as they circle a given point. Vortices tend to pair in configurations
with net zero vorticity below the critical temperature, while above it the vortices are free.
This novel type of phase transition is called an infinite order phase transition.

A simple Metropolis code run with sufficient care does indeed demonstrate that the
system does not magnetize. This makes it difficult to determine the critical temperature;
however, a plot of the internal energy, Figure 20.11, shows a suspicious change in
curvature near kBT = 1.0. This transition can be clarified with the aid of other
observables. For example, the spin-spin correlation function

G(r) = 〈�s(r0) · �s(r0 + r)〉 (20.37)

is expected to follow a power law below Tc:

G(r) ∼ r−η, T < Tc (20.38)

5 The XY model was introduced by Matsubara and Matsuda as a paradigm for 2d quantum lattice gases in
1956. (Matsubara, 1956).
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Figure 20.11 Internal energy for the XY model. L = 128, 10000 sweeps per point.

and an exponential law with diverging correlation length for high temperature:

G(r) ∼ e−r/ξ(T), T > Tc (20.39)

with

ξ(T) ∼ eb (T/Tc−1)−ν

. (20.40)

One can implement the XY model with n discrete values for the angles (ie., the Zn
spin model). This would, for example, be useful if one wished to employ the heat
bath algorithm. Under which conditions will this be a good approximation to the XY
model? Where should it fail?

Figure 20.12 shows correlation functions computed for kBT = 2.0, 1.5, 1.2, 1.1, 1.0,
and 0.5. On a log-log plot the correlation functions for kBT = 1.0 and 0.5 are very nearly
linear indicating that Tc > 1.0. Correlation functions for kBT ≥ 1.1 show curvature and
require an exponential fit. As expected, the correlation lengths for these curves grow as
kBT = 1.1 is approached. Thus it appears that there is indeed a phase transition in the
2d XY model and that it occurs at Tc ≈ 1.05J.

Nevertheless, the student is reminded of the prime directives for Monte Carlo work:

1. evaluate errors

2. check autocorrelation
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Figure 20.12 Spin-spin correlation function. L = 64, 10000 sweeps per curve. From bottom to top
kBT = 2.0, 1.5, 1.2, 1.1, 1.0, 0.5. Fits give ξ(2.0) = 0.95, ξ(1.5) = 1.6, ξ(1.2) = 3.5, ξ(1.1) = 5.0,
η(1.0) = 0.35, and η(0.5) = 0.095.

3. do some long runs

4. check finite size effects.

In this case a few runs at kBT = 1.0 with L = 128, 256, and 512 indicate that curvature
does creep into the correlation functions and hence kBTc < 1.0. And in fact, Tobochnik
and Chester (1979) find Tc ≈ 0.89, ν ≈ 0.7, and b ≈ 1.5.

Finally, as pointed out by Wolff in his original paper, it is possible to employ a cluster
algorithm for XY models with spins of dimension d as follows:

// Wolff Algorithm for SO(d) spins

choose a random vector V in SO(d)
choose a seed spin (i) at random, flip it(*), mark it as a

cluster spinA

grow the cluster:
visit neighbors (j)
if neighbor is not a cluster spin and if it is parallel

to the original seed
add it to the cluster with probability p = 1 − e−2βJij

where Jij = ( �V · �σi) ( �V · �σj)

flip the spin (*): �σi → �σi − 2( �V · �σi)

visit this spin’s neighbors
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20.5 Applications and extensions

The simplicity and rich phenomena associated with classical spin models have led to
their widespread adoption in many fields. We discuss two additional topics here, namely
spin glasses and neural networks. Research is ongoing in both areas, with an enormous
and growing literature. We must be brief, but trust that the following gives a flavor of the
fields.

20.5.1 Spin glasses

The discussion of avalanches and hysteresis led us to consider a model with spins coupled
to an external magnetic field that fluctuates randomly in space. This is called a random
field Ising model (introduced by Imry and Ma (1975)). Physical realizations of this
model typically involve materials with impurities, but the model also describes binary
liquids in porous media, mixed Jahn–Teller systems, diluted frustrated antiferromagnets,
hydrogen in metals, and mixed crystals undergoing structural or ferroelectric transitions
(Nattermann, 1997).

Spin glasses form another class of random spin models in which the couplings are
random. They model magnetic systems with impurities whose effect is to essentially
randomize the sign and strength of the interactions between spins. At high temperatures
spin glasses behave much like ‘regular’ spin systems; at low temperatures the spins
attempt to align according to their couplings, which gives rise to a disordered, but
quenched, state. The time it takes to seek out the local minima in this case can be
very long (or infinite), hence spin glasses are always out of equilibrium. This effect
is called broken ergodicity. It is this analogy between low temperature magnetic
disorder and the positional disorder in conventional glass that gives rise to the term
‘spin glass’.

The underlying cause of broken ergodicity is frustration. Frustration occurs when a
single low temperature spin configuration does not satisfy all the spin couplings. A simple
example of this effect is four spins at the corners of a square with three antiferromagnetic
and one ferromagnetic coupling. It is possible to make three antiferromagnetic bonds
in this case, but the remaining bond must then also be antiferromagnetic, ruining the
attempt to satisfy all of the bond constraints. Frustration leads to many peculiar effects
such as broken ergodicity and the failure of mean field theory. In fact, it appears
that mean field theory fails for all dimensions, which in turn implies that the infinite
dimension limit is singular (Stein, 2003). Remarkably it is not definitively known if
phase transitions occur for low dimensions. It is even possible that spin glasses have
chaotic temperature dependence, where small temperature changes can induce large
and unpredictable changes in correlation functions (see Chapter 13 for much more on
chaotic dynamics).

A simple paradigm for spin glasses is provided by the Edwards-Anderson model
(1975). The model assumes Ising spins interacting with random nearest neighbor
couplings chosen from a Gaussian distribution (typically with zero mean):
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H = −
∑

(ij)

Jijσiσj (20.41)

p(Jij) = 1√
2πJ

exp
(
− 1

2J2 (Jij − Javg)
2
)

(20.42)

The randomness of the couplings precludes an ordered ground state, so it is impos-
sible to use the average magnetization as an order parameter for this model. One could
attempt to avoid this by considering the average local magnetization, mi = 〈σi〉. However
the Edwards-Anderson model is symmetric under spin reflection, so this quantity is zero
over long equilibration times. Thus Edwards and Anderson proposed using the following
observable as an order parameter:

qEA = 1
N

N∑

i=1

〈σi〉2 (20.43)

Here the angle brackets refer to thermodynamic averages while the bar represents an
average over coupling realizations. This two step method of forming observables is
necessary because the disorder in the system is quenched, meaning it is a property of the
sample in question. Of course one is not interested in properties of a specific magnetic
sample, so one averages over ensembles of samples to obtain observables.

A mean field theory estimate of the order parameter can be made (see Ex. 18); the
result is called the Sherrington-Kirkpatrick equation, which must be solved for q.

q =
∫ ∞

−∞
dx√
2π

e−x2/2 tanh2(βJ
√

qx). (20.44)

The solution indicates that the (mean field estimate of the) critical temperature of the
Edwards-Anderson model is at Tc = J. Although this is a mean field result, which is
not regarded as reliable for spin glasses, more sophisticated computations yield the same
estimate. Monte Carlo calculations (see Ex. 18) agree well with this result.

20.5.2 Hopfield model

A simple mathematical model of a nerve cell or neuron was introduced by McCulloch
and Pitts (1943). The idea is to subsume the complex of states that a neuron can take
into a binary choice: firing or quiescent. The state of the ith neuron at time t is then
written σi(t) = 1 or 0. It is further assumed that the system evolves synchronously at
regular unit time intervals. The state of the ith neuron in a network is determined at the
next time step by:

σi(t + 1) = θ

⎛

⎝
∑

j

Jij σj(t)− fi

⎞

⎠ (20.45)
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where θ is a step function, fi is the firing threshold for neuron i, and Jij is the synaptic
strength between the axon of neuron j and the dendrite of neuron i. Note that the
couplings can be positive or negative, depending on whether the neural link is excitatory
or inhibitory.

John Hopfield (1982) built on this idea to introduce an associative neural network,
called the Hopfield model. The model postulates the same dynamical relationship
between neural “spins” as in the McCulloch-Pitts model subject to an appropriate update
protocol (e.g., synchronous update, random, or sequential). Hopfield demonstrated that
the evolution of the system tends towards the global minimum of the function:

E = −1
2

∑

ij

Jijσiσj +
∑

i

fiσi (20.46)

and hence the model is equivalent to an Ising spin system with long range (possibly
random and asymmetric) interactions.

Hopfield realized that because the energy function contains many local minima in
its configuration space it can serve as model of memory. In particular, the system
can be trained (or memories can be implanted) by setting its couplings according to
Hebb’s rule:

Jij =
M∑

m=1

(1 − 2σ (m)
i ) (1 − 2σ (m)

j ) (20.47)

where M is the number of patterns to be stored and σ
(m)
i is the value of the ith bit of the

information to be stored. Hebb’s rule builds M local minima in the energy landscape at
the bit patterns to be recovered. Information is recalled when the system evolves to one
of these minima. This process will be more robust if the minima are widely separated, or
equivalently, have large basins of attraction. One expects that the maximum number of
patterns that can be reliably recalled is order N2/N ; in practice it is around 0.13N .

20.6 Exercises

1. Another Critical Exponent.
For the Ising model one has M ∝ h1/δ. In 2d δ = 15. See if you can verify this
numerically. Hint: δ is quite large, so you should consider small values of h.

2. Trivial Renormalization Group.

a) Solve the 1 d Ising model using the transfer matrix method (see Ex. 13 of
Chapter 8 for more on this).
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b) Obtain the partition function by first summing over the even sublattice. Notice
that this yields a simple iterative procedure. Naively doing the sum over
configurations requires 2N additions, how many are required with your iterative
method?

c) Code up and test!

3. Swendsen-Wang Algorithm.
Code up the SW cluster algorithm using the cluster identification routine of
Chapter 8 for the 2d Ising model. Compare its efficiency to the Wolff algorithm
for large lattices.

4. Finite Size Scaling.
Confirm finite size scaling for the 2d Ising model by showing that the magnetization
curves collapse onto a universal curve once plotted in terms of the scaling arguments
(see Figure 8.8 for a percolation example).

5. Reweighting and χmax.
Use reweighting and the Wolff algorithm to obtain the peak values of the sus-
ceptibility as a function of lattice size for the 2d Ising model. Fit your results to
χmax = aLb and hence determine the ratio of critical exponents γ /ν. How do your
results compare to the exact ratio?

6. Algorithms.
Compare Metropolis and heat bath algorithm run times using both random and
stochastic sweeps for the 2d Ising model. Use the time per L2 updates multiplied
by the integrated autocorrelation time as your figure of merit. Which algorithm
performs better?

7. Cluster Algorithms.

a) Implement the Wolff algorithm but only consider flipping the cluster rooted at
(0,0). Is this a valid method?

b) Identify clusters, flip the largest cluster. Is this a valid method?

8. Spin-spin Correlation Function.
The spin-spin correlation function is defined by

G(r) = 〈σiσi+r〉 − 〈σi〉2. (20.48)

The second term is what we have called previously called M2. Rather than binning
in the distance r it is simpler to store values of G[rx][ry] and then plot these versus√

r2
x + r2

y . If rotational invariance is achieved (for sufficiently large lattices) the points

should fall on a universal curve. Obtain the spin-spin correlation function for the 2d
Ising model for temperatures that straddle Tc. Interpret your results.

9. [T] Potts Model on a Cayley Tree.
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a) Show that the free energy for the q-state Potts model on a Cayley tree is given by
F = log(exp(2βJ)+ q − 1). A Cayley tree is defined in Exercise 4 of Chapter 8.

b) Obtain the spin-spin correlation function:

G(r) = q − 1
q2

(
e2βJ − 1

e2βJ + q − 1

)r

. (20.49)

10. The q-state Potts Model.
As q → 4 from above, the latent heat and correlation length behave as

L ∼ 3π/
√

x (20.50)

and

ξ ∼ x

8
√

2
(20.51)

where

x = exp(π2/2 cosh−1(
√

q/2)). (20.52)

Confirm these expressions numerically. Warning: x gets enormous very quickly.
Work with q > 6 to keep correlation lengths below 100.

11. [T] One-dimensional XY Model.
Assume free boundary conditions and h = 0 for the 1d L-chain XY model and
obtain the exact result Z = (2π)LK(βJ)(L−1). Here K is the Bessel function,∫ π
−π

dθ exp(βJ cos(θ)).

12. XY Model and the Kosterlitz-Thouless Phase Transition.

Evaluate the susceptibility χ =
〈 (

1
L2

∑
i �σi

)2
〉

in the 2d XY model. It has been

suggested that this scales as χ ∼ ξ2−η, which means that the peak in the susceptibility
locates the Kosterlitz-Thouless phase transition. Confirm this. Try to estimate the
coefficient η.

13. Baxter-Wu Model.
Consider the Hamiltonian

H = −J
∑

(i,j,k)

σiσjσk (20.53)

where the system is defined in a 2d triangular grid of Ising spins and the sum is over
nearest neighbors. See (Novotny and Landau, 1981) for help.

a) Show that the ground state is four-fold degenerate.



Classical spin systems 729

b) Simulate the system for various MC times and visualize the states. Note that
domains of different structure can dominate at different times, illustrating
that multiple fluctuations with differing time scales contribute to the partition
function.

14. Neural Nets.
Set Jij = sign[Jij(Hebbs)] in the Hopfield model. How well does the system perform
at recall? How many patterns can be stored with this algorithm?

15. [T] Hopfield Memory.
How does the Hopfield model behave as memories are added to it? Is there a phase
transition to a memoryless state or are memories gradually lost?

16. Random Field Ising Model.
A theorem says that the RFIM has no long range order for d ≤ 2. Confirm this
numerically by measuring the magnetization in the 2d RFIM. Note that you will
need to perform a thermodynamic average, as usual, and an average over random
field configurations (denoted thus ). Any random field distribution will do, but
ensure that hi = 0 and hihj = H2δij .

17. [T] Glauber Updates.
Show that the Glauber update Wn→m = 1 + σi tanh(βEi) is a valid Monte Carlo
thermalization algorithm.

18. [P] Edwards-Anderson Model.

a) Verify the Sherrington-Kirkpatrick equation as follows.

i. Use mean field arguments to obtain mi = tanhβhi with hi =∑j Jijmj .

ii. Argue that h2
i = J2q2.

iii. Apply (ii) to (i), change variables, and obtain Eq. 20.44. The neglect of
fluctuations necessary to obtain this result is a bad approximation. However,
more sophisticated methods (the replica method) yield the same expression.

b) Run a suitable Monte Carlo algorithm, averaging over many random fields, work
in units of J, plot q(t) vs. T for T ∈ (0, 1.5). Here t is the number of Monte Carlo
sweeps. Make your plots at several large values of t and compare to the SK result.

19. [P] Avalanches á là Sethna.
Code up the avalanche problem of Eq. 20.33. A way to do this is to search for the
unflipped spin that is due to flip next, push H to the required value, and continue
propagating the avalanche. An algorithm for this is:

//brute force avalanche propagation

while there are spins to flip
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find the next triggering spin (*)

increment H to minus fi and push the
spin onto a FIFO queue

while there are spins in the queue
pop the top spin
if the spin has not been flipped

flip it
push all unflipped neighbors with positive
local fields onto the queue

end if
end while

end while
(*) the spin with the largest value of the

local field fi ≡ J
∑

j∈i σj + hi

Generate random fields hi with a Gaussian distribution of mean zero and standard
deviation R. Run your code on a 300 × 300 system for R = 1.4, 0.9, and
0.7. Try plotting the number of flips per time step. You might want to measure
other observables such as M(H), the average avalanche size, the avalanche size
distribution, or avalanche correlation functions. If you run into trouble consult
Sethna (2006), Chapter 8.

The algorithm above is rather inefficient since it must search the entire lattice for
every avalanche. This can be improved by keeping a sorted list of the spins in order
of their local field strengths. See Sethna for more details. Lastly, enormous systems
can be considered by using bit arithmetic and other tricks. See (Kuntz et al., 1999).

..........................................................................................
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21.1 Introduction

Although we live in a quantum universe, the realm in which nonrelativistic quantum
mechanics is pertinent is relatively small. Quantum mechanics applies to systems that are
small or at low temperatures and hence its usefulness is restricted to atomic, molecular,
and nuclear physics. Two types of quantum mechanical problems are of interest,
depending on whether the boundary conditions permit Hermitian or nonHermitian
representations of the Hamiltonian. These are of course the bound-state problem and
scattering.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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Quantum mechanical problems are famously difficult and numerical methods are
required to solve all but the very simplest problems. A large variety of methods for dealing
with quantum mechanical problems of various types have been developed. Because
many of these are well documented in other places, we will focus on techniques that
are somewhat more unusual.

This chapter deals with few-particle (one or two, for the time being) interactions. The
first half will introduce two novel (or at least, less well-known) ways to solve the bound
state problem: naive discretization and quantum Monte Carlo. These methods are either
simple or powerful, and sometimes both. The second half of the chapter covers few-
body scattering. This is traditionally done by integrating the Schrödinger equation with
a variety of trial initial conditions. We will, of course, eschew the traditional approach and
instead study the far more efficient momentum space T-matrix formalism for scattering.

Quantum mechanical problems with more degrees of freedom are discussed in
different chapters scattered throughout the text. Techniques designed to address the
difficulties associated with atoms and molecules are presented in Chapter 23. The many-
body problem of quantum magnetism is the topic of Chapter 22. That chapter introduces
the powerful Lanczos algorithm and extends the quantum Monte Carlo method dis-
cussed below to systems with discrete degrees of freedom. Solving the time-dependent
Schrödinger equation that is so important to chemists is addressed in Chapter 18. Finally,
methods tuned for quantum field theory are presented in Chapter 24.

21.2 Simple bound states

We start with the central problem of undergraduate quantum mechanics: the bound
state of two nonrelativistic particles. A time-independent interaction is assumed; we
furthermore assume that the system has spatial symmetry and thus can be represented
by a Hamiltonian of reduced dimensionality. A familiar example is a particle in a central
potential in which the full Schrödinger equation:

[

− h̄2

2m
∇2 + V (|�r|)

]

ψ(�r, t) = ih̄
∂

∂t
ψ(�r, t) (21.1)

is replaced by the one-dimensional radial equation

− h̄2

2m

[
d2

dr2 − �(�+ 1)
r2

]
u(r)+ V (r)u(r) = Eu(r). (21.2)

The radial wavefunction u is related to the full wavefunction via

ψ(�r, t) = u(r)
r

Y�m(r̂) exp(−iEt/h̄) (21.3)



734 Simple bound states

where Y�m is a spherical harmonic wavefunction and u obeys the boundary condition

lim
r→0

r−lu(r) = 0. (21.4)

In addition, if the system forms a bound state then limr→∞ u = 0.

21.2.1 Shooting methods

It is natural to look at Eq. 21.2 as a problem in differential equations but with the
additional complication that it must be solved as an eigenvalue problem. In other words
eigenvalues are specified by requiring solutions that respect the boundary conditions at
the origin and infinity. This is quite different from the usual differential equation where
two initial conditions, say u(0) and u′(0), are given. Nevertheless, it is possible to make
progress by setting u(0) and guessing a value of u′(0); one then integrates out to some
large value of r = R and checks if:

|u(R)| < ε (21.5)

where ε is some tolerance deemed acceptable and R is sufficiently large to render it a
useful approximation to infinity (in practice this means R � max(〈r〉, r0) where r0 is a
definition of the range of the interaction and 〈r〉 is the mean size of the wavefunction of
interest).

This strategy is called the shooting method. It can be implemented with an ordinary
differential equation solver such as those discussed in Chapter 11. Alternately, it may be
performed with the aid of Numerov’s method, which is a technique for solving second
order differential equations in which the first derivative does not appear. The method
can be applied on a uniform grid and yields results that are good to sixth order in the
grid size h. Specifically, if:

u′′ + f (x)u(x) = 0 (21.6)

then:

(
1 + h2

12
fn+1

)
un+1 =

(
2 − 5h2

6
fn

)
un −

(
1 + h2

12
fn−1

)
un−1 + O(h6). (21.7)

To start the integration, take u0 = 0 as required by boundary conditions. The next value
u1 is arbitrary, as it only determines the normalization of the solution. Subsequent grid
points are computed by the recurrence relation of Eq. 21.7. In a bound-state problem,
the energy is adjusted until the radial wavefunction u(r) is seen to satisfy condition 21.5.

Although this method is efficient, the necessity to solve the differential equation many
times, the interpolation required to obtain an accurate estimate of the eigenvalue, and
the dependence on R and the tolerance make this method slightly awkward for many
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problems (if one wishes to press ahead nonetheless, consult Stoer and Bulirsch (1980),
Section 7.3 or Press et al. (2007), Section 18.1 for more information).

21.2.2 Diagonalization

While the shooting method is admirable (and all code is “simple” once it has been
developed and debugged), a cleaner method is to simply use one of the many high quality
diagonalization routines such as those available in the package Eigen. In other words we
eschew Schrödinger’s wave mechanics for Heisenberg’s matrix mechanics. Thus Eq 21.2
is replaced with

〈n|H |m〉 = E〈n|m〉 (21.8)

where {|n〉} is an appropriately chosen set of N basis states. Diagonalizing immediately
yields N eigenvectors and eigenvalues Ek, k = (1 . . .N) for the system. If the basis is a
complete set, the solution is exact, otherwise it is an approximation whose extrapolation
to the exact solution is controlled by the single parameter N .

A theorem (MacDonald, 1933) asserts that the eigenvalues of the approximate
solution are always greater than or equal to the true eigenvalues. This can be exploited by
combining diagonalization with minimization over parametric dependence in the basis.
With a parameterized set of basis functions, the elements 〈n|H |m〉 of the matrix H
and therefore its eigenvalues depend upon the parameters. Minimizing an eigenvalue
over these parameters always achieves a better approximation. This technique is a form
of the Rayleigh-Ritz variational method, whose simplest and most familiar application is
the determination of ground-state energies. The minimization can be carried out using
the techniques of Chapter 16.

Some care must be taken when implementing the diagonalization-variational method.
For example if the basis is chosen to depend on a single parameter, β, then minimizing
E0(β) determines an optimal value β = β0. This same value must be used when
examining other eigenvalues if one wishes to maintain orthogonality of the eigenvectors.
Alternatively, more accurate estimates of higher eigenvalues can be obtained by mini-
mizing those eigenvalues independently. Finally, this approach often necessitates the use
of nonorthogonal bases and one must recall that in this case the completeness relation is
expressed as:

11 =
∑

nm

|n〉(N−1)nm〈m| (21.9)

where Nnm ≡ 〈n|m〉.

21.2.3 Discretized eigenproblems

While the direct diagonalization method is simple and efficient it suffers from at least
two serious issues:
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• the matrix element must be evaluated and this can be extremely difficult;

• the form of the basis function can dominate the approximate eigenfunction at some
scales.

To expand the second point, if one were interested in the large distance behavior
of an eigenfunction that was expanded in a Gaussian or simple harmonic oscillator
(SHO) basis one would inevitably obtain a—not necessarily correct—behavior that
approximates exp(−r2), even when the eigenvalue is accurately computed.

Fortunately there is a simple solution to both problems. If one chooses the basis

〈r|n〉 = δ(r − rn) (21.10)

then the short and large distance behavior of eigenfunctions can be accurately approx-
imated and matrix elements are trivial to evaluate. Of course, this basis is equivalent
to simply discretizing the Hamiltonian on an appropriate grid if a discretization of the
Laplacian is used. The method is extremely simple to code and, somewhat surprisingly,
it is also very effective. Its flaw is that it is only useful for a limited set of problems.
Specifically, the boundary conditions imposed by the method are u(0) = 0 and u(L) = 0.
See Exercise 7 if you are curious about this. This implies that the method is only
applicable for more than one spatial dimension (in fact, it only works for three or more
dimensions—see Exercise 8).

If one discretizes on a uniform grid, the radial eigenproblem reduces to diagonalizing
H where:

Hij = − h̄2

2m�2

(−2δij + δi−1,j + δi+1,j
)+ h̄2l(l + 1)

2μr2
i

δij + Viδij . (21.11)

Here ri = i� and � is the grid spacing. Vi denotes V (ri). End points are handled by
truncating the matrix, which is equivalent to setting u−1 = 0 and uN+1 = 0 (indexing
runs from zero to N ; see Ex. 7 for more on this point). One can also employ higher-
point approximations to the second derivative, although we have found that the gain
is not worth the effort. See Chapter 19 for much more on discretization of derivative
operators.

One might be tempted to avoid dealing with an infinite region by mapping the
half plane to a finite region. But then additional analytic work must be done and a
nonlinear grid should be employed to probe the appropriate distance scales. We therefore
recommend that one simply uses a uniform grid in a box of size L. The box size should
be chosen to be several times larger than the radius of the largest wavefunction in which
one is interested.

Figure 21.1 displays the efficacy of the method when applied to the three dimensional
simple harmonic oscillator problem. Notice that using a small box size improves the
accuracy of the ground energy for a given matrix size (or grid spacing). This is because
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Figure 21.1 Relative errors in E0 (squares) and E9 (open squares) for the 3d SHO vs. matrix size. The
numbers to the right refer to the box size in natural units.

the ground state “fits” in a box of size 5. This remains true for the tenth state except in
this case a box size of at least 10 is required.

21.2.4 Momentum space methods

It is often useful, or even necessary, to solve the Schrödinger equation in momentum
space. For example, a particular interaction may be simple to write in momentum space
or relativistic kinematics may be required. Fourier transforming the time-independent
Schrödinger equation yields:

p2

2m
ψ(�p)+

∫
d3q

(2π)3
V (�p − �q)ψ(�q) = Eψ(�p) (21.12)

where:

V (�p) =
∫

d3r V (�r)e−i �p·�r . (21.13)

Project onto partial waves by setting ψ(�p) = Rnl(p)Ylm(p̂) to obtain:

p2

2m
Rnl(p)+

∫
q2dq V (l)(p, q)Rnl(q) = ERnl(p). (21.14)
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This expression introduces the partial wave projected potential given by (note that we
again assume a central potential):

V (l)(p, q) = 1
4π2

∫ 1

−1
dx V (

√
p2 + q2 − 2pqx)Pl(x). (21.15)

Our method will be to diagonalize the Hamiltonian on a momentum grid. An elegant
way to do this is to map the half-plane onto [0 : 1] via the transformation p = η/(1 − η)

and then generate integration points and weights with the Gauss-Legendre method (see
Chapter 5). Eq. 21.14 becomes:

p2
i

2m
Ri +

∑

j

wjV
(l)
ij Rj = ERi (21.16)

The weight factors are given by:

wj =
p2

j

(1 − ηj)2
· GL(j) (21.17)

where GL(j) refers to the jth Gauss-Legendre weight, ηj is the jth Gauss-Legendre
abscissa, and pj = ηj/(1− ηj). The indices nl have been suppressed in Eq. 21.16; also Ri

refers to R(pi) and V (�)
ij is short for V (�)(pi , pj).

The asymmetric form of the Hamiltonian is inconvenient so we symmetrize by
multiplying through by wi yielding the final form of the Schrödinger equation:

HijRj = ENijRj (21.18)

where:

Hij = 1
2m

p2
i wiδij + wiV

(l)
ij wj (21.19)

and the normalization kernel is given by (no summation):

Nij = wiδij . (21.20)

In the case of Coulombic interactions one has V (�r) = −e2/(4πε0r) with Fourier
transform V (�p) = −e2/(ε0p2). Diagonalizing this interaction yields the following results
(Table 21.1) for S-wave energies on grids with 100 or 400 points (angular integrals were
also evaluated numerically with 100 or 400 points). Evidently one hundred momentum
space grid points are sufficient to obtain quite accurate energies up to the third or fourth
level. After this the method rapidly becomes useless and larger grids must be employed.
If very large quantum numbers must be explored it is best to design a momentum grid
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Table 21.1 Percent deviation
for S-wave Coulomb energies.

n N=100 N=400

1 0.25 0.065

2 0.37 0.09

3 1.7 0.42

4 3.8 0.94

5 6.6 1.6

6 10.1 2.5

7 14.5 3.5

8 19.6 4.7

9 25.5 6.1

10 32.2 7.7

that adequately probes the required momentum scale. An example calculation can be
found in EXAMPLES/CH21/PSPACE.

21.2.5 Relativistic kinematics

It is sometimes desirable to implement a ‘semi-relativistic’ approach to a quantum
mechanical problem in which the kinetic energy operator is replaced by its relativistic
version:

T̂ →
√

m2 + k2, (21.21)

where k is the relative momentum in the system. A typical application is in nuclear physics
where relativistic pions can play an important role.

While it is easy to implement a relativistic kinetic energy in momentum space,
it is often desirable to avoid the Fourier transform of the potential and to work in
configuration space. In this case we recommend diagonalizing the Laplacian operator
−∇2 in the preferred basis. If we call the resulting eigenvalues {λn} and the eigenvectors
{|n〉} then

〈n|H |m〉 =
√

m2 + λ2
n δnm +

∑

i

〈n|i〉Vi 〈i|m〉. (21.22)

Notice that the sum over the potential is tantamount to performing a numerical Fourier
transform in a generalized basis.
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21.3 Quantum Monte Carlo

The relationship of the Schrödinger equation to diffusion has been mentioned in
Section 7.6.2. As a brief reminder, if one replaces time with ‘Euclidean time’ via t → −iτ
then one obtains an advection-diffusion equation with diffusion coefficient D = h̄/(2μ):

∂

∂τ
ψ = h̄

2μ
∇2ψ − 1

h̄
Vψ . (21.23)

This observation permits obtaining quantum mechanical energies and matrix elements
by directly simulating a process in which particles perform random walks with an
additional “drift” term (the potential). Many variants of quantum mechanical random
walk algorithms exist; here we present a particularly simple algorithm called guided
random walks.

21.3.1 Guided random walks

Let us reverse the direction of the previous discussion and start with a simple diffusion
problem wherein random steps of size #x are taken every #τ . In the continuum limit
this process is described by the differential equation:

∂ρ0

∂τ
= 1

2
#x2

#τ

∂2ρ0

∂x2 . (21.24)

Here ρ0 is the particle density at position x and time τ . Of course, this equation is the
free Schrödinger equation if t = −iτ and:

h̄
m

= #x2

#τ
. (21.25)

Now consider a process where a diffusing particle can be absorbed with probability
a(x). In this case the diffusion equation reads

ρ(x, τ + #τ) = (1 − a(x))
[

1
2
ρ(x − #x, τ)+ 1

2
ρ(x −#x, τ)

]
, (21.26)

with a continuum limit of

∂ρ

∂τ
= 1

2
#x2

#τ

∂2ρ

∂x2 − a(x)ρ(x, τ). (21.27)
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Observe that this equation maps to the interacting Schrödinger equation with the aid of
Eq. 21.25 and:

V (x) = h̄a(x). (21.28)

This simple result means that it is possible to simulate the Schrödinger equation by
executing random walks while allowing for the possibility that walks can be eliminated at
site x with probability a(x).

However, while feasible, the proposed algorithm is cumbersome to code and wasteful
because random walks can end early. A more elegant way to implement a potential in
diffusion is to associate a weight with each walk and then to construct the average of ρ
by binning the weights as a function of x and τ . The correct weight is given by (Barnes,
1986):

w(x(τ )) = e−
∫ τ

0 a(x(τ ′)) dτ ′ , (21.29)

and thus

ρ(x, τ) = w(x, τ) ρ0(x, τ). (21.30)

Recall that ρ0 is the solution to the free diffusion equation.
To summarize, one may simulate the Euclidean time Schrödinger equation by

performing a large number of random walks; the histogram of average weights associated
with these walks is then proportional to the time-dependent wavefunction of the
theory.

While the algorithm is perfectly capable of simulating systems with a few degrees of
freedom, it must incorporate importance sampling to permit its application to systems
with many (say, greater than 5) degrees of freedom. This is a common attribute of all
Monte Carlo algorithms, as we have discussed in Chapter 7.

The problem with the random walk algorithm presented so far is that the walks
uniformly explore a vast Hilbert space and thus the weights, w, have a huge variance.
Most walks end up far in the classically disallowed region of configuration space and
hence do not contribute to the weight histogram.

The solution is to bias the walks towards the classically allowed region. This may
be achieved by introducing a guidance function, g(x), and by preferentially walking
towards minima of g. In this approach one therefore sets the random walk stepping
probabilities to be:

1
2
−#x

dg
dx

, stepping right

1
2
+#x

dg
dx

, stepping left. (21.31)
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The difference equation for ρ(x, τ) is now:

ρ(x, τ+#τ) =
(

1
2
+ #x

dg(x +#x)
dx

)
ρ(x+#x, τ)+

(
1
2
− #x

dg(x − #x)
dx

)
ρ(x−#x, τ).

(21.32)

In differential form this is:

∂ρ

∂τ
= #x2

#τ

(
1
2
∂2ρ

∂x2 + 2
∂g
∂x

∂ρ

∂x
+ 2

∂2g
∂x2 ρ

)
. (21.33)

We now add the process of evaluating the weight

w = e−
∫ τ

0 a(x(τ ′)) dτ ′

down a guided random walk and compute

ρg = 〈w〉 ρ.

The net result is the solution to the continuum equation:

∂ρg

∂τ
= #x2

#τ

(
1
2
∂2ρg

∂x2 + 2
∂g
∂x

∂ρg

∂x
+ 2

∂2g
∂x2 ρg

)
− a(x) ρg(x). (21.34)

To establish contact with the Schrödinger equation let:

ρg = e−2gψ ,

#x2

#τ
= h̄

m
,

a(x) = 1
h̄

V (x)+ #x2

#τ

(
∂2g
∂x2 − 2

(
∂g
∂x

)2
)

. (21.35)

The resulting equation is the Euclidean time Schrödinger equation as desired:

− h̄
∂ψ

∂τ
= − h̄2

2m
∂2ψ

∂x2 + V (x)ψ(x). (21.36)

We have reached a satisfying point: the solution to the Euclidean time Schrödinger
equation can be obtained by performing guided random walks and evaluating:

ψ(x, τ) = η e2g(x)
〈
exp

(
−
∫ τ

0
[V (x(τ ′))/h̄ + h̄

m
(g′′ − 2(g′)2)] dτ ′

)〉
ρ(x, τ). (21.37)

(A normalization factor, η, has been restored to the equation.)
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The ground state energy

It is now a simple matter to evaluate the ground state energy of the system. The
eigenmode expansion of ψ is:

ψ(x, τ) =
∑

n

αnφn(x)e−Enτ (21.38)

where φn is an eigenstate of the system and αn is the overlap of φn with ψ . Thus
the ground state energy may be projected out of the ratio of the wavefunctions as the
Euclidean time becomes large:

E0 = lim
τ1,τ2→∞

1
τ2 − τ1

ln
ψ(x, τ1)

ψ(x, τ2)
. (21.39)

A subtle problem arises at this stage: the value of x must be the same in the numerator and
denominator for this equation to hold. But when performing random walks the functions
obtained will be ψ(x(τ ), τ) and hence Eq. 21.39 will not be useful. The resolution to this
problem is to integrate over x to obtain (NRW is the number of random walks):

E0 = lim
τ1,τ2→∞

1
τ2 − τ1

ln

∫
ψ(x, τ1) dx
∫
ψ(x, τ2) dx

,

= lim
τ1,τ2→∞
NRW →∞
#x,#τ→0

1
τ2 − τ1

ln

∑
walks e2g(x)e−

∫ τ1
0 a(x(τ ′)) dτ ′

∑
walks e2g(x)e−

∫ τ2
0 a(x(τ ′)) dτ ′

. (21.40)

It is important that the sum over random walks approximates the spatial integral well
since this is used to cancel the x-dependence in the estimate of the energy.

Notice that the spatial dependence in exp(2g(x)) is unimportant in extracting E0
because the integral over exp(−2g(x))ψ(x, τ) and ψ(x, τ) produces the same temporal
dependence. Thus our final expression for the ground state energy is:

E0 = lim
τ1,τ2→∞
NRW →∞
#x,#τ→0

1
τ2 − τ1

ln

∑
walks e−

∫ τ1
0 a(x(τ ′)) dτ ′

∑
walks e−

∫ τ2
0 a(x(τ ′)) dτ ′

. (21.41)

This simplification is useful as it considerably reduces the statistical fluctuations in
estimates of E0.

Extrapolation and guidance parameters

The limits in the expression for E0 must be taken by extrapolating results for finite step
size, Euclidean time, and statistics. The behavior of this extrapolation can be anticipated;
for example, the central limit theorem leads one to expect that corrections due to a
finite number of random walks behave as 1/

√
NRW . Also, the corrections to the diffusion
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equation (Eq. 21.24) imply that step size corrections are linear in #x; this is mostly true
although #x2 corrections are also seen. Finally, the eigenmode expansion of ψ implies
that:

E0(τ1, τ2) ∼ E0 + 1
τ2 − τ1

α1
∫
φ1 dx

α0
∫
φ0 dx

(e−(E1−E0)τ1 − e−(E1−E0)τ2), (21.42)

so that the expression 21.41 approaches the ground state energy exponentially in time
with a scale set by the energy gap, E1 − E0. Thus accurate measurements require one to
run for a time, τ � 1/(E1 − E0). We note, however, that in practice one cannot run for
too long in τ because fluctuations tend to build up. This point is evident in Figure 21.2,
which shows the ground state energy of the one-dimensional simple harmonic oscillator
as a function of τ1 (τ2 has been set to τ1 + 1). The approach to the exact result is clear,
as is the need to run for sufficiently long Euclidean time to project out the excited state
contamination in the wavefunction.

The remaining chore for the numericist is choosing the guidance function. Ideally
one would like to reduce the scatter in the weights to zero. This may be achieved if∫

a(x)dτ = const, which implies that the optimal guidance is a solution to

V (x)
h̄

+ h̄
μ

(
g′′ − 2(g′)2

)
= const.

Not surprisingly, this equation is equivalent to the Schrödinger equation, with solution

g(x) = −1
2

logφ0.
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Figure 21.2 Ground state energy for the 1d SHO as a function of τ1.
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Figure 21.3 Ground state energy for the 1d SHO as a function of the guidance parameter.

Although we have not got very far, this equation indicates that guidance functions
can be constructed from perspicacious variational Ansätze. Variance in energy levels (or
matrix elements) can then be tuned to a minimum by adjusting the Ansatz parameters.
This is illustrated in Figure 21.3, which shows the ground state energy for our test
problem as evaluated with the guidance function g = g0x2/4. Notice that this function
is exact when g0 = 1. This is reflected in the figure by the tiny error bars near optimal
guidance. In fact, running a guided random walk code with exact guidance will produce
the exact energy with no error for any number of time steps, which is useful for code
verification.

21.3.2 Matrix elements

The guided random walk algorithm would not be very satisfying if one could not evaluate
matrix elements of observables. This cannot be done by simply averaging the appropriate
operator over random walks because the probability of arriving at x is proportional to
φ0(x) and not |φ0(x)|2. Fortunately it is possible to circumvent this problem; two methods
for evaluating ground state matrix elements are presented in this section. Both methods
are only applicable to matrix elements of the form

∫ |φ0(x)|2f (x).

Matrix elements with the double walk method

A way to generate a weight proportional to |φ0|2 is to exploit the convolution property of
quantum mechanical evolution kernels. These are typically used to evolve wavefunctions
in space and time (Feynman and Hibbs, 2005):

ψ(xf , τf ) =
∫

dxiK(xi , τi ; xf , τf )ψ(xi , τi). (21.43)
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Evolution from 0 → xf can be split into evolution from 0 → x and x → xf as follows:

K(0, 0; xf , τf ) =
∫

dx K(0, 0; x, τ1)K(x, τ1; xf , τf ). (21.44)

The latter relationship is useful because the (Euclidean time) eigenmode expansion of
the kernel,

K(xi , τi ; xf , τf ) =
∑

n

φ∗
n(xi)φn(xf )e−En(τ2−τ1)

→ φ∗
0(xi)φ0(xf )e−E0(τ2−τ1) large τ2 − τ1 (21.45)

implies that |φ0(x)|2 will appear under the integral of Eq. 21.44.
The next task is to relate the quantum mechanical kernel to guided random path

weights:

〈w(xi , τi ; xf , τf )〉 = e2g(xi)K(xi , τi ; xf , τf )e−2g(xf ). (21.46)

We will not go into details deriving this, but note that it can be done by comparing the
integral equation version of the diffusion problem to quantum mechanical wavefunction
evolution given by Eq. 21.43.

Imagine walking for a time, τ1, evaluating the operator of interest O(x(τ1)), and then
continuing the walk to τ2. The amplitude for this process is:

A ≡ 〈w(0, 0; xf , τ2)O(x(τ1))〉. (21.47)

Now use Eqs. 21.44 and 21.46 to obtain:

A =
〈
e2g(0)

∫
dx K(0, 0; x, τ1) e−2g(x) O(x(τ1)) e2g(x) K(x, τ1; xf , τ2) e−2g(xf )

〉
. (21.48)

Finally, use Eq. 21.45 to extract the behavior of A at large times. One obtains:

〈O〉 = lim
τ1,τ2→∞

〈w(0, 0; xf , τ2)O(x(τ1))〉
〈w(0, 0; xf , τ2)〉 . (21.49)

Notice that, as with the energy measurement, the xf dependence in the end point arrival
weights is redundant and can be dropped.

While this method is certainly feasible, it has much larger errors than energy mea-
surements do. In fact, it is possible and desirable to extract matrix elements using energy
measurements. This is described in the next section.
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Matrix elements with the Feynman-Hellmann method

The starting point for this approach is the Feynman-Hellmann theorem, which relates
matrix elements of operators to derivatives of energies:

〈φ0|O|φ0〉 = ∂

∂λ
E0(λ)|λ=0, (21.50)

where

E0(λ)|φ0(λ)〉 = (H + λO)|φ0(λ)〉. (21.51)

If O is diagonal (i.e., in our application, if O is only a function of position) this expression
provides a simple way to evaluate its expectation value via the expression:

E0 = lim
τ1,τ2→∞

1
τ2 − τ1

ln
〈wO(τ1)〉
〈wO(τ2)〉 (21.52)

where

wO(τ ) = exp
(
−
∫ τ

0

[
V/h̄ + λO/h̄ + #x2

#τ
(g′′ − 2(g′)2)

]
dτ
)

. (21.53)

Substituting and taking the derivative in Eq. 21.50 gives the final expression:

〈φ0|O|φ0〉 = lim
τ1,τ2→∞

1
τ2 − τ1

[
〈w ∫ τ0 Odτ ′〉

〈w〉
∣∣∣∣
τ=τ2

− 〈w ∫ τ0 Odτ ′〉
〈w〉

∣∣∣∣
τ=τ1

]

. (21.54)

The algorithm

Enough formalism—let’s see the algorithm! The following code obtains ground state
energies and matrix values for the one-dimensional simple harmonic oscillator with a
guidance function given by g(x) = g0x2/4. Recall that a large number of random walks
are required to reliably extract the ground energy, thus statistical errors are computed by
running the main algorithm Nstats times.

...
using namespace std;

double V(double x) {
// the 1-d SHO, m=1, m omega^2=1
return x*x/2.0;

}

double gp(double g, double x) {
// g’(x) for g(x) = g*x*x/4
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return g*x/2.0;
}

double gpp(double g, double x) {
// g’’(x)
return g/2.0;

}

int main() {
double tau1,tau2,g,dtau;
int seed,NRW, Nstats;
cout << " e n t e r NRW, dtau , tau1 , tau2 , g , Ns ta t s " << endl;
cin >> NRW >> dtau >> tau1 >> tau2 >> g >> Nstats;
cout << " e n t e r a random seed " << endl;
cin >> seed;
mt19937 e(seed); // initiate a

Mersenne twistor engine
uniform_real_distribution<double> uDist(0,1);
double dx = sqrt(dtau/1.0);

// ie dx^2/dt = 1/m
cout << " dx = " << dx << endl;
int T1 = tau1/dtau;
int T2 = tau2/dtau;
double E0avg=0.0;
double E0sq=0.0;
double Oavg = 0.0;
double Osq = 0.0;
for (int ns=0; ns < Nstats; ns++) {
double w1=0.0,w2=0.0,Osum=0.0;
for (int nr=0; nr < NRW; nr++) {
double x = 0.0;
double a = 0.0;
for (int t=0; t<T1; t++) {
if ( uDist(e) < 0.5 - dx*gp(g,x) ) {
x += dx;

} else {
x -= dx;

}
a += V(x) + gpp(g,x) - 2.0*gp(g,x)*gp(g,x);

} // end of tau1 loop
double O = x*x*x*x; // evaluate

O(tau1)
w1 += exp(-dtau*a);
for (int t=T1; t<T2; t++) {
if ( uDist(e) < 0.5 - dx*gp(g,x) ) {
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x += dx;
} else {

x -= dx;
}
a += V(x) + gpp(g,x) - 2.0*gp(g,x)*gp(g,x);
} // end of tau2 loop
w2 += exp(-dtau*a);
Osum += exp(-dtau*a)*O; // <exp(-a)

O(tau1)>
} // end of NRW loop
double E0 = log(w1/w2)/(tau2-tau1);
E0avg += E0;
E0sq += E0*E0;
Oavg += Osum;
Osq += Osum*Osum;
} // end of Nstats loop
E0avg /= Nstats;
E0sq /= Nstats;
E0sq = sqrt(abs(E0sq - E0avg*E0avg))/sqrt(Nstats-1);
cout << " E0 = " << E0avg << " +/− " << E0sq << endl;
Osum /= Nstats;
Osq /= Nstats;
Osq = sqrt(abs(Osq - Oavg*Oavg))/sqrt(Nstats-1);
cout << "<x^4> = " << Oavg << " +/− " << Osq << endl;
return 0;

}

Of course, it is easy to parallelize this code using the methods of Chapter 9. It is also
an easy exercise to generalize the code to any number of dimensions. See Ex. 13 for the
generalization required when dealing with problems with multiple particle masses.

SHO matrix elements

Figure 21.4 shows the matrix elements 〈φ0|xn|φ0〉 for n = 2, 4, 6, and 8 vs. τ1. These
results were computed with dτ = 0.001, g0 = 0.5, and 10 groups of 10000 random
walks. The Feynman-Hellmann code was approximately 7 times slower than the double
walk code, although errors are somewhat smaller. Notice that the convergence in τ1 to the
exact values (shown as horizontal lines) is slower for higher powers of x. It is also evident
that the errors (and corresponding fluctuations) become larger with the power. Finally,
these data were generated with τ2 = τ1+3 because it was found that using smaller values
of τ2 led to consistent over-estimates of the matrix elements for higher n. As usual, the
numericist is strongly cautioned to check all parametric dependence of results before
assuming that her work is done!
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Figure 21.4 Ground state matrix elements of xn. Left : double walk method; right: Feynman-Hellmann
method. From bottom to top: n = 2, 4, 6, 8.

21.4 Scattering and the T-matrix

The computation of scattering amplitudes forms the other major numerical task in
our program. As with the bound state problem, it is tempting to address this issue by
numerically integrating the Schrödinger equation. This approach will be addressed in
the following subsection. We will then advocate a more efficient method based on the
Lippmann-Schwinger equation for the transition (or T) matrix. Extensions to more
complicated scattering processes are also discussed.

21.4.1 Scattering via the Schrödinger equation

Let us recall some of the terminology and main results of nonrelativistic scattering theory.
Scattering wavefunctions obey boundary conditions with an outgoing spherical wave:

ψ
(+)
k (r) → A

[
ei �k·�r + fE(θ)

eikr

r

]
. (21.55)

The center of mass scattering angle is denoted as θ in this formula and A is a
normalization constant.

A differential cross section is defined in terms of the scattering amplitude by:

dσ
d�

= | fE(θ)|2. (21.56)

If one makes the partial wave expansion

ψ(r) =
∑

�m

u�(r)
r

Y�m(θ ,ϕ) (21.57)
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then:

u�(k, r) → A�(k) sin
(

kr − 1
2
�π + δ�(k)

)
(21.58)

= kr A�(k) cos δ� [ j�(kr)− tan δ�n�(kr)]

= A� eiδ�+i�π/2 (e−ikr + (−)�+1S� eikr)

at large distance. These expressions define the phase shift, denoted as δ�. The second
form is written in terms of the spherical Bessel function and the Neumann function,
which are the regular and irregular solutions to the free scattering problem in the �th
partial wave. The third form introduces the scattering matrix:

S�(k) = e2iδ� . (21.59)

Admittedly, this is not much of a matrix at present. The full structure of the S-matrix
will emerge when we consider coupled channel (where an initial state can scatter into
distinct final states) scattering. Finally, at short distance one has the boundary condition:

u�(r) → r�+1. (21.60)

The partial wave expansion relates the phase shift and the scattering amplitude:

fE(θ) =
∞∑

�=0

(2�+ 1) a�(k)P�(cos θ) (21.61)

where

a�(k) = 1
2ik

(S�(k)− 1). (21.62)

A simple numerical method for obtaining phase shifts is to integrate beyond the range
of the interaction and use Eq 21.59 to extract δ�. In general the slope at the origin must
be adjusted so that the normalization of the asymptotic solution follows that of Eq 21.59.
However, it is simpler to set u′

�(0) = δ�,0 and compare the solution at two points to extract
the phase shift. Since most numerical implementations will keep track of u′

�, it is even
simpler to integrate to a large distance r = R and use:

δ�(k) = 1
2
�π − kR − tan−1 (ku�(R)/u′

�(R)
)

. (21.63)

It would of course be prudent to test the stability of the phase shift for several values
of R. This extrapolation can be combined with extrapolation in the step size to yield final
estimates for the phase shift.
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21.4.2 The T-matrix

Although the methods of the previous section are straightforward, they grow in com-
plexity when coupled channels are considered (this topic will be discussed below). It
is therefore convenient that a method that is analogous to the matrix formulation of
the bound state problem exists for scattering. This can be established by recasting the
Schrödinger equation as the Lippmann-Schwinger equation:

ψ
(+)
k (r) = φk(r)+

∫
d3r′G(+)

E (r, r′)V (r′)ψ(+)
k (r′). (21.64)

This is obtained from Eq 21.1 by formally dividing by H0 − E − iε, where H0 is the
kinetic energy operator and ε enforces the outgoing boundary conditions. The Green
function is related to H0 by:

G(+)
E = 1

E − H0 + iε
. (21.65)

The inhomogeneous term in the Lippmann-Schwinger equation is a solution to:

(H0 − E)φk(r) = 0 (21.66)

and specifies the scattering source. This source is of course a plane wave, which we shall
denote as φk(r) = 〈r|k〉 in the following.

The large distance limit of the Green function,

G(+)
E (r, r′) = − μ

2π
eik|r−r′|

|r − r′| , (21.67)

permits the identification (see Eq. 21.55) of the scattering amplitude:

fE(θ) = − μ

2π

∫
d3r φ∗

k′(r)V (r)ψ(+)
k (r) (21.68)

where φk(r) = exp(�k · �r) and �k′ is a vector of the same magnitude as k with k̂′ · r̂ = r̂′ · r̂.
We now define an operator whose diagonal matrix elements in plane waves, |k〉, are

proportional to the scattering amplitude. This operator is the transition matrix:

〈k′|T |k〉 = 〈k′|V |ψ(+)
k 〉. (21.69)

Writing the Lippmann-Schwinger equation in Dirac bracket notation and multiplying
by 〈k′|V , yields the T-matrix equation:

〈k′|TE |k〉 = 〈k′|V |k〉 + 〈k′|VG(+)
E TE |k〉. (21.70)
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This expression can be written in operator form as:

TE = V + VGETE .

The subscripts serve as reminders of the parametric dependence on the scattering energy
E = k2/(2μ) in the Green function and the T-matrix.

As with the Schrödinger equation, the three-dimensional problem can be reduced to
one dimension by projecting onto partial waves. To effect this let

V (k′, k) ≡ 〈k′|V |k〉 =
∑

�

(2�+ 1)V�(k′, k)P�(cos θ) (21.71)

where k̂′ · k̂ = cos θ . A similar expansion for T(k′, k) then yields

T�(k′, k) = V�(k′, k)+ 1
2π2

∫
q2dq V�(k′, q)G(+)

E (q)T�(q, k). (21.72)

For a local potential the expression for the partial wave-projected interaction is:

V�(k′, k) = 4π
∫ ∞

0
r2dr j�(k′r)j�(kr)V (r). (21.73)

We will need the relationship between the phase shift and the T-matrix. This can be
obtained by comparing Eqs. 21.68 and 21.69 to obtain:

TE(k, k) = −2π
μ

fE(k). (21.74)

Now use Eqs. 21.61, 21.59, and 21.62 to get:

T�(k, k) = −2π
μk

eiδ�(k) sin δ�(k). (21.75)

Notice that the T-matrix has been evaluated on-shell, where E = k2/(2μ) = k′2/(2μ).
In the jargon, Eq 21.72 is an “inhomogeneous linear Fredholm equation of the second

kind with a singular kernel”. The first step in attempting a numerical solution is to tame
the singularity in the Green function via the relationship

1
x + iε

= P
(

1
x

)
− iπδ(x), (21.76)
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where P represents the principal value. Eq. 21.72 then becomes:

T�(k′, k) = V�(k′, k)+ 1
2π2 P

∫
q2dq V�(k′, q)

1
E − E(q)

T�(q, k)− i
μk
2π

V�(k′, k)T�(k, k)

(21.77)

The next step is to implement the principal value prescription with a trick (Haftel and
Tabakin, 1970):

P
∫ ∞

0
dk

f (k)
q2 − k2 =

∫ ∞

0
dk

f (k)− f (q)
q2 − k2 . (21.78)

This equation follows because the last term integrates to zero but serves to regulate the
singularity at k = q.

It is convenient to map the half real axis to a finite region with a transformation such
as κ = tan−1(k) or κ = k/(1 + k). Don’t forget to reset the integration measure. We
next turn the integral equation into a matrix equation by discretizing momentum space
over N Gaussian quadrature points, {qi}, with associated weights {wi}. The right hand
side of the equation involves the quantities T�(qi , k) and T�(k, k) and thus represents an
equation for N + 1 unknowns. These can be obtained by extending the momentum grid
to include the half on-shell point, k. We choose to implement this by setting q0 = k and
label the range [0, . . . , N] with the index a. With this notation Ta = T�(ka, k0) and one
has N + 1 linear equations:

Ta = Va + 1
2π2

N∑

i=1

wik2
i

VaiTi

(k2
0 − k2

i )/2μ
− 1

2π2

N∑

i=1

wi

(k2
0 − k2

i )/2μ
· k2

0Va0T0

− i
μk0

2π
Va0T00. (21.79)

This can be written compactly as:

Ta −
∑

b

VabDbTb = Va (21.80)

where:

Da =
⎧
⎨

⎩

1
2π2

wi k2
i

(k2
0−k2

i )/2μ
, a = i = [1 . . .N]

− 1
2π2 k2

0
∑N

i=1
wi

(k2
0−k2

i )/2μ
− i μk0

2π , a = 0
. (21.81)

Inversion of Eq 21.80 then yields Ta = T�(ka, k0) and hence the on-shell T-matrix
element T�(k0, k0). It is convenient to choose the set of k0 values to be on a linear grid
since this is often desired for plotting and since it avoids the zero in the Green function
denominator. Furthermore, the use of complex arithmetic can be avoided by working
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in terms of the R-matrix. Finally, it is possible to extend the formalism to the case of
relativistic kinematics. The latter points are pursued in the exercises.

Example: square well scattering

We will illustrate the algorithm by obtaining the phase shift for scattering from a three-
dimensional square well in S-wave. The S-wave interaction is given by Eq. 21.73 with
the choice V (r) = V0θ(r − r0) and evaluates to:

VS(k′, k) = −2π
V0

kk′

(
sin(k + k′)r0

k + k′ − sin(k − k′)r0

k − k′

)
. (21.82)

This is implemented in C++ with the aid of std::complex<double> as follows
(notice that the case k = k′ must be handled separately):

typedef std::complex<double> Complex;
double V0,r0,mu;

Complex SqWell(double k, double p, int ell) {
// V = V0*theta(r-r0) S-wave only
double SqReal;
if (k != p) {
SqReal = -2.0*M_PI*V0/(k*p)*(sin((k+p)*r0)/(k+p) -

sin((k-p)*r0)/(k-p));
} else {
SqReal = -2.0*M_PI*V0/(k*k)*(sin(2.0*k*r0)/(2.0*k)-r0);

}
return Complex(SqReal,0.0);

}

The phase shift can be obtained from Eq. 21.75 via either

δ�(k) = tan−1
(

Im(T�(k, k))
Re(T�(k, k))

)
(21.83)

or

δ�(k) = 1
2

sin−1
[
−μ k

π
Re(T�(k, k))

]
. (21.84)

We use Eigen to manage matrices and to effect matrix inversion. Complete code to
obtain the scattering phase shift is:
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int main () {
double m1,m2;
int Ngrid,ell;
Complex D;

cout << " e n t e r m1, m2, e l l " << endl;
cin >> m1 >> m2 >> ell;
cout << " e n t e r V0 (<0 f o r a t t r a c t i v e ) , r0 " << endl;
cin >> V0 >> r0;
cout << " e n t e r Ngrid " << endl;
cin >> Ngrid;

mu = m1*m2/(m1+m2);
VectorXd k(Ngrid+1),w(Ngrid);
VectorXcd V(Ngrid+1),T(Ngrid+1);
MatrixXcd M(Ngrid+1,Ngrid+1);

GaussLegendreEigen(k,w,Ngrid,0.0,M_PI_2); // create GL
grid & weights

for (int i=0;i<Ngrid;i++) { // map grid
w(i) = w(i)/pow(cos(k(i)),2);
k(i) = tan(k(i));

}

for (int ik=1;ik<50;ik++) {
// loop in scattering momentum

double k0 = ik*0.04;
k(Ngrid) = k0; // add k0 to the

grid
for (int a=0;a<=Ngrid;a++) {

V(a) = SqWell(k(a),k0,ell);
}
for (int a=0;a<=Ngrid;a++) {
for (int b=0;b<=Ngrid;b++) {
if (b == Ngrid) {
double Dr = 0.0;
for (int i=0;i<Ngrid;i++)

Dr -= w(i)*k0*k0/(k0*k0-k(i)*k(i));
D = Complex(Dr,-M_PI*k0/2.0);

} else {
D = Complex(w(b)*k(b)*k(b)/(k0*k0-k(b)*k(b)),0.0);

}
M(a,b) = -mu/(M_PI*M_PI)*SqWell(k(a),k(b),ell)*D;
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Figure 21.5 Relative error for the attractive square well. From top to bottom N = 10, 20, 40, 80, 160.
(m = 1, V0 = 1, r0 = 1, � = 0).

if (a == b) M(a,b) = Complex(1.0,0.0) + M(a,b);
}} // end of a/b loops
T = M.inverse()*V;

// invert to obtain T(k,k0)
Complex Tonshell = T(Ngrid);
double delta = atan(Tonshell.imag()/Tonshell.real())

*180.0/M_PI;
cout << k0 << " " << delta << endl;

} // end of k0 loop
return 0;

}

The results can be compared to the exact phase shift (see Appendix 2 of this chapter)
and are shown in Figure 21.5. It is remarkable that even momentum grids with as few
as ten values are capable of obtaining the phase shift to better than one percent, which
indicates the power of this method.

21.4.3 Coupled channels

So far the discussion has focussed on elastic scattering of the type AB → AB. However
most physical problems are inelastic and involve many coupled channels. For example,
in low energy hadronic physics one cannot consider ππ scattering in isolation since
processes such as ππ → ηη, ππ → KK̄ , and ππ → ρρ can occur. Let us consider
a two channel scattering problem labelled by a channel index, α, where α = 1 denotes
channel AB and α = 2 denotes channel CD. The differential equation describing this
system is:
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[(
T1 0
0 T2

)
+
(

V11 V12
V21 V22

)](
ψ1
ψ2

)
= E

(
ψ1
ψ2

)
, (21.85)

where, eg., V12 = VAB:CD and:

T1 = mA + mB − h̄2

2μAB
∇2 (21.86)

with a similar expression for T2. It is important that the rest masses of the system be
included in the kinetic energy since they set the threshold for a channel opening; namely,
if mC + mD > mA + mB scattering into the second channel cannot occur until

k2

2μAB
+ mA + mB > mC + mD. (21.87)

In this case channel 2 is said to be open. If the kinetic energy lies above mA + mB and
below mC + mD then channel 2 is said to be closed.

We shall first consider a traditional approach wherein differential equations are solved
and then move on to the more efficient T-matrix methodology.

From a computational standpoint, solving Eq. 21.85 as a differential equation is no
more complicated than solving the single channel case—one merely works with four
first order equations rather than two. Unfortunately, solving the differential equation
also means implementing appropriate boundary conditions, and it is here that some
additional complexity arises.

In the case where channel 1 is the incoming channel, boundary conditions are:

u(1)
� → e−ikr + (−)�+1S(11)

� eikr

u(2)
� →

{
(−)�+1S(12)

� eikr , 2 open
0, 2 closed

(21.88)

The S-matrix must be generalized to the two-channel case. A common parameteriza-
tion is:

S(ij)
� =

⎛

⎝
η�e2iδ(1)� i

√
1 − η2

� ei(δ(1)� +δ
(2)
� )

i
√

1 − η2
� ei(δ(1)� +δ

(2)
� ) η�e2iδ(2)�

⎞

⎠ . (21.89)

Here η� is a new parameter called the inelasticity that represents the loss of flux in an
elastic channel due to the presence of other channels.

Unlike the single channel case, the boundary conditions can only be arranged if the
initial slope takes on a precise, unknown, value. Fortunately, the Schrödinger equation is
linear, and hence the solution to the coupled equations with two sets of initial conditions



Quantum mechanics I–few body systems 759

can be used to construct any solution required. One can, for example, compute two
solutions, denoted A and B with boundary conditions

�uA(0) ≡ (u(1)
� (0), u(1)′

� (0), u(2)
� (0), u(2)′

� (0)) = (0, 1, 0, 0) (21.90)

and

�uB(0) = (0, 0, 0, 1). (21.91)

In practice one will want to start the computation at a small non-zero value of r and set
u(i)
� (r) = r�+1. At large distance (for channel 2 closed) one must obtain:

�uA →

⎛

⎜⎜
⎝

XA sin kr + YA cos kr
k(XA cos kr − YA sin kr)

xAekr + yAe−kr

k(xAekr − yAe−kr)

⎞

⎟⎟
⎠ (21.92)

where the coefficients XA, YA, xA, and yA are known and a similar parameterization holds
for solution B. One seeks to match the solutions to �u = α �uA + β �uB such that:

�u →

⎛

⎜⎜
⎝

e−ikr + (−)�+1S(11)
� eikr

−ik(e−ikr + (−)�S(11)
� eikr

Ce−kr

−kCe−kr

⎞

⎟⎟
⎠ . (21.93)

The complex parameters α, β, C and S(11)
� must be determined by solving eight linear

equations obtained by equating Eqs 21.92 and 21.93. In the case when channel 2 is open
one must solve eight equations obtained by matching �u = α �uA + β �uB with

�uA →

⎛

⎜⎜
⎝

XA sin kr + YA cos kr
k(XA cos kr − YA sin kr)

xA sin kr + yA cos kr
k(xA cos kr − yA sin kr)

⎞

⎟⎟
⎠ (21.94)

and

�u →

⎛

⎜⎜⎜
⎝

e−ikr + (−)�+1S(11)
� eikr

−ik(e−ikr + (−)�S(11)
� eikr

(−)�+1S(12)
� eikr

ik(−)�+1S(12)
� eikr

⎞

⎟⎟⎟
⎠

. (21.95)
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Again eight equations in terms of the known parameters XA,B, etc. yield the eight desired
quantities, α, β, S(11), and S(12).

In general an N-channel problem requires obtaining N independent solutions and
solving a 4N×4N linear matrix problem for the desired S-matrix elements. Although this
is certainly feasible, the coding is cumbersome, and we turn to the T-matrix formalism
to see if it can provide a cleaner computational solution to the problem.

The generalization of the T-matrix equation to the coupled channel case can be simply
made by supplying channel labels to the scattering potential and the T-matrix. Thus one
writes, for example, V → Vαβ where α and β denote a particular channel (called 1=AB
and 2=CD previously). The T-matrix equation then reads:

Tαβ = Vαβ +
∑

γ

Vαγ Gγ Tγβ (21.96)

in operator notation. The only new element here is that the Green function is now
channel-dependent:

Gγ = 1

E − Hγ

0 + iεθ(E > Eγ )
. (21.97)

Here Hγ

0 is the free Hamiltonian in the γ channel (thus if γ = 1 then Hγ

0 = k2/2μAB +
mA +mB). Notice that a step function has also been introduced into the Green function.
This implements scattering boundary conditions only in the case that the channel is open
(thus Eγ is the threshold energy for the channel γ ). If the channel γ is closed then the
+iε prescription is not used and outward spherical waves are not generated. The location
of poles in the Green function is now channel-dependent and located at the solution to:

mA + mB + k2
0

2μAB
= mC + mD + k2

2μCD
(21.98)

in the two-channel case. We label the general pole location k γ . Notice that k 1 = k0 in
reference to the single channel notation. The single-channel principal value prescription
must now be generalized as follows:

∫ ∞

0
dq

f (q)
E − Eγ (q)+ iε

=
∫ ∞

0
dq

[
f (q)

E − Eγ (q)
− f (q γ )θ(E > Eγ )

(q γ
2 − q2)/(2μγ )

]

−iπ
μγ

q γ
f (q γ ) θ(E > Eγ ) (21.99)

Notice that a theta function has been factored into the principle value subtraction. This
is because the critical momentum q γ does not exist if the channel is closed, and no
subtraction is needed. Lastly, the generalized principle value prescription implies that
T(k γ , k) is required to construct observables, which means that the momentum grid
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must be expanded to {ki} ∪ {k γ }. Thus if there are Nch channels and N Gauss-Legendre
grid points, then there are Nch(N + Nch) unknowns. In the following the momenta k γ
will be assigned grid labels N + 1 . . .N + Nch.

The procedure for solving the coupled channel problem follows the single channel
case with the exception of a larger matrix and a slightly more complicated expression
for D:

Dγ
a =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2π2

wi k2
i

(k2
N+γ

−k2
i )/2μγ

, a = i = [1 . . .N]
[
− 1

2π2 k2
N+γ

∑N
i=1

wi
(k2

N+γ
−k2

i )/2μγ
− i μγ

2π kN+γ

]
θ(E > Eγ ), a = N + γ

0, a > N , a �= N + γ

(21.100)

In the end, the coupled channel method is a relatively simple extension of the single
channel method and we recommend using a numerical implementation of the T-matrix
equation whenever one is presented with quantum mechanical scattering problems.
Further exploration of the coupled channel case is presented in the exercises.

21.5 Appendix: Three-dimensional simple harmonic
oscillator

Consider the spherically symmetric three-dimensional simple harmonic oscillator
defined by

− ∇2

2μ
ψ + 1

2
μω2r2ψ = Eψ . (21.101)

The energy eigenvalues are Enlm = 1
2ω(4n + 2l + 3), where n is the number of nodes in

the radial wavefunction. The eigenfunctions are

ψnlm(r) = NnlmrlYlm(r̂)Ll+1/2
n (β2r2)e−

1
2β

2r2
(21.102)

where β2 = μω and the normalization is given by

Nnlm =
√

2 · n!
(n + l + 1/2)!β

l+3/2. (21.103)

The functions Lk
n are associated Laguerre polynomials (Arfken, pg 620). These obey the

differential equation

xLk′′
n + (k + 1 − x)Lk′

n + nLk
n = 0 (21.104)
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and the Rodrigues formula

Lk
n(x) =

exx−k

n!
dn

dxn

(
e−xxn+k

)
. (21.105)

Recurrence relations for Laguerre polynomials are

(n + 1)Lk
n+1(x) = (2n + k + 1 − x)Lk

n(x)− (n + k)Lk
n−1(x) (21.106)

and

xLk′
n (x) = nLk

n(x)− (n + k)Lk
n−1(x). (21.107)

Special values for the Laguerre polynomials are

Lk
0(x) = 1, (21.108)

Lk
1(x) = k + 1 − x, (21.109)

and

Lk
2(x) =

x2

2
− (k + 2)x + (k + 2)(k + 1)

2
. (21.110)

Setting ψnlm = Rnl(β
2r2)Ylm(r̂) gives the following radial wavefunctions:

R00(x) = 2
π1/4 e−x2/2, (21.111)

R10(x) =
√

6
π1/4

(
1 − 2x2

3

)
e−x2/2, (21.112)

R01(x) =
√

8
3

1
π1/4 x e−x2/2, (21.113)

and

R11(x) =
√

5
3

2
π1/4

(
1 − 2

5
x2
)

x e−x2/2. (21.114)

Finally, the Fourier transform is given by the simple rule:

ψ̃nlm(β; k) = (2π)3/2(−i)2n+lψnlm(β → 1/β; x → k). (21.115)
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21.6 Appendix: scattering formulae

When writing code it is important to test against known cases. We therefore offer the
following formulae:

• Hard Sphere (radius r0): tan δ� = − j�(kr0)
n�(kr0)

.

• Square Well (radius r0, depth V0, K2 = k2 + 2μ|V0|): tan δ� = j′�(kr0)−j�(kr0)γ�

n′
�(kr0)−n�(kr0)γ�

,

γ� = j′�(Kr0)/j�(Kr0).

• Separable Potential: If V (r′, r) = λv(r′)v(r) then T(k′, k) = λg(k′)g(k)/
(1 − λJ(E)) with J(E) = ∫ d3p

(2π)3
g(p)2

E−E(p)+iε and g(p) = ∫ d3reikrv(r).

• Born Approximation: tan δ� ≈ −2μk
∫∞

0 r2dr j2� (kr)V (r).

The first two spherical Bessel and Neumann functions are

j0(x) = sin(x)
x

, j1(x) = sin(x)
x2 − cos(x)

x
(21.116)

n0(x) = −cos(x)
x

, n1(x) = −cos(x)
x2 − sin(x)

x
. (21.117)

21.7 Exercises

1. [T] Radial Basis.
Consider the basis

〈r|n〉 = exp(−nβr2)

where β is a variational parameter. Given that it can only represent even functions,
is this a viable basis for radial problems?

2. 1d SHO.
Solve the Schrödinger equation for the one-dimensional quantum mechanical
simple harmonic oscillator problem. Compare Runge-Kutta integration with
Numerov’s method. Notice that ψ(0) = 0 is not a requirement of the wavefunction,
however it is nonetheless obeyed by all solutions with negative parity. For positive
parity solutions, a different strategy for starting Numerov’s recurrence relation is
required. Can you find it?

3. Charmonia (i).
Charmonia are mesons that can be modeled as quantum mechanical bound states of
a charm quark and a charm antiquark. Charm quarks have a mass of approximately
1.5 GeV and are spin-1/2 fermions. Charmonia bound states form a spectrum of
particles with varying quantum numbers, n(2S+1)LJ , where n is the radial quantum
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number, S is the total spin of the quark and antiquark, L is their relative orbital
angular momentum, and J is the state’s total spin (this notation is the same as that
for the hydrogen atom).

Experiments do not measure S and L as these are not observable quantities; they
can determine, however, total spin, parity, and charge conjugation of a given state.
This information is represented in the notation JPC. For a fermion-antifermion
system P = (−)L+1 and C = (−)L+S. Thus, a vector state with JPC = 1−− can
be a linear combination of 3S1 and 3D1 quark-antiquark configurations.

Reasonably well-known charmonia states are tabulated in Table 21.2. These
figures are obtained from the Particle Data Group website http://pdg.lbl.gov,
which is a government-funded entity tasked with tracking experimental information
in particle physics. The last column in the table are (reasonable) guesses about the
internal structure of the experimental states listed.

Our goal is to reproduce this spectrum with a simple nonrelativistic quantum
mechanical model. Assume that the quarks interact according to the potential

V (r) = −4αs

3r
+ br.

The first term is a strong interaction analogue of the Coulomb potential, while the
second is a model of a confinement interaction that is meant to bind quarks into

Table 21.2 Experimental charmonium spectrum.

state mass (GeV) JPC n(2S+1)LJ

ηc 2979.2 0−+ 11S0

J/ψ 3096.8 1−− 13S1

η′
c 3637.7 0−+ 21S0

ψ ′ 3686.0 1−− 23S1

ψ(3770) 3770 1−− 13D1

ψ(4040) 4040 1−− 33S1

ψ(4160) 4159 1−− 23D1

χc0 3415.3 0++ 13P0

χc1 3510.5 1++ 13P1

χc2 3556.2 2++ 13P2

χ ′
c0 3918.4 0++ 23P0

χ ′
c2 3927.2 2++ 23P0

ψ(3823) 3822.2 2−− 13D2

ψ(4415) 4421 1−− 43S1

http://pdg.lbl.gov
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hadrons. Take mc = 1.48 GeV, αs = 0.546, and b = 0.143 GeV2. Determine the
masses of all the states listed in the table.

4. Charmonia (ii).
If you completed the previous question, you will have noticed that the predicted
spectrum only roughly agrees with the experimental data. The discrepancy is
largely due to missing spin-dependent interactions. Here we address the hyperfine
interaction contribution to the spectrum (the nomenclature comes from relativistic
corrections to the spectrum of hydrogen) which is given by a spin-spin interaction:

Vhyp(r) = 32παs

9m2
c

(σ/
√
π)3 exp(−σ 2r2) �Sc · �Sc̄.

The new constant is given by σ = 1.095 GeV.
The spin-dependent portion of the interaction can be evaluated exactly using the

standard trick:

( �Sc + �Sc̄)
2 = Stot(Stot + 1) = Sc(Sc + 1)+ Sc̄(Sc̄ + 1)+ 2 �Sc · �Sc̄.

Determine the masses of all the states in Table 21.2 with the new model (i.e., V +
Vhyp). You should set Stot and L in the code and diagonalize. Radially excited states
will be automatically generated as higher states. What is the effect of the hyperfine
interaction?

5. Charmonia (iii).
The hyperfine interaction introduced in the last question improves the agreement
with experiment; however, it is evident that additional mass splittings are still missing
(such as in the χcJ states). These can be accommodated by including fine structure
interactions; we model these as:

Vfs =
(

2αs

r3 − b
2r

)
1

m2
c

�L · �S + 4αs

m2
c r3 T

where T is the tensor operator:

T = �Sc · r̂ �Sc̄ · r̂ − 1
3
�Sc · �Sc̄.

Compute the masses of all the states in Table 21.2 using the model defined by
V + Vhyp + Vfs. Use only the diagonal matrix elements of the spin-orbit and tensor
interactions.

6. [P] Charmonia (iv).
Use the model defined by the potential V+Vhyp+Vfs to fit the charmonium spectrum
in Table 21.2. The fitting program should allow the parameters mc, αs, σ , and b to
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float. You should also permit mixing between states as generated by Vfs. Consult
Barnes et al. (2005) if you need help.

7. [T] Boundary Conditions for Discretized Hamiltonians.
The method discussed in Section 21.2.3 is very powerful but imposes constraints on
acceptable boundary conditions. We choose to work in a box defined by r ∈ (0, 1);
grid points start at r = � and run up to r = 1 −�.

a) What is the value of the wavefunction at r = 0?

b) Argue that there are reasons not to include r = 0 in numerical work.

c) Imagine implementing the box constraints by imposing an infinite strength
potential at r = 1. How will the wavefunction behave near x = 1?

d) Do numerical solutions follow the expected behavior?

8. Discretized Hamiltonians in D Dimensions.
Form the radial Schrödinger equation in D spatial dimensions and discretize it
according to the prescription of Section 21.2.3.

a) Analytically determine the behavior of u(r) at the origin as a function of � and D.

b) Determine the boundary conditions being imposed.

c) Establish that the method fails for D = 1 and D = 2 and works for D = 3
and D = 4 by carefully obtaining the ground state wavefunction for the D-
dimensional simple harmonic oscillator.

9. Linear Potential in Momentum Space.
We consider the problem of solving the Schrödinger equation with a linear inter-
action V (r) = br. This is an easy task in configuration space, but we shall take on
the more difficult job of solving for the spectrum in momentum space. According
to Section 21.2.4 this requires the interaction in momentum space. The difficulty
is that the Fourier transform of a linear function does not exist. We can proceed by
regulating the integral to obtain:

Vε(k) =
∫

d3r r e−εrei �k·�r = −8πε
(k2 + ε2)3

(k2 − 3ε2).

a) Argue that
∫

d3kVε(k) should be zero. Confirm that it is by doing the integral.

b) Thus establish that one cannot take ε → 0 at this stage.

c) Code up the momentum space Schrödinger equation and confirm that one
cannot obtain a sensible spectrum if one diagonalizes and then takes ε to zero.

This establishes that our attempt at regulating the momentum space potential fails.
Another way to regulate is to leverage the result of point (a) and subtract:
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∫
d3q

(2π)3
V (p − q)ψ(q) =

∫
d3q

(2π)3
V (p − q) [ψ(q)− ψ(p)]

≡
∫

d3q
(2π)3

V (p − q)ψ(q)−�(p)ψ(p),

where � is a self-energy term defined implicitly above. Thus the idea is to solve:

(
p2

2μ
−�(p)

)
ψ(p)+

∫
d3q

(2π)3
V (p − q)ψ(q) = Eψ(p). (21.118)

d) Show that the new regulator works by solving the modified Schrödinger equation
and comparing to configuration space solutions.

10. [P] Resonance in a Box.
It may be surprising to learn that it is possible to study resonances with the
discretized bound state technique of Section 21.2.3. We explore this here by
considering two particles of mass 1 interacting via a 3d square well of depth V0
and range r0. Set the scale by choosing r0 = 1 in the following.

a) Obtain the analytic solution to the square well problem and determine the bound
state energy for the case m1 = m2 = 1 and V0 = −4.

b) Implement a particle-in-a-box code and confirm the previous result.

c) Now couple this state to a decay channel. Call the first channel α and the second
β. Masses for α and 1, as above; set the masses for β to be 0.5. Couple the
channels with the following Vαα = −4, Vαβ = 0.1, and Vββ = 0. This induces
a weak coupling between the bound state and the β continuum. Implement this
situation in a coupled-channel particle-in-a-box code.

d) Obtain the lowest 10 or 20 eigenvalues of the coupled system. Print the RMS
radius of each state along with the eigenvalues. You should obtain a spectrum of
distorted plane waves with energies starting just above 1.0. However, you should
also notice an unusual state “embedded” in the continuum. How do you know
it is unusual? How do you interpret it?

e) Repeat with a larger box. How do the energy levels and RMS radii shift? Explain
what this reveals about the eigenstates.

f) Improve your code by computing the wavefunction components of the eigen-
functions (i.e., |〈α|ψ〉|2, where α is one of the channels). How do wavefunction
components differ for the embedded state?

11. Quantum Monte Carlo and the D-dimensional SHO.
Implement the GRW algorithm of Section 21.3.1 in D-dimensions. Confirm that
your code reproduces the ground state energy E0 = D/2 in the units used in the
text.
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12. Quantum Monte Carlo Excited States.
Computing the energy of the first excited state can be difficult with quantum
Monte Carlo methods. One could study E(τ ) carefully to extract the subleading
τ -dependence. In practice this is quite noisy and unreliable (one tends to get an
average of many excited states), thus direct access to E1 is preferable. This can be
achieved if the nodal surface of the excited state is known. Implement this idea in
the 1d SHO by putting a node at zero in the guidance function. Test your code by
confirming you recover E1 = 3/2 in the appropriate units.

13. Many-body Quantum Monte Carlo.
Generalize the guided random walk algorithm to the case of many particles of
different masses. Be aware that Eq. 21.25 will need to be modified in this case!
Test your code in the independent particle limit. Then turn on the interactions and
confirm that the results behave as expected.

14. [T] Quantum Monte Carlo Excited State Contamination.
Argue that the first excited state does not contribute to wavefunction contamination
in the guided random walk solution to the 1d SHO (in other words the relevant
energy gap is E2−E0 not E1−E0). Generalize your conclusions to other interactions.

15. GRW Matrix Elements.
Compare the efficiency of the double walk and Feynman-Hellmann methods for
computing 〈φ0|x6|φ0〉 for the 1d SHO. You should consider a figure of merit that
accounts for the accuracy of the measurement and the time it takes to make the
measurement.

16. Single Channel Scattering.

a) Solve the Schrödinger equation scattering problem by using one of the methods
in Chapter 11 and the formula for the phase shift, Eq. 21.63.

b) Test your code on the square well.

c) Compute the S- and P-wave phase shifts for the potential V = V0 exp(−r2/r2
0).

d) Compare your results to the Born approximation for this potential. When do
they agree?

17. [P] Coupled Channel Scattering.

a) Implement the coupled channel T-matrix algorithm of Section 21.4.3 and solve
the two-channel square well problem of Ex. 10 for β → β scattering.

b) Plot the magnitude of the T-matrix as a function of energy. You should see a
resonance peak at the same location as in Ex. 10.

c) Plot the phase shift as a function of energy. Compare your result to the Breit-
Wigner resonance approximation:

tan δ� ≈ �/2
ER − E
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and determine the resonance parameters, � and ER. These are the called the
Breit-Wigner width and resonance mass respectively.

d) Plot the imaginary part of the T-matrix vs. the real part while varying the
scattering energy. (You will need a lot of points close to the resonance location.
Alternatively, try increasing the size of Vαβ .) This is called an Argand plot. How
does the trajectory vary as one passes through the resonance location?

18. The R Matrix.
It is, somewhat surprisingly, possible to obtain the T-matrix with an entirely real
formalism. The idea is to neglect the imaginary part of the T-matrix equation that is
implicit in Eq. 21.4.2 or explicit in Eq. 21.78, which amounts to adopting standing
wave boundary conditions in the scattering problem. The R-matrix (or reaction
matrix) equation thus reads:

RE(k′, k) = V (k′, k)+ P
∫

d3q
(2π)3

V (k′, q)
1

E − E(q)
RE(q, k)

or, in operator form:

R = V + VG(P)R

where G(P) is the Green function with standing wave boundary conditions.
It is possible to prove that:

RE = TE + iπTE δ(E − H0)RE

by comparing the T-matrix and R-matrix equations. Thus the R-matrix can be used
to reconstruct the T-matrix and the simpler equation for R can be solved in place of
that for T . In particular,

R�(k, k) = −2π tan δ�

μk
.

Implement an R-matrix code for a simple potential and confirm that it produces the
same phase shift as T-matrix code.

19. Relativistic Green Function.
Sometimes it is desirable to use relativistic kinematics in a scattering problem. In
this case the Green function becomes

G(k) = 1
E − m1 − m2 − k2/(2μ)+ iε

→ 1

E −
√

k2 + m2
1 −

√
k2 + m2

2 + iε
.



770 Exercises

a) Generalize the Haftel-Tabakin trick (Eq. 21.78) to the relativistic case. If you are
stuck consult Landau (1996), Chapter 18.

b) Solve for the single channel phase shift for your favorite problem. Under what
conditions does relativistic kinematics become important?

20. [T] Poles in the S-matrix.
The S-matrix contains all information for a given quantum mechanical scattering
problem. It is natural to ask, does it also contain information about the bound states
of the system? The answer is yes—we illustrate this here in the case of S-wave
scattering in a three dimensional square well of depth V0 and range a.

a) Establish that the equation for an S-wave bound state is:

1 + k
K

tan Ka = 0,

where k2 = 2μE and K2 = 2μ(|V0| − |E|).
b) Show that the S-wave phase shift is given by:

δ0 = −ka + tan−1
(

k
K

tan Ka
)

.

c) Consider single channel scattering and write the S-matrix as:

S = 1 + i tan δ�

1 − i tan δ�
.

Substitute the S-wave phase shift and show that the equation for a pole in the
S-matrix corresponds to that for a bound state if one replaces k with ik. Thus
poles in the S-matrix along the positive imaginary momentum axis correspond
to bound states.

21. Scattering with Two Degenerate Channels.
In general it is very difficult to make analytic calculations in the coupled channel
scattering problem (and thus it is difficult to verify coupled channel code). We
discuss two special cases that do admit analytic solutions in this problem and
the next.

Consider a two-channel problem that interacts via a potential that is common to
all channels, with the exception of an overall strength. Thus the coupled-channel
interaction can be written as Vαβ(r) = AαβV (r), where the As are constants. We
specialize further by considering the case where the particle masses in channel
one are the same as those in channel two. Under these conditions it is natural
to diagonalize the matrix A to obtain decoupled single-channel problems. This
would be the complete solution except for one complication: one must implement
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scattering boundary conditions on the channel wavefunctions, and by diagonalizing
one mixes up these boundary conditions.

a) Unravel the mess to obtain the complete solution to the scattering problem,
including all elements of the S-matrix.

b) Test your solution against your coupled-channel code.

22. Coupled Channels with Separable Potentials.
Another important class of coupled-channels problems that permit analytic solution
involves separable interactions. A separable potential is maximally nonlocal and
can be written as

V (r′, r) = 〈r′|V |r〉 = λg̃(r′) g̃(r).

Alternatively,

V (k′, k) = 〈k′|V |k〉 = λg(k′) g(k).

This property is convenient because it permits solution to the scattering equation
T = V +VGT . This can be affected by forming the Ansatz TE(k′, k) = tEg(k′) g(k)
and substituting. Solving for tE and substituting gives:

TE(k′, k) = λ
g(k′) g(k)
1 − λJ(E)

where

J(E) =
∫

d3q
(2π)3

g(q)2

E − E(q)+ iε
.

a) Confirm the above results.

b) Generalize the solution to the case of coupled channels. Take the interaction to
be Vαβ = λαβ g(k′) g(k).

c) Confirm your solution by comparing to your coupled channel scattering code.

..........................................................................................
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22.1 Introduction

Although magnetism has been known to the world since the ancient Greeks, it has yet
to be fully understood because it is a collective quantum effect. Heisenberg (1928) was
the first to realize that the low energy behavior of a magnet may be characterized by
the interplay of the Pauli exclusion principle and electrostatic exchange forces. This is
something of a surprise, since one may expect that the interaction of magnetic dipoles
would dominate the system. However, the typical energy of two magnetic dipoles is
O(10−4) eV (Ashcroft and Mermin, 1976) while the electrostatic energy of a pair of
magnetic ions is typically 1 eV. Thus if the electrostatic energy of the ions can depend on
the direction of their moments then Heisenberg’s contention is correct. It is the exclusion
principle which provides this dependence.

To illustrate, consider a spin-independent Hamiltonian describing two electrons. An
eigenstate of the system will be a product of a spatial wavefunction and a singlet or triplet
spin wavefunction:

ψ(�r1, �r2; s1, s2) = φ(�r1, �r2)χ(s1, s2). (22.1)

Generally ground states have spatially symmetric wavefunctions. Fermi statistics (the
Pauli principle) requires that ψ is antisymmetric under interchange of the electrons,
thus the antisymmetric spin singlet state is preferred, and we conclude that Heisenberg’s
contention is correct.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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An effective Hamiltonian that separates the spin singlet state from the spin triplet can
be constructed from spin degrees of freedom in the following manner:

Heff = 1
4
(Es + 3Et)− (Es − Et) �S1 · �S2

= J �S1 · �S2 + const

J ≡ (Et − Es). (22.2)

The first line is designed to yield an eigenvalue of Es (Et) in the singlet (triplet) states,
while the second is a simple redefinition.

Show that Heff works; i.e., show 〈SM| �S1 · �S2|SM〉 = −3/4 for S = 0 and +1/4 for
S = 1. Hint: use the old trick (S1 + S2)

2 = S(S + 1).

If J is written in terms of the appropriately symmetrized wavefunctions (and one
ignores issues of normalization, etc) then it is approximately −2〈φ(�r1, �r2)|H |φ(�r2, �r1)〉
which is an exchange energy and is purely a quantum effect. If J is positive then
the spatially symmetric ground state is preferred so that the spins tend to anti-align;
this is referred to as antiferromagnetism. The configuration with spins aligned in
opposing directions on alternating lattice sites is called the Néel state. If J is negative the
antisymmetric ground state is preferred and the spins tend to align. This is ferromag-
netism.

It is remarkable that in many cases (Herring, 1965) the spin Hamiltonian for N bodies
is simply

HHAF =
∑

ij

Jij �Si · �Sj . (22.3)

where Jij is the exchange energy between bodies i and j. Notice that HHAF is isotropic in
spin space, however if dipolar or spin orbit couplings are present the rotational symmetry
may be broken. A simple way to incorporate some of these effects is by introducing
anisotropy into the spin coupling. Thus we shall deal with the anisotropic Heisenberg
antiferrromagnet (aHAF) described by the Hamiltonian

HaHAF = J
∑

(ij)

(Sz
i Sz

j + g �S⊥
i · �S⊥

j ) (22.4)

where (ij) represents a nearest neighbor in the lattice of interest (usually a 2d square
lattice) and �S⊥ is (Sx, Sy). The limit g → 0 represents the Ising model and is trivially
solvable at zero temperature. The g → ∞ limit is the XY model which has achieved
some fame due to the existence of a novel topological phase transition (see Chapter 20
for much more on these models).
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The exact value of the ground state energy per spin (in units of J) for the one-
dimensional S = 1/2 isotropic spin system was found by Hulthèn in 1938 with the
aid of the famous Bethe Ansatz (Bethe, 1931) and is given by:

e0 = 1
4
− ln 2 ≈ −0.4431471. (22.5)

The solution for the 1d S = 1/2 anisotropic case was obtained in 1959 and is:

e0 = 1
4
− 1

2

(

1 +
∞∑

n=1

4
e2nλ + 1

)

tanhλ, (22.6)

where sechλ = g.
The conditions under which long range order (i.e., magnetization of one sort or

another) occur has been a longstanding problem in the field. In 1966, Mermin and
Wagner proved that there exists no spontaneous (sublattice) magnetization at non-zero
temperature for the 1d or 2d isotropic Heisenberg model (Mermin, 1966). In fact,
it is the presence of low energy fluctuations that disrupts long range order at finite
temperature and low dimensionality. The existence of these fluctuations is underpinned
by Goldstone’s theorem (Goldstone, 1961; Bludman, 1963), explored in Exercise 11,
which states that a relativistic theory with a broken symmetry and corresponding
degenerate vacuum must have a massless particle. Lange (1966) has shown that a version
of this theorem applies to non-relativistic many-body systems which have finite-range
interactions.

Goldstone’s theorem is based on the usual set of field theoretic axioms, in particular
the norm must be positive definite and the theory must be manifestly Lorentz covariant.
One cannot have both of these in locally gauge invariant field theories. The resulting
breakdown in Goldstone’s theorem allows the Goldstone boson to be ‘eaten’ to form
the extra degree of freedom needed for the, now massive, gauge particles. This process,
originally explored in condensed matter physics, is known as the Higgs mechanism
(Higgs, 1964; Anderson, 1958). The analogous process occurs in non-relativistic systems
when long range forces are present. Indeed, for infinite range interactions spins with a
finite relative rotation will produce a positive excitation energy at any distance. Hence
the energy at zero wave number will be finite and the spin wave will be massive (Negele
and Orland, 1988).

22.2 The anisotropic Heisenberg antiferromagnet

We seek the ground state (and perhaps a few excited states) of the 1d and 2d anisotropic
S = 1/2 Heisenberg antiferromagnet at zero temperature. Thus a large (how large will
be specified shortly) quantum mechanical problem must be diagonalized. In this section
our main tool will be the Lanczos and related iterative algorithms.

The starting point is the anisotropic Heisenberg antiferromagnet of Eq. 22.4. We
consider S = 1/2 spins, set �Si = h̄�σi/2, and absorb a factor of h̄2 into the coupling.
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Nearest neighbor couplings will be considered henceforth. For the moment we consider
a one-dimensional chain of spins of length L. Periodic boundary conditions will be used
because they minimize surface effects. Finally, we seek the behavior of the system in the
bulk limit (i.e., a very large number of spins).

Thus:

H = 1
4

J
∑

(ij)

[σ z
i σ

z
j + gσ⊥

i · σ⊥
j ] (22.7)

The Pauli matrices are defined in the usual way:

�σ ≡ (σ x, σ y, σ z) =
[(

0 1
1 0

)
,
(

0 −i
i 0

)
,
(

1 0
0 −1

)]
. (22.8)

Before launching into a full-blown investigation of the model it is worth spending some
effort developing intuition with small systems. Consider, therefore, a two-spin system. A
complete set of states is {| + +〉, | + −〉, | − +〉, | − −〉} where, for example,

| + −〉 ≡ |+〉1 ⊗ |−〉2 ≡
(

1
0

)

1
⊗
(

0
1

)

2
. (22.9)

We have denoted spin locations with subscripts 1 and 2.
A straightforward way to proceed is to evaluate the matrix elements of H and

diagonalize. This is best accomplished with the step operators:

σ± = 1
2
(σ x ± iσ y) (22.10)

for which:

σ+|+〉 = 0 σ+|−〉 = |+〉 (22.11)

and:

σ−|+〉 = |−〉 σ−|−〉 = 0. (22.12)

Furthermore:

σ z|+〉 = |+〉 σ z|−〉 = −|−〉. (22.13)

The Hamiltonian is thus:

H = H0 + V = J
4

∑

(ij)

σ z
i σ

z
j + gJ

2

∑

(ij)

[σ+
i σ−

j + σ−
i σ+

j ]. (22.14)
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The notation signifies that H0 is diagonal in our z-diagonal basis. Thus:

H0|s1s2 . . . sL〉 = J
4

∑

i

(sisi+1)|s1s2 . . . sL〉 (22.15)

where si = ± denotes the spin state at site i.
Alternatively, the interaction V is a spin flip operator:

V | ± ∓〉 = gJ
2
| ∓ ±〉, (22.16)

while V | ± ±〉 = 0.
With this formalism it is easy to evaluate the Hamiltonian for our two-spin trial

problem. In the basis | + +〉, | + −〉, | − +〉, | − −〉 the result is:

H = J
4

⎛

⎜⎜
⎝

1
−1 2g
2g −1

1

⎞

⎟⎟
⎠ . (22.17)

Notice that the Hamiltonian is block diagonal, with | ++〉, | −−〉, and {| +−〉, | −+〉}
falling into separate sectors. This occurs because the total z-component of spin

σ z
tot =

∑

i

σ z
i (22.18)

is conserved (see Ex. 4). Furthermore the total spin is also conserved when g = 1

[
∑

i

�σi , H

]

= 0. (22.19)

The eigenvalues for the two-spin problem are 1/4, 1/4, and −(1±2g)/4. In the isotropic
case we thus obtain a triplet with eigenvalue J/4 and a singlet with eigenvalue −3J/4, as
expected. Notice that the ground state of the antiferromagnet is in the σ z

tot = 0 sector.
This will turn out to be always true. Alternatively the ferromagnet always has as a ground
state the degenerate pair |Smax,±Mmax〉 = | ± ± . . .±〉.

With periodic boundary conditions the ground state energy per spin for L = 2 is:

e0 = E0

JL
= −3/2. (22.20)

Repeating this exercise for L = 4 and g = 1 (Ex. 1) confirms that the ground state lies
in the singlet sector and gives e0(4) = −1/2. Evidently we are making progress towards
the expected bulk limit result of e0 ≈ −0.4431.
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It is clear that our strategy of forming and diagonalizing the Hamiltonian cannot be
carried out much further. In general one must deal with a 2L × 2L matrix which is
impractical for even relatively small L. If one restricts attention to the σ z

tot = 0 sector, the
problem is reduced to diagonalizing a

(
L
L
2

)
×
(

L
L
2

)

matrix, which is still a daunting task. For example, for L = 10 this is a manageable
252 × 252 matrix, but for L = 20 one must diagonalize a 184,756 × 184,756 matrix,
which will require about 68 gigabytes of memory to store. For L = 30 the matrix is of
size (1.6 · 108)2 and will require 48 petabytes of memory.

22.3 The Lanczos algorithm

The Lanczos algorithm1 is the standard method for diagonalizing large matrices. The
method acts iteratively on an initial trial state to produce a sequence of new states within
which the Hamiltonian is tridiagonal. Pseudocode for the algorithm follows.

// Lanczos Algorithm (pseudocode)

set |φ−1〉 = 0; b0 = 0
select a trial state |φ0〉
generate |φn+1〉 = H |φn〉 − an|φn〉 − b2

n|φn−1〉

with an = 〈φn|H |φn〉
〈φn|φn〉

b2
n = 〈φn|φn〉

〈φn−1|φn−1〉

repeat

The end result is that the Hamiltonian takes on the form

H =

⎛

⎜⎜
⎝

a0 b1
b1 a1 b2

b2 a3 b3
. . . . . .

⎞

⎟⎟
⎠ . (22.21)

The orthogonal basis that achieves this is given by
{
|φ0〉, |φ1〉

b1
,

|φ2〉
b1b2

, . . . .
}

1 Named after Cornelius Lanczos (1893–1974) (pronounced “Lahn-ts-osh”), who was a Hungarian
mathematician and physicist. He was driven from Hungary by the Nazis and from America by McCarthyism.
He is also known for work on the fast Fourier transform and general relativity.
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22.3.1 The Lanczos miracles

In principle one can obtain the complete spectrum of an N ×N matrix with N iterations
of the Lanczos algorithm. This will prove impractical for the extremely large matrices
considered here. We are thus fortunate that the first Lanczos miracle occurs: namely
one often obtains very good estimates of the low lying spectrum with a relatively small
Lanczos matrix (say, 102 or 1002). We know of no reason why this should be and it is
easy to come up with counter examples. Nevertheless we shall see that extremely accurate
estimates of the few lowest eigenvalues of the Heisenberg chain can be obtained with
Lanczos matrices that are as small as O(L)× O(L) in size.

The second Lanczos miracle concerns numerical stability. Namely, the vast number
of numerical operations quickly renders Lanczos basis states nonorthogonal (typically
only a few iterations are required for round off error to accumulate to this point). In
principle this should make the Lanczos algorithm useless. In practice, however, the effects
of the breakdown of the algorithm are benign. Typically, redundant copies of eigenvalues
and eigenvectors are obtained as the iterations proceed (Collum and Willoughby, 1985).
This can be a problem if one is interested in a degenerate portion of the spectrum, but
is often not an issue in the low lying spectrum. Furthermore, the generation of spurious
eigenvalues can easily be followed, allowing them to be removed from the spectrum.

We illustrate this effect by diagonalizing the matrix Aij = iδij (in other words, we
tridiagonalize a diagonal matrix and then rediagonalize it). As expected, one finds that
orthogonality of the Lanczos states is quickly lost (in fact, single precision arithmetic is
entirely useless; one must employ extended precision). Figure 22.1 shows the obtained
eigenvalues as a function of the number of Lanczos iterations for a 200 × 200 matrix.
Evidently the first three eigenvalues are being accurately recovered once 30 iterations
have been made. Notice, however, that the second trajectory makes a transition to the
lowest state (e0 = 1) at around 80 iterations. This is followed by a transition of the third
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Figure 22.1 Lanczos eigenvalues for Aij = diag(1, 2, . . . , 200).
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trajectory to the second eigenvalue. In fact, one might justifiably suspect that the second
trajectory has hung up on the third eigenvalue around 20 iterations before moving to
its correct value. These transitions occur because of accumulating round off error and
generating the redundant eigenvalues discussed above.

Are there situations where trajectory jumping can be useful?

If the eigenvector coefficients of the nth eigenvalue are znm in the Lanczos basis then
the eigenvector can be reconstructed as:

|ψn〉 =
∑

m

znm∏m
i=0 bi

|φm〉. (22.22)

This can be computed while iterating, but requires storing Nit Lanczos vectors. The
accepted way to deal with this issue is to run the Lanczos iterations a second time,
performing the sum indicated in Eq. 22.22 as one proceeds. The lowest eigenvector
(v0 = (1, 0, 0, . . .)) has been generated in this way for the diagonal test case and is
displayed in Figure 22.2. One sees that the first element of the eigenvector is indeed unity,
however the remaining components can be as large as 1% when 40 Lanczos iterations
have been made. Fortunately, the situation improves rapidly with additional iteration; 80
iterations yield components with strength less than 10−8. Similar behavior is obtained
for other test matrices; for example Aij = δij/i behaves as above but with much slower
convergence in both the eigenvalues and eigenvectors. In general the Lanczos algorithm
performs better if eigenvalues are well-separated (Collum and Willoughby, 1985).
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Figure 22.2 First eigenvector for A = diag(i). Top points: 40 Lanczos steps, bottom points: 80
Lanczos steps.
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22.3.2 Application of the Lanczos method
to the Heisenberg chain

A typical diagonalization problem will require storing the (hopefully sparse) matrix H
and performing many matrix-vector multiplies. However, a great advantage of the algo-
rithmic definition of the Heisenberg antiferromagnet Hamiltonian we have developed is
that it permits generating the new basis vectors on the fly. Thus memory requirements are
reduced to that required to store a few basis vectors (two or three) of length L!/(L/2)!2,
which is an enormous advantage.

Show that the Lanczos algorithm can be implemented with only two basis vectors in
memory. At what cost?

The states of the Lanczos algorithm are written in terms of our ẑ-diagonal basis:

|φ〉 =
∑

n

αn|n〉 (22.23)

where |n〉 is the nth basis state. It is convenient to leverage the binary nature of the spins
to label these basis states. For example for L = 4 one could set:

|0〉 = | − − −−〉, |1〉 = | − − −+〉, . . . , |15〉 = | + + ++〉. (22.24)

Of course the point is that each state can now be referred to by its associated integer. In
the following we call this a statecode. In this way a state such as:

1√
5
| − − − −〉 − 2√

5
| − − + +〉 (22.25)

would be stored as the vector ( 1√
5
, 0, 0,− 2√

5
, 0, . . . , 0). State overlaps are now easy to

compute, if |χ〉 =∑βn|n〉 then2

〈χ |φ〉 =
∑

n

∑

m

β∗
nαm 〈n|m〉 =

∑

n

β∗
nαn. (22.26)

Reducing the size of the Hilbert space by taking advantage of the block-diagonal
structure of the Hamiltonian is crucial (further reduction is possible: see Ex. 5). We
implement this by scanning statecodes, determining configurations with a specific value
of σ z

tot, and keeping an array that maps ‘relabeled statecodes’ to statecodes.

2 In spite of the notation, state coefficients are always real because the Clebsch-Gordan matrix is unitary.
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// set up relabeled state codes
unsigned long int maxnum = 1 << L; // 2^L
int rl[size]; // size = L!/(L/2)!(L/2)!

rsc = 1;
for (unsigned long int sc=0; sc<maxnum; sc++) {
if (Sz(sc) == Sztot) {

rl[rsc] = sc; // push the statecode onto the "relabelled
statecode" array

rsc++;
}

}

As an illustration, for L = 4 the statecodes for configurations with σ z
tot = 0 are 3,

5, 6, 9, 10, and 12. The relabeling array thus is rl(1)=3, rl(2)=5, …, rl(6)=12. It
will be necessary to invert this relabeling to access spin configurations, thus one must
define a function inv, such that inv(3)=1, inv(5)=2, …inv(12) = 6. Notice that
the range of this function runs to 2L whereas the domain runs to L!/(L/2)!2, thus it is
impractical to implement inv as a look-up table for anything but very small L. A better
approach is to compute the inverse using a binary search. This is an example of trading
memory for speed that occurs often in algorithm design.

The next step is to choose an initial state. An obvious choice that is appropriate for
small g is the Néel state |φ0〉 = (| + − + − . . .〉 + | − + − + . . .〉)/√2:

// initial Neel state (pseudocode)
zero phi
neel1 = 2^L/3
neel2 = 2*neel1
phi(inv(neel1)) = 1/sqrt(2)
phi(inv(neel2)) = 1/sqrt(2)

Another possibility is to assign random numbers to the elements of phi.

Verify that neel1 and neel2 as specified above actually give the Néel state.

The central element of the Lanczos algorithm is the computation of H |φ〉. Obtaining
H0|φ〉 may be simply done with Eq. 22.15 and with the aid of a function to extract a spin
from a state code:

int spin(unsigned long int sc, int bt) {
// return the bt’th bit in sc converted to +-
int S = -1;
int k = sc & 1 << bt;
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if (k != 0) S=1;
return S;

}

Evaluating V |φ〉 requires flipping spins according to Eq. 22.16. The first step is to
determine if a spin pair is flippable (i.e., it is either | +−〉 or | −+〉). A routine that does
this follows.

bool flippable(unsigned long int rsc, int bt) {
// check if bit bt != bit bt+1
bool f = false;
int b0 = (rl[rsc] >> bt) & 1;
int b1 = (rl[rsc] >> pl[bt]) & 1;
if (b0 != b1) f = true;
return f;

}

Once a flippable spin pair has been determined the flip operation can proceed:

unsigned long int flip(unsigned long int rsc, int bt) {
// flip bits bt and bt+1; return a relabeled statecode
unsigned long int sc = rl[rsc];
sn ^= 1 << bt;
sn ^= 1 << pl[bt];
return inv(sc);

}

Finally, obtaining H |φ〉 is not difficult:

// H0{phi}
for (rsc=1; rsc<=maxlen; rsc++) {

Hphi[rsc] = H0(rsc)*phi[rsc];
}
// V{phi}
for (rsc=1; rsc<=maxlen; rsc++) {

for (int bt=0;bt<L;bt++) {
if (flippable(rsc,bt)) {
Hphi[flip(rsc,bt)] += g/2.0*phi[rsc];

}
}

}

Running a typical code is straightforward until the number of spins approaches 30. At
this point 100 Lanczos iterations can take several hours and memory requirements grow
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Figure 22.3 S = 1/2 isotropic Heisenberg chain ground state energy.

to several gigabytes. Pressing ahead without taxing our meager laptops too strenuously
yields results like those of Figure 22.3, which have been obtained for L = 8 up to L = 30.
One sees that the ground state energy e0(g = 1) scales very nearly as L−2. A cubic fit to
the Lanczos eigenvalues is also shown in the figure and yields the estimate

e0(L = ∞; g = 1) = −0.4431461(3).

The exact energy in one dimension (to seven digits) is -0.4431471. This remarkable
result illustrates the first Lanczos miracle, namely a bulk limit quantity has been
computed to six digit accuracy by diagonalizing a (at most) 120 × 120 matrix!

Once the low lying eigenvalues have been obtained the corresponding eigenvectors
can be computed using the technique discussed in Section 22.3.1. We use this method
to compute the expectation of the staggered magnetization:

Nz = 1
L

∑

i

(−)i σ z
i (22.27)

where the sum is over all spins. This serves as an order parameter for Néel ordering in the
ground state. Reflection symmetry implies that 〈Nz〉 = 0 so it is advisable to measure a
related quantity such as 〈|Nz|〉. Here we choose to compute 〈N2

z 〉. The results are shown
in Figure 22.4.

The solid line in the figure is the perturbative result, 〈N2
z 〉 = 1 − 2g2 (see Ex. 13),

which demonstrates that the numerical work is functioning correctly. It is possible to
obtain the finite size (i.e., L-dependent) corrections to this result so that an even more
detailed check of code can be made. The circles in the plot are extrapolations in 1/L of
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The lowest points are a linear extrapolation to the bulk limit in 1/L.

the points computed at L = 8, 12, 16, 20 and 24. One sees a rapid transition from large
staggered magnetization to small staggered magnetization around g = 1. Indeed one
expects that there is no long range order in one dimension for g = 13. The rather large
estimate, 〈N2

z 〉(L = ∞; g = 1) ≈ 0.04, indicates that substantial finite size corrections
remain in the extrapolation. Indeed, the estimate for this quantity drops consistently as
larger chains are included in the fit, providing strong evidence that there is a magnetic
phase transition at g = 1.

22.4 Quantum Monte Carlo

Obtaining matrix elements and eigenenergies for large chains with the Lanczos algorithm
is a difficult task. One could attempt to employ parallel computers by partitioning the
state vector |φ〉 among the processors. This works well for the computation of overlaps
(an and b2

n) and H0|φ〉, but runs into trouble when computing V |φ〉 since the result for a
given relabeled state code can lie in any partition. Thus communication latency severely
restricts the effectiveness of a parallel Lanczos code.

An alternative is to generalize the guided random walk (GRW) quantum Monte Carlo
algorithm described in Chapter 21 to problems with discrete degrees of freedom (Barnes
and Daniell, 1988).

3 Despite the fact that the ground state of the anisotropic chain is known (the Bethe Ansatz), an analytic
expression for the long range order has not been obtained.
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Consider a problem with a discrete set of basis states {|S〉}. We wish to solve

− ∂

∂τ
ψ = Hψ (22.28)

as a diffusion problem in configuration space. To start, split H into |S〉-diagonal and
interaction pieces, H0 and HI respectively. Define the diagonal potential by:

H0 =
∑

S

|S〉V0(S)〈S|. (22.29)

Let us also define the nearest neighbors of |S〉 in configuration space as the set {|S′〉}
such that 〈S|HI |S′〉 �= 0. Now we say that if the walk is at |S〉 at time τ then it may step
to a nearest neighbor at time τ +#τ with probability:

p(S, τ → S′, τ +#τ) = NSS′rSS′#τ . (22.30)

The transition rates rSS′ are a set of arbitrary positive numbers which constitute the
guidance in this algorithm (see Section 21.3.1 for the importance of guidance in this
technique); NSS′ is the number of states that can be reached in one time step from |S〉.

A solution of the Euclidean Schrödinger equation is generated by constructing a
histogram of weight factors in configuration space. In this case the weight factor
associated with the mth random walk is the product of two factors, an exponential
“diagonal weight” that depends on the path followed in configuration space and a
“transition weight”.

w(m)
total(0 → τ) = w(m)

trans · w(m)
diag , (22.31)

wtrans =
∏

S→S′
transitions

(
− 〈S′|HI |S〉

rSS′

)
, (22.32)

wdiag = exp
(

−
∫ τ

0

(
V0(S(τ ′))−

∑

S′
rSS′
)

dτ ′
)

. (22.33)

Recall that one is able to optimize the continuum algorithm provided that one can
find the “perfect” guiding potential gp(x) = − ln(ψ0)/2, and that this choice allows exact
energy measurements from a single walk. We enquire whether there exists an analogous
“perfect” choice for the guiding matrix rSS′ . The answer is in the affirmative: it is
given by:

rp
SS′ = − 〈S′|HI |S〉 ψ0(S′)

ψ0(S)
. (22.34)
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The condition

V0(S)−
∑

S′
rp
SS′ = const, (22.35)

reproduces the Schrödinger equation as in the continuum case. To obtain energy
measurements with zero statistical error given Eq. 22.34 one must discard the transition
weight factor in Eq. 22.31 and calculate energies using only the diagonal weight of
Eq. 22.33. This simplification is justified for any rSS′ of the general form:

rSS′ = − 〈S′|HI |S〉 ψ
g
0(S

′)
ψ

g
0(S)

(22.36)

because the transition weight is a function of the arrival configuration S(τ ) only and
has no explicit time dependence. The function ψ

g
0 may be regarded as a parametrized

trial Ansatz for ψ0, analogous to ψ
g
0 ≡ exp(−2g) used for importance sampling in the

continuum algorithm. Substitution into Eq. 22.32 shows that with the form Eq. 22.36
the transition weight is a function of S(τ ) only; since p(S, τ) has a limiting distribution
p(S,∞) at large τ , the asymptotic time dependence e−E0τ evidently arises exclusively
from the diagonal weight.

An important issue arises if transition weights are required in a given calculation. As
is evident from Eq. 22.32, the sign of wtrans can change with each transition, depending
on the signs of rSS′ and 〈S′|HI |S〉. This leads to large cancellations in weight averages
that can overwhelm the signal. This is called the fermion sign problem and can be very
severe. The fermion sign problem is present in the case of the Heisenberg model because
the guidance and matrix elements are positive. Fortunately, it is simple to avoid the issue
by performing a unitary transformation that flips the sign the transition matrix element
(see Ex. 6). Unfortunately such tricks are not available for more complicated problems
such as the two-dimensional Hubbard model (Ex. 22).

As with the continuum version of the guided random walk algorithm, care must be
taken to obtain the limits

#τ → 0, τ → ∞, stats → ∞. (22.37)

A number of approaches to obtain the ground state energy are possible. For example,
since

〈w(τ )〉 → αe−E0τ (1 + βe−(E1−E0)τ + . . .) (22.38)

where α and β are normalization constants, a fit of w to a sum of (say two) Gaussians will
yield an estimate of the ground state energy. (We warn that the fit to E1 − E0 generally
does not provide a good estimate of the excited state energy because the effects of the sum
over many exponentials are absorbed into that fit parameter). The reader is additionally
cautioned that the errors in a random walk are strongly correlated in time, and hence
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care must be taken in evaluating the mean and error (see Chapter 7 for information on
dealing with correlated data).

An alternative is to extract the ground state energy with the effective energy:

eeff(τ ;�) = 1
�

log
〈w(τ )〉

〈w(τ +�)〉 . (22.39)

Again, the effective energy should approach the ground state energy as τ gets large. An
example is shown in Figure 22.5; the curves are computed with � = #τ = 0.01 on
a 16 spin chain. A chief concern with the method is determining the window in which
the effective energy reaches equilibrium (one says it plateaus). The figure shows the
effective energy obtained from three starting points, a Néel state, a ‘dimer’ state (|++−
−++−− . . .〉), and an ‘iceberg’ state (|++++ . . .−−−−〉). The data were obtained with
105 random walks for the Néel and dimer initial configuration and 106 for the iceberg.
All three approach the correct energy and indicate plateau times of approximately 3, 4,
and 6 for the dimer, Néel, and iceberg states respectively (using the symbol size as a
rough accuracy criterion). Such explorations are crucial when the ground state energy
of the system is not known.

The plateau time must be chosen such that the error induced by averaging over mea-
surements at finite Euclidean time is less than the desired accuracy in the computation.
This can be difficult to achieve since errors in the effective energy values grow with τ .
A more sensible way to proceed is to incorporate as much information as possible, and
extract the desired estimates with a fit. In this case Eqs. 22.38 and 22.39 provide a simple
functional form that can be fit to eeff(τ ). However, the effective energies are correlated
and care must again be taken. Dealing with correlations can be time consuming (a great
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Figure 22.5 Effective energy for dimer (at the bottom for low τ ), Néel (middle), and iceberg (top) initial
configurations.
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many correlation matrix elements must be evaluated), hence we choose to evaluate
the effective energy at temporal separations larger than the autocorrelation time (see
Chapter 7 for more on autocorrelation). In this case choosing � = 100#τ works
quite well. The resulting data series is uncorrelated and errors can be estimated in the
usual way.

The next task is to choose and optimize the guidance function. First we note that the
unguided diagonal weight is given by:

wdiag =
∫ τ

0
dτ ′

(

V0(S(τ ′))− g
s

∑

S′
1

)

=
∫ τ

0
dτ ′

(
L
4

− 1
2

N̄(τ )− g
2

N̄(τ )

)
(22.40)

where N̄ is the number of antialigned spin pairs in the given configuration.
For the walk guidance function we employ the Ansatz:

ψg({S}) = g
2

exp(−BV0(S)). (22.41)

With this choice rSS′ is a function of the change in V0 in going from the state S to S′, δE.
In general a function of V0 is preferable since it can be evaluated quickly in the walk basis.

Summing over possible states gives:

NSS′
∑

S′
rSS′ =

∑

δESS′
−〈S′|HI |S〉 exp(−BδE) =

∑

δESS′

g
2

exp(−BδE). (22.42)

Verify that the guided weight reverts to the unguided weight as B → 0.

Figure 22.6 displays a scan of the ground state energy in B for a 12-spin chain. A clear
optimum near B = 0.4 is evident in the plot. This guidance has been used for all of the
results presented in Table 22.1. The reader is reminded that the triple limit indicated in
Eq. 22.37 needs to be monitored carefully. Each of these gives rise to a systematic error
that must be incorporated in fits and extrapolations: typical statistical errors will be much
smaller than true errors. The guided random walk results of the table were generated with
a variety of number of walks, fit windows, and temporal step size. Typical values were
4 million walks, #τ = 0.002, # = 100#τ , and fit windows of [2 : 14] and [4 : 14].
Algorithmic parameters were usually varied by factors of two to check stability and more
walks were required for larger chains.

Recall that the Lanczos results were only able to hint that the isotropic model has no
long range order. The guided random walk method provides more information because it
yields useful results at larger L. A fit to guided random walk data is shown in Figure 22.7.
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Figure 22.6 Ground state energy vs. guidance parameter. The exact result is shown as a line.

Table 22.1 Ground state energy and staggered magnetization squared
of the Heisenberg antiferromagnetic chain (g = 1).

L e0(Lanczos) e0(GRW) N2
z (Lanczos) N2

z (GRW)

12 –0.4489492 –0.448933(15) 0.3276 0.3284(4)

16 –0.4463935 –0.446398(36) 0.2683 0.2672(6)

20 –0.4452193 –0.445267(21) 0.2289 0.2310(5)

24 –0.4445839 –0.444560(15) 0.2007 0.1980(7)

28 –0.4442017 –0.444226(15) 0.1793 0.180(1)

30 –0.4440654 – – –

32 – –0.44396(2) – 0.1682(7)

36 – –0.44368(4) – 0.1485(15)

40 – –0.44375(4) – 0.138(3)

44 – –0.44356(3) – 0.12(1)

This fit is cubic in 1/L, which was required to incorporate the higher L values. The fit
gives 〈N2

z 〉(L → ∞) = 0.014(33), indicating that there is indeed no long range order at
isotropy for the 1d Heisenberg model.

A comparison of the main results of this chapter indicates that the Lanczos method
is very powerful if the system approaches the bulk limit rapidly and smoothly and if
several low lying eigenvalues and eigenvectors are of interest. It also has the great benefit
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Figure 22.7 〈N2
z 〉 vs. 1/L for g = 1.

that very little extrapolation is required, one simply iterates until convergence is reached.
Alternatively, the Monte Carlo method is preferred if larger systems need to be simulated,
since memory requirements are minimal and the algorithm can be trivially parallelized.
On the negative side, greater care must be taken to monitor systematic errors, only a very
few low lying states are accessible, and the method fails when fermionic signs destroy the
signal to noise ratio.

22.5 Exercises

1. [T] L = 4 Chain.
Obtain the matrix elements of the anisotropic Heisenberg antiferromagnet for the
L = 4 chain in the sectors σ z

tot=4,2,0,-2,-4. Verify that the minimum energy in the
antiferromagnetic case has σ z

tot = 0.

2. Lanczos Check.
Implement the Lanczos algorithm and apply it to the matrix A = diag(1, 2, . . . ,
200).

a) Confirm the results of Section 22.3.1.

b) Test the efficacy of the code in single precision.

c) Track the convergence of the second and tenth eigenvectors as a function of
Lanczos iteration.

3. Alternative Lanczos.
A simple version of the Lanczos algorithm starts with a guess |φ0〉 and diagonalizes
the Hamiltonian in the basis |φ0〉 and
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|φ1〉 ∝ H |φ0〉 − |φ0〉 〈φ0|H |φ0〉.

The ground state of this system is taken as the new guess, |φ0〉′, and the process is
repeated.

a) Confirm that

|φ0〉′ = 1√
1 + α2

(
|φ0〉 + α|φ1〉

)

where

α = f −
√

1 + f 2

and

f = 1
2

〈H3〉 − 3〈H〉 〈H2〉 + 2〈H〉3
(
〈H2〉 − 〈H〉2

)3/2 ,

where 〈H〉 = 〈φ0|H |φ0〉.
b) Compare the efficacy of this method to the Lanczos algorithm in a variety of

cases.

4. [T] Conservation Laws.

a) Show that:

[
∑

i

σ z
i , H

]

= 0.

for Hamiltonians of the form of Eq. 22.4.

b) Show that (for g = 1):

[
∑

i

�σi , H

]

= 0.

Thus the total spin and the total z-component of spin are conserved.

5. Translation Invariance.
The importance of using symmetry to reduce the size of the Hilbert space has been
stressed. Another symmetry present in the periodic chain is translation invariance.
States such as | + +−−〉 and | − ++−〉 are related by shifting the origin and thus
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contribute to eigenvectors in the same way. In this way the six σ z
tot = 0 states for

L = 4 can be reduced to 2.

a) Define a translation operator T such that T |s1s2 . . . sL〉 = |sLs1 . . . sL−1〉. Prove
that [T , H] = 0.
Assume that the ground state has total momentum zero. Filter statecodes so that
only states with σ z

tot = 0 and states related by T , T2, …TL−1 are accepted.

b) What is the size of the Hilbert space for the periodic chain of length L?

c) Implement the algorithm and compare your performance to the σ z
tot filter.

6. [T] Unitary Transformation.
We consider the unitary transformation that changes the spin orientation on a
checkerboard of lattice sites

Uα = e−i
∑

j π(jx+jy)S
j
α

=
∏

j

(
Icos

1
2
π(jx + jy)− iσαsin

1
2
π(jx + jy)

)
,

where a lattice site is denoted by �j = (jx, jy). Now consider H ′ = U†
αHUα . Observe

that Uα will have no effect until j in Uα and U†
α is equal to j in

∑
(ij) H(ij).

a) Confirm that (n ≡ jx + jy):

[
Icos

πn
2

+ iσαsin
πn
2

] σβ
2

[
Icos

πn
2

− iσαsin
πn
2

]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ
j
β

2 , n = 2m
σ

j
β

2 , n = 2m + 1,α = β

−σ
j
β

2 , n = 2m + 1,α �= β.

b) Finally if

H =
∑

(ij)

Sz
i Sz

j + g(Sx
i Sx

j + Sy
i Sy

j ) (22.43)

show that

U†
x HUx =

∑

(ij)

−Sz
i Sz

j + g(Sx
i Sx

j − Sy
i Sy

j )

U†
y HUy =

∑

(ij)

Sz
i Sz

j + g(−Sx
i Sx

j + Sy
i Sy

j )

U†
z HUz =

∑

(ij)

Sz
i Sz

j − g(Sx
i Sx

j + Sy
i Sy

j ).
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Notice that these results imply that the energy of the anisotropic Heisenberg model
is even in g. The last form of H is useful because the transition weights in the path
weight all become positive, thereby avoiding the infamous minus sign problem.

7. Alternative Guided Random Walks Algorithm.
Two possibilities for the unguided random walks algorithm are:

...
compute N̄
if (rand < 1

2 gδτ N̄) {
flip spins

}
w = w + L

4 − 1
2 (1 + g)N̄pre-flip

OR
w = w + L

4 − 1
2 (1 + g)N̄post-flip

Discuss the difference between these implementations of the random walk
algorithm.

8. [T] Discrete and Continuous Guided Random Walks Algorithm.
Establish that the continuous GRW algorithm of Chapter 21 maps to the discrete
version presented here.

a) Start with:

p (x, τ → x ±#x, τ + #τ) ≡ rx,x±#x#τ = 1/2 ∓ #∂g(x)
∂x

,

and verify that the diagonal weight is given by:

V0(x)−
∑

x′
rxx′ = 〈x|

(
− 1

2m
∇2 + V (x)

)
|x〉 − rx,x−#x − rx,x+#x = V (x).

What choice for #τ gives this result?
Thus the continuum weight factor,

w(m) = exp
(
−
∫ τ

0
V (x(m)(τ ′)) dτ ′)

is recovered as a special case of the discrete algorithm.

b) Use

〈S′|HI |S〉 ≡ 〈x′|
(
− 1

2m
∇2
)
|x〉
∣∣∣∣
x′ �=x

= − 1
2m#2

x

(
δx′,x−#x + δx′,x+#x

)
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to obtain

wtransition = e2g(xf )−2g(xi) e−
1
m

∫ τ
0 (g′′−2(g′)2)dτ ′ .

Thus the product of the transition and diagonal weights reproduces the contin-
uum algorithm.

9. Haldane’s Conjecture.
In 1982 Haldane suggested that chains of half-integer spins behave in a fundamen-
tally different manner than chains of integer spins (Haldane, 1983). In particular,
the half-integer spin chain is gapless (the ground state and first excited state are
degenerate) while integer spin chains have a gap.

a) Test the conjecture numerically by computing E1 − E0 for a spin 1/2 and spin
1 chain of length L. Take the first excited state to be the ground state of the
spin-triplet sector (i.e., take σ z

tot = 2). Carefully extrapolate to L = ∞.

b) Does the conjecture generalize to two dimensions?

10. [T] Spin Wave Theory.
We address the triplet-singlet gap again, this time analytically with the aid of spin-
wave theory.

a) Set

S2
z = S(S + 1)− S2

x − S2
y (22.44)

so that

Sz = ±[√S(S + 1)− S2
x + S2

y

2
√

S(S + 1)
+ O(1/S2)

]
. (22.45)

Choose opposite signs for Sz on opposite sublattices, expand HaHAF to quadratic
order in S2⊥, and diagonalize. Show that the ground state energy is

ε0 = −dS(S + 1)+ 2dS
N

∑

�q∈FBZ′

√

1 − g2

d2

(
�d

i=1 cos qi
)2

for a d-dimensional square lattice of spin-S ions. The notation “�q ∈ FBZ”
signifies reciprocal vectors which are in a reduced Brillouin zone consisting of 1

2
of the usual Brillouin zone.

b) Show that the triplet-singlet energy gap is given by

E1 − E0 = 2
√

1 − g2.
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11. [T] Goldstone’s Theorem.
Consider a theory with a global symmetry, G. In quantum mechanics the ground
state of the theory, |ψ0〉, is unique and has the symmetry of G. However, in a
theory with infinitely many degrees of freedom this need not be true. Say that the
ground state is only invariant under a subgroup, H , of G. Thus H |ψ0〉 = |ψ0〉.
The action of G on |ψ0〉 does not in general give |ψ0〉 but some state |ψ ′

0〉 which
has the same energy as |ψ0〉. Thus G|ψ0〉 generates a manifold of degenerate
vacua. Any given state in this manifold is unchanged by a group of transformations
isomorphic to H . Thus the set of degenerate vacua is isomorphic to the coset
space G/H .

In general there will exist some quantity whose value distinguishes between an
invariant or non-invariant vacuum. This quantity is called the order parameter.
Transforming |ψ0〉 in G/H corresponds to variations of the order parameter in
which the effective action is kept at its minimum. Quantizing the excitations along
these directions produces zero mass particles if G/H is continuous. These are the
Goldstone bosons, one for each direction in G/H . The quantum numbers of the
Goldstone bosons are those of the generators of G/H .

Consider the isotropic three-dimensional Heisenberg antiferromagnet with the
symmetry group G = O(3)spin. Below the Néel temperature, there is spontaneous
magnetization and hence a particular direction in spin space is singled out (say
the +ẑ axis). Establish the quantum numbers and number of Goldstone modes in
this case.

12. [T] Perturbative Mass Gap in the 2d anisotropic Heisenberg antiferromagnet.
Perform traditional perturbation theory in the anisotropy g to obtain the
mass gap in the two-dimensional anisotropic Heisenberg model. You should
obtain:

� = E1 − E0 = 2 − 5
3

g2 + O(g4). (22.46)

Here E1 refers to the ground state energy in the σ z
tot = 2 sector.

13. [T] Perturbative Staggered Magnetization in the 2d anisotropic Heisenberg antifer-
romagnet.
Use standard perturbation theory to verify that:

〈N2
z 〉 = 1 − 4

9
g2 + O(g4). (22.47)

14. Finite Size Scaling of the 1d anisotropic Heisenberg Antiferromagnet.
We have attempted the extrapolation of the ground state energy to the infinite chain
length limit by assuming that e0(L) = e0(∞) + a/L2. The Bethe Ansatz suggests a
more effective fitting Ansatz, namely

e0(L) = e0(∞)+ a
L2 + b

L2 log(L)3
+ c

L2 log(L)4
+ . . . .
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Compute the values of e0(L) up to L = 30 using the Lanczos algorithm and compare
the results of both fits to the exact result. Comment on systematic errors.

15. Spin-spin correlation function.
One expects

〈σ z
nσ

z
0 〉 ∼ (−1)n

√
log(n)

n

for large n in the one-dimensional isotropic antiferromagnetic Heisenberg model
(Mikeska and Kolezhuk, 2004). Test this result numerically. See Liang (1990) for
help.

16. 2d Heisenberg antiferromagnet.
Implement the Lanczos algorithm for the 2d square Heisenberg antiferromagnet.
Since it is difficult to go beyond a 6 × 6 lattice, use the unusual configurations of
Figure 22.8 to evaluate the ground state energy in periodic systems of size 4, 8, 10,
16, and 18. See if you can get to 25 and 36.

17. 2d Heisenberg antiferromagnet.
Implement the guided random walk algorithm for the 2d square Heisenberg anti-
ferromagnet and obtain the ground state energy in the bulk limit. Consult (Barnes
and Daniell, 1988) if you need help.

18. Alternating Chain.
The isotropic alternating 1d chain Heisenberg model is defined by:

H =
∑

i even

�σi · �σi+1 + λ
∑

i odd

�σi · �σi+1.

Figure 22.8 Tiling the square lattice with tiles of size 4, 8, 10, 16, and 18.
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Take the system to be periodic with L spins. Notice that for λ = 0 the ground state
is a collection of L/2 spin singlets. Thus e0(λ = 0) = −3/2.

a) Compute the perturbative correction to e0.

b) Solve this model with the Lanczos algorithm. Verify your perturbative result for
small coupling. Verify that the Heisenberg chain is recovered as λ → 1.

19. Code Like you Mean it.
Section 22.3 presents several code snippets that refer to statecodes and relabelled
state codes. Both of these variables are represented as unsigned long ints in
the snippets. This is inelegant: it would be better to differentiate the variables. This
could, for example, be implemented with

typedef unsigned long int Statecode;
typedef unsigned long int RelabelledStatecode;

and functions could pass variables of the appropriate type. However, it would be
better to leverage the power of C++ to make these variables truly different (so that,
for example, a statement like sc = 3*rsc; throws an error).

a) Write a Lanczos code that implements this idea with classes.

b) Use <vector> for state vectors.

c) The code snippets perform many bit-based operations. Rewrite this functionality
with the aid of the class template <bitset> (which you should research at
cpluplus.com).

d) Replace the bisection inv routine with one based on the functionality found in
the standard library class template <algorithm>.

20. [P] Heisenberg Ladder.
The antiferromagnetic Heisenberg spin ladder is a quasi-two-dimensional system
consisting of L pairs of spins arranged in 2 × L lattice. The Hamiltonian is:

H =
∑

ij ||
�σi · �σj + g

∑

ij −
�σi · �σj

in a notation we hope is clear.
As g → 0 one simply has two Heisenberg chains with ground state energy e0 =

1/2−2 ln 2. For large coupling the ground state consists of L spin singlets with total
energy e0 = −3/4 g. Excited states have rungs in the spin triplet state. For a large
but finite coupling the rungs interact and hence the system looks like a spin-1 chain.
Thus the ladder interpolates spin-1/2 and spin-1 chains (see Ex. 9 for why this is
interesting).
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a) Compute the ground state energy as a function of g for this system for as large
L as your machine can handle using the Lanczos algorithm.

b) Compute the perturbative ground state energy to order g2 and check your
previous results.

c) Implement a guided random walk code to solve this problem. Verify its results
against perturbation theory and the Lanczos calculation.

See (Barnes, 1994) if you need help.

21. [P] Structure Factor.
Evaluate the structure factor (an important ingredient in the description of scat-
tering from magnetic materials) for the 1d anisotropic Heisenberg antiferromagnet.
This is defined by:

S(k) = 〈ψ1(k)|σ+
0 |ψ0〉,

where ψ0 is the ground state with σ z
tot = 0 and �k = 0 and ψ1 is the ground state

with σ z
tot = 2 and momentum k. A state of good momentum is defined by:

|n(k)〉 = 1√
�(n)

�(n)−1∑

j=0

eikj Tj |n〉

Here the number of independent states associated with a “root” state |n〉 is denoted
�(n); for example �(| + − + −〉) = 2 while �(| + + − −〉) = 4.

22. [P] Hubbard Model in One Dimension.
Hubbard has proposed a model that contains the bare minimum of features
necessary to yield both bandlike and localized behavior in suitable limits (Hubbard,
1963).

The single band Hubbard model is written in terms of electron creation and
annihilation operators as:

HHUB = −t
∑

(i,j)

(c†
iσ cjσ + H.c.)+ U

∑

i

ni+ni−.

The operator c†
iσ creates an electron of spin σ = ±1/2 at ionic site i. The number

operator is defined by:

niσ = c†
iσ ciσ .

Thus the second term counts the number of electrons at site i and applies an energy
penalty of +U if the site is doubly occupied. The first term permits “hopping”
between sites with an amplitude given by t.
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The states of the model are given by specifying the four possible configurations
on each ion: empty (|0〉), one spin up electron (| ↑〉), one spin down electron (| ↓〉),
a spin up and a spin down electron (| ↑ ↓〉).

Implement the Lanczos algorithm for this system and attempt to confirm the
exact result for the ground state energy (Lieb and Wu, 1968):

e0 = −4|t|
∫ ∞

0
dω

J0(ω) J1(ω)

ω(1 + exp(ωU/|t|)) . (22.48)

..........................................................................................
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23.1 Introduction

For many students the exploration of the quantum world stops with the hydrogen atom.
Although this is sufficient to illustrate the basic ideas of quantum mechanics, it does
not reveal the wealth of profound phenomena that underpin familiar and unfamiliar
features of nature. The quantum behavior of the humble hydrogen atom must surely
pale compared to a protein that climbs along a strand of DNA to detect and repair flaws.
Most of this structure arises because new features emerge when many bodies are present
(“more is different” – P.W. Anderson) and because the large mass ratio between electrons
and nuclei leads to a hierarchy of quantum phenomena.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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Large inhomogeneous quantum systems are difficult to solve and progress has
traditionally been predicated on developing methods that are specialized to the system at
hand. In this chapter we will explore methods relevant to atoms and molecules. Similar
techniques also apply to the structure of nuclei and nuclear matter. We will quickly learn
that any aspiration to exact calculations must be abandoned since the computational
demands of exact methods overwhelm present capabilities. Thus the chief topics will be
methods that approximate many-body systems as effective single-body problems. These
are the self-consistent Hartree-Fock method and density functional theory. We will also
briefly touch on techniques that permit higher accuracy computation.

23.2 Atoms

The bewildering variety of chemical phenomena associated with the elements hints at
the difficulty of computing accurate atomic properties. Nevertheless, the regularities
revealed in the periodic table indicate that phenomenological rules of thumb — and
hence simplifying approximations — must be present.

23.2.1 Atomic scales

The first simplification arises due to the very different energy scales associated with
atomic and nuclear phenomena (ev vs. MeV). Thus at atomic scales the nucleus is
essentially an inert body that serves as the source of a static Coulomb potential. In this
case, nondimensionalizing the hydrogenic Schrödinger equation with central charge Z
yields a distance scale of:

r̄ = h̄
Zαmec

(23.1)

and an energy scale

Ē = Z2α2mec2. (23.2)

Thus one obtains a speed scale

v̄ = Zαc. (23.3)

The fact that the fine structure constant, α = e2/(4πε0h̄c) ≈ 1/137, is small is vital to
our program because it implies that nonrelativistic dynamics can be used throughout.
Indeed, all of these scales are consistent with the assumed nonrelativistic dynamics
except when Z ∼ 1/α. The nonrelativistic approximation can also break down for inner
electrons. Thus relativistic dynamics is needed to understand, among other things, the
color of gold and the liquid nature of mercury (Scerri, 1998). Finally, we remark that
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it is inconsistent to attempt to account for nuclear corrections by replacing the electron
mass with the reduced mass without including relativistic corrections since these are of
a similar size.

23.2.2 The product Ansatz

If one neglects nuclear and relativistic effects, an atom can be modelled as N electrons
coupled to a static central charge and to each other via the Coulomb interaction. The
Hamiltonian is thus:

H = H0 + V (23.4)

with:

H0 =
∑

i

hi =
∑

i

[
−1

2
∇2

i − Z
ri

]
(23.5)

and:

V =
∑

i<j

1
rij

. (23.6)

The origin has been placed at the nucleus, thus ri is the distance of the ith electron from
the nucleus and rij is the distance between electrons i and j.

These quantities have been expressed in atomic units that coincide with the scales
just introduced in the case Z = 1, h̄ = 1, and c = 1. Thus the atomic units length scale
is the Bohr radius,

a0 = 1
meα

≈ 0.529Å

and the energy scale is the hartree, defined by:

Ē = α2me ≈ 27.2 eV.

These units will be used throughout this chapter.

Show that the speed of light in atomic units is 1/α.

The exact eigenvalues of H0 are given in terms of the hydrogenic single particle
wavefunctions:

hiϕj(qi) = εjϕj(qi). (23.7)
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The coordinates are labeled qi where qi = {�ri , si} and si represents the spin of the
ith electron. The index j includes all spatial and spin quantum numbers; for example
j = n�m�ms where n is the principle quantum number, � is the angular momentum, m�

specifies its projection, and ms is a spin projection. In nuclear physics an isospin index is
also required.

The eigenstates of H0 are given by:

�j1,j2,...,jN (q1, q2, . . . , qN ) = 1√
N !A�prod(q1, q2, . . . , qN ) (23.8)

with

�prod(q1, q2, . . . , qN ) = ϕj1(q1) · ϕj2(q2) · . . . · ϕjN (qN ) (23.9)

and

A =
∑

P

(−)P . (23.10)

The total wavefunction has been antisymmetrized with the operator A which is given
by a sum over permutations, denoted by P in the previous equation. We shall call this
wavefunction the product Ansatz; it is also often called the Slater determinant. The
antisymmetrization operator is Hermitian and idempotent:

A2 = A. (23.11)

It also commutes with H0 and V

[A, H0] = [A, V ] = 0. (23.12)

Finally, the eigenenergy is:

Ej1...jN =
N∑

i=1

εji . (23.13)

23.2.3 Matrix elements and atomic configurations

The simplicity of the product Ansatz makes it a popular starting point for more involved
calculations. In fact, this approach is further simplified because matrix elements typically
are only required for one body or two body operators. These are operators that depend
on a single coordinate qi or two coordinates, qi , qj , respectively.
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The properties of the antisymmetrization operator imply the following:

〈�|H |�〉 = 〈�prod|AHA|�prod〉 = 〈�prod|HA2|�prod〉 = 〈�prod|HA|�prod〉. (23.14)

From this one obtains:

〈� ′|ha|�〉 = 〈ϕj′a(qa)|ha|ϕja(qa)〉 · δj′1,j1 · · · δj′N ,JN
(23.15)

where the product of delta functions does not include the ath term. Similarly, a two-body
matrix element is given by (additional delta functions are implied):

〈� ′|O(a, b)|�〉 = 〈ϕj′a(qa)ϕj′b(qb)|O(a, b)|ϕja(qa)ϕjb(qb)〉
− 〈ϕj′a(qa)ϕj′b(qb)|O(a, b)|ϕjb(qa)ϕja(qb)〉. (23.16)

Thus the matrix element of the full Hamiltonian in a product Ansatz wavefunction is:

〈�|H |�〉 =
N∑

j=1

〈ϕj |h|ϕj〉 +
∑

i<j

[〈ϕiϕj |V |ϕiϕj〉 − 〈ϕiϕj |V |ϕjϕi〉
]

, (23.17)

where a somewhat more compact notation has been introduced. In particular, the indices
i and j represent both a particle and the quantum numbers associated with that particle.
We also refer to the single particle Hamiltonian as h since it is of the same form for each
particle. Finally, this result serves as a variational upper bound to the exact energy and
is also the expression for the eigenenergy in first order perturbation theory.

Applying the product Ansatz to atoms or ions requires choosing values for Z, N ,
and the quantum numbers of the wavefunction. The set of quantum numbers is called
an atomic configuration. This is not known a priori but extensive experimental and
theoretical experience indicates that atomic configurations follow Madelung’s rule,
namely a configuration can be constructed by placing electrons into hydrogenic orbitals
in a specified order and in accordance with the Pauli exclusion principle. Orbitals are
given in terms of (n�) with � = 0, 1, 2, 3, . . . traditionally labelled s, p, d, f , etc. This
order is:

1s, 2s, 2p, 3s, 3p, (3d, 4s), 4p, (4d, 5s), 5p, 6s, 4f , 5d, 6p, 7s, 5f , 6d, . . . . (23.18)

Orbitals in brackets are close in energy and can sometimes have their order permuted.
The number of electrons in an orbital is specified by a superscript. Since there are two

spin states available per electron, the maximum that this number can be is 2(2�+1). Thus,
for example, the lowest lying configuration describing beryllium (Z = 4) is written as

1s22s2 (23.19)
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while for sodium (Z = 11) it is

[Be] 2p63s1 = [Ne] 3s1. (23.20)

We remark that the simple configuration picture need not be accurate. For example, it
was recently demonstrated that plutonium has a mixture of four, five, or six electrons in
its 5f outer orbital, thereby explaining its metallic, but nonmagnetic, behavior (Janoshek
et al., 2015).

In general the projections m� and ms must also be specified. Guidance is provided by
Hund’s rules: choose quantum numbers to (in order)

1. Maximize S

2. Maximize L

3. Minimize J if the valence orbital is less than or equal to half filled, otherwise
maximize J.

Hund’s rules apply to outer orbitals because only these contribute to atomic quantum
numbers. For example, carbon has Z = 6 thus two electrons must be placed into the 2p
orbital. According to Hund’s rules these should form an S = 1 state; hence,

|SMS〉2p = |11〉 = |1
2

1
2

;
1
2

1
2
〉. (23.21)

The symmetry of the spin state forbids placing the 2p electrons into an angular
momentum state with L = 2, thus Hund’s rule requires that they have L = 1:

|LML〉2p = |11〉 = 1√
2
|11; 10〉 − 1√

2
|10; 11〉. (23.22)

Finally, the third rule implies that J = 0 and one has:

|JMJ〉2p = |00〉 = 1√
3
|11; 1 − 1〉 − 1√

3
|10; 10〉 + 1√

3
|1 − 1; 11〉. (23.23)

23.2.4 Small atoms

As a first step, let us consider obtaining eigenvalues for a small atom by direct diago-
nalization with the discrete basis method that was advocated in Section 21.2.3. Because
the many body interaction depends on the angles between coordinates, 2N · N3N

g basis
expansion coefficients are required to specify the Hamiltonian, where Ng is the grid size
and N is the number of electrons. Since typical general matrix diagonalization routines
slow down drastically beyond a basis size of order 1000, this places severe constraints on
the basis size or the number of electrons. We shall not consider approaches such as this
henceforth.
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In spite of this setback, diagonalization in a carefully chosen basis set has been
successfully applied to helium and other small atoms (Hylleraas, 1929). For example,
Pekeris (1958) assumed an exact helium wavefunction of the type

� = �(r1, r2, r12).

It is, however, difficult to expand this wavefunction in a set of orthogonal functions
because the variables are related. Thus Pekeris switched to “parimetric coordinates”:

u = r2 − r1 + r12, (23.24)

v = r1 − r2 + r12, (23.25)

and

w = 2(r1 + r2 − r12), (23.26)

and set

� = e−ε(u+v+w)/2 F(u, v, w) (23.27)

where ε = √−E and E is the binding energy.
The function F was then expanded in a triple series of Laguerre polynomials. The

resulting expression for the lowest eigenstate contained a 33 term recurrence relation
for the expansion coefficients. Solving these equations up to approximately 200 terms
and extrapolating gave results for ground state energies and matrix elements as shown
in Table 23.1.

Results such as this are useful for checking methods that make additional approxima-
tions, but are not sufficiently general to warrant further attention here.

Table 23.1 Ground state matrix elements for two-electron ions for various Z.
All quantities in appropriate atomic units (Pekeris, 1958).

Z ε 〈p4
1〉 〈δ(r2)〉 〈δ(r12)〉

1 0.726 464 701 2 2.462 0.164 5 0.002 74

2 1.704 031 793 6 54.088 2 1.810 403 0.106 36

3 2.698 131 462 0 310.548 6.851 97 0.533 78

4 3.695 343 849 6 1047.29 17.198 1 1.523 0

10 9.690 552 434 4 46 098.77 297.622 32.621
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An approach that can be successfully applied to larger atoms leverages the reasonable
accuracy of product Ansatz solutions by evaluating the Hamiltonian in a basis of atomic
configurations. This is called the configuration interaction approach. Thus one sets:

|�〉 =
∑

α

cα|α〉 (23.28)

where |α〉 denotes a specific atomic configuration. Matrix elements can be evaluated with
the aid of Eqs. 23.15 and 23.16.

The difficulty with this method is that selecting and setting up appropriate configu-
rations is a relatively demanding task and must be repeated for every atom or ion under
consideration. Automation is very difficult under these circumstances.

23.2.5 The self-consistent Hartee Fock method

The long-established standard for computing atomic properties is the self-consistent
Hartree-Fock method. The original formulation, due to Hartree (1928), was motivated
by the observation that an electron in a large atom would interact with the nuclear charge
and an effective charge due to all the other electrons1. The latter interaction can be
approximated by summing the electric charge density at the site of the ith electron:

VH (ri) =
∫

d3x
∑

j �=i

|ϕj(x)|2 1
|�ri − �x| . (23.29)

Hartree further simplified by considering the spherical average of the interaction VH .
This idea was subsequently extended to account for antisymmetry in the wavefunction
by Fock.

An alternative point of view (first advocated by Slater) is to seek the single particle
wavefunctions that minimize the atomic energy in an antisymmetrized product Ansatz
trial function. Thus one seeks to solve

δ

δϕj
〈�[ϕ]|H |�[ϕ]〉 = 0 (23.30)

subject to the constraint that 〈ϕj |ϕk〉 = δjk. Taking the derivative of Eq. 23.17 yields the
collection of Hartree-Fock equations:

h(r)ϕj(r)+ VD(r)ϕj +
∫

d3x V (j)
E (r, x)ϕj(x) = εjϕj(r) (23.31)

1 A similar “mean field” idea was also employed by Weiss in describing the Ising model; see Chapter 20.
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where

h(r) = −1
2
∇2 − Z

r
(23.32)

as before2.
The effective local interaction is called the direct interaction and is given by:

VD(�r) =
∫

d3x
∑

j

|ϕj(�x)|2 V (�r − �x). (23.33)

We temporarily generalize the two-body interaction to V (�r). Unlike in Hartree’s original
formulation, the sum does not exclude any particles and no spherical averaging is made.
A spin-independent interaction has been assumed. Thus if spin degrees of freedom are
removed from the index j, say j → (J, s), one has:

VD(�r) = 2
∫

d3x
∑

J

|ϕJ(�x)|2 V (�r − �x).

Finally, antisymmetrization introduces a nonlocal interaction, called the exchange
interaction, that is given by:

V
(sj)

E (�r, �x) = −
∑

i

δmsi ,msj
ϕ

†
i (�r)ϕi(�x)V (�r − �x). (23.34)

With spin-independent interactions a delta function in spin arises, as indicated. This
induces a dependence on the spin of the state j, which explains the superscript in the
notation for the exchange potential. In more detail, the form of the exchange term in the
energy, 〈ϕiϕj |V |ϕjϕi〉, implies that the spin of the ith and jth states must be the same.
Thus the expanded expression for the exchange interaction is:

V
(sj)

E (�r, �x) = −
∑

I

ϕ∗
I ,sj

(�r)ϕI ,sj (�x)V (�r − �x). (23.35)

We remind the reader that the sums over indices refer to those single particle orbitals
that appear in the product wavefunction. Of course, V (r) = 1/r for atomic systems.
The exchange potential tends to be small for Coulombic interactions because the
wavefunction overlap restricts the range of integration. It is, however, very important
for short range potentials like those that occur in nuclear physics.

2 The reader not familiar with the beautiful second-quantized version of the derivation of this equation is
encouraged to consult a source such as (Fetter and Walecka, 2003).
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The total binding energy of the atom is given by the expression in Eq. 23.17; however,
in this case ϕ is a Hartree-Fock wavefunction satisfying Eq. 23.31. Thus one can also
write:

E =
∑

j

εj − 1
2

∑

ij

[〈ϕiϕj |V |ϕiϕj〉 − 〈ϕiϕj |V |ϕjϕi〉
]

. (23.36)

It is possible that the rather general notation has caused the student to lose the thread
of the development. We therefore present detailed versions of the Hartree-Fock equations
for the case of lithium. We shall model lithium with the single atomic orbital 1s22s1, and
take the spin to be “up”. The product wavefunction is then:

� = 1√
3! Aϕ1s+ϕ1s−ϕ2s+.

The Hartree-Fock equations read:

hϕ�(�r)+ VD(�r)ϕ�(�r)+
∫

V (�)
E (�r, �x)ϕ�(�x) = ε�ϕ�(�r) (23.37)

where � ∈ (1s+, 1s−, 2s+) and

VD(�r) =
∫

d3x
|ϕ1s+(�x)|2 + |ϕ1s−(�x)|2 + |ϕ2s+(�x)|2

|�r − �x| .

The exchange interactions are given by:

V (1)
E (�r, �x) = V (3)

E (�r, �x) = −ϕ∗
1s+(�x) ϕ1s+(�r)+ ϕ∗

2s+(�x) ϕ2s+(�r)
|�r − �x|

and

V (2)
E (�r, �x) = −ϕ∗

1s−(�x) ϕ1s−(�r)
|�r − �x| .

Finally, the Hartree-Fock expression for the total binding energy of lithium is:

E =
3∑

�=1

[
ε� − 1

2

∫
d3r |ϕ�(�r)|2VD(�r)− 1

2

∫
d3xd3yϕ∗

� (�x)V (�)
E (�x, �y)ϕ�(�y)

]
. (23.38)

The value of ε1 = ε1s+ is given by the ground state of the Hartree-Fock equation labelled
by � = 1, while ε3 = ε2s+ is given by the first excited state. The ground state of the second
Hartree-Fock equation gives ε2 = ε1s−.
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The Hartree-Fock equations comprise a set of coupled nonlinear integro-differential
equations. In general these can be difficult to solve. Nevertheless, they specify single
particle wavefunctions and therefore drastically simplify the N-body problem (at the
expense of approximation and of imposing atomic configurations). Furthermore, the
equations can be robustly solved with iteration. This obviates the nonlinearity and
decouples the equations, which are enormous savings at very little expense since iteration
tends to converge quickly. The strategy (due to Hartree) is thus

// iterative solution to the Hartree-Fock equations

set initial single particle wavefunctions
//hydrogenic wavefunctions obtained by setting VD = VE = 0 are

a good choice

while (dE > tolerance)
compute VD and VE
solve the set of Hartree-Fock equations for {ϕj}
compute the ground state energy and dE = ||Eold − Enew||

end while

The Hartree-Fock method improves the single particle Ansatz in an intuitive way. It is
reliable enough to account for the periodic table of the elements and the generic size and
energies of atoms. It has also proven capable of explaining the spectrum of the alkalies
in fair detail. Finally, Hartree-Fock single particle wavefunctions serve as the starting
point for more sophisticated (and far more complicated) methods. A word of caution:
the Hartree-Fock potential for an excited state of the atom is different from the ground
state potential, thus excited state solutions to the Hartree-Fock equations do not represent
excited atomic orbitals.

Because the single particle wavefunctions are fixed in the direct and exchange
interactions, solving the Hartree-Fock equations is equivalent to solving a single particle
Schrödinger equation and we recommend the methods of Chapter 21. In particular, it is
convenient to employ a given basis and diagonalize. The result is called the Roothaan
equations. The implementation is straightforward and we do not go into details. Specific
examples are given in the exercises.

The convergence of the iterative process is illustrated in Figure 23.1. The case
considered here is helium in the 1s2 configuration (see Ex. 6) with a point basis of size
1600—consult Section 21.2.3 for more on the point basis). The box size is taken to be 10
a.u. and the code ran in a few seconds. One of the difficulties in implementing Hartree-
Fock algorithms is in evaluating two-body matrix elements. A substantial benefit of the
point basis is that this problem is completely eliminated.

The left panel of Figure 23.1 shows the initial (hydrogenic) and final (Hartree-
Fock) radial wavefunctions—substantial corrections are visible. The right panel displays
the convergence of the direct potential in a few iterations. If the direct and exchange
potentials are set to zero for the initial iteration, hydrogenic wavefunctions should be
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Figure 23.1 Hartree-Fock computations with helium. Left: Hartree-Fock radial wavefunction; dashed:
first iteration, dotted: Hartree-Fock result. Right: VHF by iteration: solid: first, dashed: second, short
dashed: third, dotted: final result.

Table 23.2 Ground state energies
for helium by various methods.

method value (hartrees)

zeroth order −4

pert. thy. −2.75

variational −2.8477

Hartree-Fock −2.86163(4)

exact −2.903724375

experimental −2.9033

generated, which permits monitoring dependence on the selected algorithmic (basis and
box size in this case) parameters. For reference, ground state energies for helium are
given in Table 23.2.

The Hartree-Fock formalism can become complex when orbitals other than s-waves
are considered. In this case it is useful to write the generic orbital in terms of spin, radial,
and spherical harmonic wavefunctions:

ϕj(r) → χ(sj)Y�jmj unj�j (r)/r.

Similarly, the Coulomb interaction can be expanded according to the well-known
formula:

1
|�x − �y| = 4π

∑

LM

1
2L + 1

Y ∗
LM(x̂)YLM(ŷ)

rL
<

rL+1
>

(23.39)
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where r< =min(x, y) and r> =max(x, y). In general this leads to coupled equations
involving various angular momenta. For example orbitals of angular momentum � couple
to those of angular momentum 2�, 2�−2, ... , 0, which greatly complicates the numerical
solution to the Hartree-Fock equations. However, in the case of closed subshells, the
sums over spin and angular momentum quantum numbers are unrestricted and can be
performed. Thus the spin sum simply yields a factor of two while the m� sum can be
done with the aid of the addition theorem:

∑

m�

|Y�m�
(x̂)|2 = 2�+ 1

4π
. (23.40)

This relationship in turn implies that the L = 0 term is selected from the expansion in
Eq. 23.39 and that the direct interaction is (Bransden and Joachain, 2003):

VD(r) =
∑

nj�j

2(2�j + 1)
∫

dx
|unj�j (x)|2
r>(r, x)

[closed shell average]. (23.41)

Similarly, the exchange potential for the �th wave is:

V (�)
E (r, x) = −

∑

ni�i

∑

L

2�i + 1
2L + 1

|〈�0�i0|L0〉|2 u∗
ni�i

(r) uni�i (x) · rL
<

rL+1
>

[closed shell average]. (23.42)

Importantly, both the direct and exchange interactions are diagonal in angular momen-
tum, thus the closed shell Hartree-Fock potentials are central, which greatly simplifies
the numerical work.

If one peruses the Hartree-Fock literature one will quickly discover an extensive series
of acronyms of the sort STO-3G or 6-31G. These refer to different basis expansion
methods. For example, the use of Gaussian basis functions is common, and these are
often used to form a fixed (rather than variational) approximation to hydrogenic or
Slater-type basis functions. At first sight, the decision to use a fixed basis expansion
appears to be a curious choice as it explicitly rejects variational optimization of the basis.
However, optimizing in the scale factor in the exponential of the Gaussian is nonlinear,
and it is sometimes better to put that effort into straight diagonalization. Similarly,
experience shows that the effort to optimize the coefficients in a STO-3G basis function
is better spent enlarging the basis itself.

23.3 Molecules

An interesting and nontrivial feature of nature is that when two atoms are brought
together a merged atom is not necessarily created. Rather, atoms tend to maintain
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their identities due to a certain “atomic rigidity”. This phenomenon underpins the
existence of molecules and their wonderful complexity, permitting phenomena such as
phosphorescence, DNA replication, and life.

23.3.1 Adiabatic separation of scales

Atomic rigidity exists because nuclear degrees of freedom are nearly hidden by their
accompanying electron clouds, which in turn occurs because of the scale separation
between electronic and nuclear degrees of freedom. This concept was formalized in 1927
by Max Born and Robert Oppenheimer (Born and Oppenheimer, 1927) and underpins
the Born-Oppenheimer approximation.

Because electrons and nuclei are bound in a molecular system they have comparable
momenta (the total momentum is zero in the center of mass frame), and therefore
electrons move much faster than nuclei. Electrons are called fast degrees of freedom
and essentially “see” nuclei frozen in place. Conversely, the nuclei move in an average
electron potential.

Call m the mass of the electron and M the mass of a nucleus in the molecule. The size
of a molecule is denoted a and has a scale in terms of angstroms. The mass ratio is:

m
M

≡ κ4 ≈ 10−3 − 10−5. (23.43)

Typical energies associated with electronic degrees of freedom are

εel = h̄2

ma2 (23.44)

while those assocated with nuclear rotation are

εrot = h̄2

Ma2 (23.45)

and for vibrations

εvib = h̄2
√

mMa2
. (23.46)

Thus one has (Messiah, 2014)

εrot ≈ κ2εvib ≈ κ4εel. (23.47)

Now consider the molecular Hamiltonian:

H = TN + Te + V (x, X) (23.48)
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where

TN = −
∑

j

∇2
j

2Mj
= −κ4

∑

j

λj

2m
∇2

j (23.49)

where the λj are constants of order unity, and

Te = − 1
2m

∑

i

∇2
i (23.50)

Nuclear coordinates are denoted �Xj and electronic ones by �xi . We assume that the
interaction is only a function of spatial coordinates, which implies that:

H0 = Te + V (23.51)

commutes with the nuclear coordinates, Xj . Thus H0 and the nuclear coordinates can
be simultaneously diagonalized and definite values can be assigned to the latter. In this
way the eigenvalues depend parametrically on the coordinates:

H0ψ(�xi �Xj) = Un( �Xj)ψ(�xi �Xj). (23.52)

At this stage, the molecular problem has been reduced to an analogue of the atomic
problem but with substantially reduced symmetry. The problem is completed by solving
for nuclear motion in what amounts to a variational Ansatz:

�n(x, X) = ψn(x; X)φ(X). (23.53)

The effective nuclear Hamiltonian, Hn, can be obtained by projecting on to ψn. Notice
that the nuclear Hamiltonian depends on the electronic configuration. Substituting,
isolating the nuclear degrees of freedom, and simplifying yields:3

Hn = TN + Wn + Un (23.54)

where

Wn(X) =
∑

j

1
2Mj

∫
dx
(
∂ψn

∂Xj

)2

. (23.55)

3 The method introduced by Born and Oppenheimer differs from this variational approach; they expanded
H in powers of κ and then performed Rayleigh-Schrödinger perturbation theory.
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One can estimate (Messiah, 2014) that the error in the wavefunction is order κ3 and the
error in the energy is approximately κ2εrot. Furthermore, Wn is also small, of order εrot.

An alternative approach is to expand the exact wavefunction in the electronic basis:

�(x, X) =
∑

n

ψn(x; X) φn(X) (23.56)

obtaining

∑

s

〈ψn|TN |ψs〉φs(X)+ Un φn(X) = Eφn(X). (23.57)

(the derivatives in TN act on φ in this expression). Expanding the matrix element gives:

TNφn + Unφn +
∑

s

Wnsφs = Eφn (23.58)

where

Wns =
∑

j

1
2Mj

(∫
∇ψ∗

n · ∇ψs + 2
∫

∇ψ∗
nψs · ∇

)
. (23.59)

This represents a set of coupled equations that is equivalent to the Schrödinger
equation. In the adiabatic approximation, ψn varies slowly with respect to �Xj and Wns
can be neglected, which decouples the nuclear equations. Notice that Wnn = Wn since
the second term in Eq. 23.59 vanishes in this case.

It is useful to remember that an approximation is being made, and even though it is
a good approximation, important physics could be neglected depending on the problem
at hand. For example, if one is attempting to understand superconductivity, neglecting
nuclear recoil is a disaster since this gives rise to the phonon degrees of freedom that play
such an important role in creating Cooper pairs.

23.3.2 The electronic problem

The problem of determining the electronic structure of a molecule can be very difficult.
Here we illustrate the issues and methods involved by considering the simple cases of the
H+

2 ion and the H2 molecule. For more complex molecules it is advisable to use one of
the many codes developed by professionals—see (Cramer, 2004) for more information.

H+
2 Ion

The H+
2 ion is defined by the Hamiltonian:

H = −1
2
∇2

r + 1
R

− 1
rA

− 1
rB

. (23.60)
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We only address the electronic portion of the Born-Oppenheimer method so nuclear
kinetic energies are not considered. The electron’s coordinate is denoted �r, the nuclei are
labelled A and B and the distances between the electron and the nuclei are denoted rA
and rB. These are written in terms of the electron coordinate and the relative coordinate
between the nuclei, �R. Thus rA = | �R/2 + �r| and rB = | − �R/2 + �r|.

A typical solution method is to construct a molecular orbital from a linear combi-
nation of atomic orbitals (LCAO). The result is dubbed a MO-LCAO. Thus one forms
a LCAO that is centered about each nucleus:

φg(r; R) = 1
2
(ψ(rA)+ ψ(rB)) (23.61)

with

ψ(r) = 1√
π

e−r . (23.62)

Notice that the left-right symmetry is being used to write an Ansatz that is symmetric
about reflections in the plane that is perpendicular to the �R axis and that intersects it at
the center of mass. Similarly, an odd parity Ansatz can be constructed4

φu(r; R) = 1
2
(ψ(rA)− ψ(rB)) (23.63)

It is a relatively simple process to compute the analytical variational estimate, Eg(R)

(see Ex. 16). The result is shown as a solid line in Figure 23.2. The exact minimum in
the adiabatic potential is shown as a point. Although the MO-LCAO does reasonably
well, it predicts a minimal separation that is too large and a binding energy that is
too small.

One problem with the method is that as the internuclear distance approaches zero the
exact wavefunction should approach

ψ =
√

8
π

e−2r (23.64)

rather than

φg(r; 0) = 1√
π

e−r . (23.65)

4 The subscripts refer to the German, gerade and ungerade, which mean even and odd respectively.
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Figure 23.2 H+
2 Ion adiabatic potentials. MO-LCAO (solid line), MO-LCAO variational (dashed

line), exact (dotted). The point represents the exact minimum at R = 2.003 a.u. and E0 = −0.603 a.u.

This effect can be simply accommodated by making a variational Ansatz:

φg(r; R; ξ) = 1
2

⎛

⎝

√
ξ3

π
e−ξ rA +

√
ξ3

π
e−ξ rB

⎞

⎠ . (23.66)

Again, the integrals can be evaluated analytically, and the minimum found (it is
ξ0(R0) = 1.24, R0 = 2.00, and E0 = −0.5865). The results are shown as a dashed
line in the figure, with a clear improvement in performance.

Let us stop skirting the issue and attempt an exact solution to the electronic problem
for the H+

2 ion. In fact, the ion is simple enough that an exact solution can be obtained
with the aid of confocal elliptic coordinates; but because this is presented in many text
books, we follow the straightforward, but more numerical approach.

The most direct way in which to obtain an exact solution is to expand in spherical
harmonics:

ψ(�r; �R) =
∑

�m

1
r

u�m(r; R)Y�m(r̂). (23.67)

Similarly, the interaction can be expanded and one obtains a coupled system of
equations:

− 1
2

(
∂2

∂r2 + �(�+ 1)
r2

)
u�m(r; R)+

∑

L

V �,m
L (r, R) uLm(r; R) = ε u�m(r; R) (23.68)
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where

V �,m
L (r, R) =

∑

a

ra
<

ra+1
>

√
2L + 1
2�+ 1

〈a0L0|�0〉 〈a0Lm|�m〉. (23.69)

Notice that only even waves contribute to the ground state, the ground state has
m = 0, and the interaction is diagonal in magnetic quantum numbers (see Ex. 17). The
expansion converges relatively quickly for internuclear distances near the preferred bond
length of 2.003 a.u. The ground state energy computed in the point basis for the radial
wavefunctions, with up to eight partial waves, is shown as a dotted line in Figure 23.2.
The black point represents the exact minimum at R = 2.003 a.u. with a energy of -0.603
a.u. Evidently, the agreement is quite good, which should please us. More ominously,
the exact computation was fairly demanding, even though we have been dealing with the
simplest possible molecule.

H2 Molecule

The Hamiltonian for the H2 molecule (in atomic units) reads:

H = −1
2
∇2

1 − 1
2
∇2

2 + 1
R

− 1
r1A

− 1
r1B

− 1
r2A

− 1
r2B

+ 1
r12

. (23.70)

The nuclei are denoted by A and B and have a relative coordinate �R. The electrons are
denoted 1 and 2 and interact with each nucleus (1/riN terms) and each other (1/r12
term).

As with the H+
2 ion, the simplest approach that yields a reasonable estimate of the

ground state energy is to form MO-LCAO states. Since antisymmetry in the electron
coordinates must be implemented, six possible (including the three possible spin-one
states) MO-LCAO Ansätze exist:

ϕA(1, 2) = φg(1)φg(2)χ00,

ϕB(1, 2) = φu(1)φu(2)χ00,

ϕC(1, 2) = 1√
2

(
φg(1)φu(2)+ φu(1)φg(2)

)
χ00,

ϕ
(M)
D (1, 2) = 1√

2

(
φg(1)φu(2)− φu(1)φg(2)

)
χ1M . (23.71)

The spin wavefunctions are:

χ00 = 1√
2
(α(1)β(2)− β(1)α(2)) (23.72)
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and

χ11 = α(1)α(2), χ10 = 1√
2
(α(1)β(2)+ β(1)α(2)) , χ1−1 = β(1)β(2).

(23.73)

The traditional notation wherein a spin up (down) state is denoted α (β) is being
followed here.

Several options are available at this stage. For example, one could form the six-by-
six matrix 〈ϕI |H |ϕJ〉 (which will be block diagonal by total spin) and diagonalize. Here
we follow the H+

2 ion strategy and guess that ϕA minimizes the energy. This yields a
variational upper bound:

EA = 2εg(R)− 1
R

+ 1
D

∫
d3r1d3r2

|φg(1)φg(2)|2
r12

(23.74)

with

D =
∫

d3r1d3r2 |φg(1)φg(2)|2. (23.75)

Although analytic methods can be applied to the Coulomb integral, this is a numerical
text and we choose to evaluate the five-dimensional integral using the methods of
Chapter 5. The result is the solid curve shown in Figure 23.3. See Ex. 19 for details
on evaluating the integral.
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Figure 23.3 H2 Molecule adiabatic potentials. MO-LCAO (solid line), MO-LCAO variational
(dashed line), Hartree-Fock (dotted line). The point represents the exact minimum at R = 1.4011 a.u.
and E0 = −1.1745 a.u.
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Again, it is simple to extend the method with the introduction of a single variational
parameter, as in Eq. 23.66. The resulting adiabatic surface is the dashed line of
Figure 23.3. In this case the minimum is at R0 = 1.3875 a.u. with a variational parameter
of ξ0 = 1.180, yielding E0 = −1.1182 a.u.

The Hartree-Fock computation is more involved than that of helium because the
interaction is non-central. The Ansatz wavefunction is ϕA of Eq. 23.71 where φg is to
be determined. In this case the single particle Hartree-Fock equation is:

[
− 1

2
∇2

r − 1

| �R/2 + �r| −
1

| �R/2 − �r| + VD(�r)
]
φ(�r; �R) = ε φ(�r; �R). (23.76)

The exchange interaction is zero and the direct interaction is given by:

VD(�r) =
∫

d3x
|φ(�x; �R)|2
|�r − �x]

. (23.77)

Finally, the total ground state energy is given by:

E0 = 2ε0 −
∫

d3x d3y
|φ(�x; �R)|2 |φ(�y; �R)|2

|�x − �y]
. (23.78)

The exact solution is given in terms of a partial wave expansion as in Eq. 23.67;
however, in this case the resulting equation is not diagonal in magnetic quantum numbers
and all waves must be included. The problem is thus rather daunting. Nevertheless,
numerical exploration indicates that nonzero magnetic quantum numbers contribute
negligibly. In this case the computation simplifies dramatically and one obtains the dotted
line of Figure 23.3. The result is obtained by summing waves up to � = 6 and yields
R0 = 1.40 a.u. and E0 = −1.1336 a.u. This should be compared to the black point,
which shows the ‘exact’ solution obtained with an elaborate large scale computation.
Some of these results are given in Table 23.3. The acronyms therein refer to the Hartree-
Fock method (HF) and the configuration interaction method (CI). The last column gives
the electronic dissociation energy, D − e, defined by twice the atomic energy minus the
minimal nuclear energy. In this case De = −1 − E0.

Table 23.3 H2 molecule properties. (*) see (Kolos
and Wolniewicz, 1968).

method R0 (a.u.) E0 (a.u.) De (eV)

variational 1.387 –1.118 3.216

HF 1.40 –1.1336 3.636

CI 1.4013 –1.16696 4.54306

precise 1.4011 –1.17447 4.74759 (*)
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More complicated molecules

The computation just presented for H2 is often called working in the Hartree-Fock
limit because it solves (modulo truncations) the Hartree-Fock problem exactly. In gen-
eral, Hartree-Fock computations are sufficiently complex that additional approximations
are often made. For example, a typical basis employs S-wave functions centered on
nuclear coordinates. In the case of H2 these can be:

{u(�r − �R/2)} ∪ {u(�r + �R/2)} (23.79)

where the basis functions are, say, various Gaussians. This basis is not complete because
it fixes the functional form of the angular dependence to match that of the radial
dependence. Nevertheless, reasonably accurate results can be obtained (albeit, still in
the single particle approximation).

It is clear that an efficient basis is crucial to making accurate computations for more
complex molecules. An obvious choice is a Slater-type basis such as:

{exp(−β(n)r)}, (23.80)

where β(n) varies with n in a fixed fashion, or

{rn exp(−βr)}. (23.81)

The problem with these choices is that correlation integrals, 〈φiφj | 1
r12

|φ�φm〉, are not
easy to evaluate. Attempts to evaluate them numerically can lead to trouble for larger
bases because errors in normalization appear in the denominator of expressions for
eigenvalues.

Alternatively, Gaussian functions are an attractive option because they permit analytic
computation of many integrals. This relies on the observation that the product of two
Gaussians that are centered at different points is another Gaussian:

exp[−α(�r− �A)2] exp[−β(�r− �B)2] = exp[−μ( �A− �B)2] exp[−(α+β)(�r− �C)2] (23.82)

where

μ = αβ

α + β
(23.83)

and

�C = α

α + β
�A + β

α + β
�B. (23.84)
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A natural way to leverage this is to form a basis such as:

{exp(−β(n)r2} (23.85)

but this is problematic because elements in the normalization matrix are similar, which
means that the determinant of the normalization matrix is very small, which in turn
amplifies errors in the computation.

As in atomic physics, a variant that combines the latter approaches is to approximate
a Slater basis function with a sum over Gaussians with fixed strengths and scale factors.
Modern bases are of this type or a Cartesian variant of the Gaussian basis:

�(�r; �RA . . . �RN ) =
∑

�mn

a�mn( �RA . . . �RN ) x� ym zn exp(−βr2). (23.86)

An alternative sticks with S-wave Gaussians and approximates higher waves by consid-
ering differences of Gaussians centered at nearby points (Szabo and Ostlund, 1996).

A number of tricks are used to assist the convergence of the Hartree-Fock iteration.
These include over-relaxation (see Chapter 19), a variety of improved initial guesses
(Hückel theory can be usefully employed here; see Cramer (2004)), or using MOs from
neighboring molecular geometries. Finally, Hartree introduced the device of artificially
increasing Z to improve convergence and then relaxing it to its nominal value as the
computation proceeds.

23.4 Density functional theory

The Hartree-Fock formalism and its extensions are able to reliably compute properties
of systems of dozens of particles. Beyond this our aspirations must be ameliorated or
the approximations must become more severe. We know that classical physics is the
effective theory that describes nature as the number of particles becomes very large—
what is required is an approximation that interpolates the quantum and classical regimes.
A popular realization of this approximation is called density functional theory, which
is the topic of this section.

The genesis of density functional theory (DFT) lies in a remarkable theorem due to
Pierre Hohenberg and Walter Kohn (1964), namely, many ground state properties of
a many-electron system can be uniquely determined from its electron density, n(�r). At
first glance this hardly seems credible since the theorem claims that all the information
carried in ψ0(�r1, . . . , �rN ) is contained in a function of three variables. Plausibility can be
recovered once it is realized that the ground state function is not arbitrary but is that
function which minimizes 〈ψ |H |ψ〉/〈ψ |ψ〉. From another perspective, Kato’s theorem
(1957) states that for Coulombic systems the electronic density has a cusp at the location
of nuclear charges:

Zk = − a0

2n(r)
dn
dr

∣∣∣
r→Rk
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where a0 is the Bohr radius. Thus the density permits determining the charges and
locations of all the nuclei in the system, while the integral of n gives the number of
electrons. We see that the entire Hamiltonian is fixed by the density, and, in principle,
all ground state properties are available.

We shall consider the N-electron Born-Oppenheimer Hamiltonian in the following:

H = −1
2

N∑

j=1

∇2
j + 1

2

∑

i �=j

1
|�ri − �rj | +

N∑

i=1

K∑

k=1

Zk

|�ri − �Rk|
≡ T + U + Vext.

As usual we work in atomic units, �Rk denotes the (fixed) position of a nucleus of charge
Zk, and �ri is the position of the ith electron.

Following the lead of Hohenberg and Kohn, we define a functional of the electronic
density:

E[n] = 〈ψ |T + U + Vext|ψ〉
〈ψ |ψ〉

∣∣∣
ψ |n ≡ T[n] + U [n] + V [n] ≡ F[n] + V [n]. (23.87)

The subscript ψ |n means that the functional is defined over all wavefunctions subject to
the condition

n(r) = N
∫

d3r2 . . . d3rN |ψ(r, r2, . . . , rN )|2. (23.88)

The external nuclear potential is a one-body operator (see Eq. 23.15) and therefore can
be immediately written in terms of the density as

V [n] =
∫

d3r n(r)Vext(r).

Thus V [n] contains all of the information that specifies the unique character of the prob-
lem at hand (i.e., it differentiates metallic crystals from argon from β-hydroxybutyric
acid). Alternatively, the functional F[n] is universal in the sense that its only parametric
dependence is on the number of electrons. In fact N-dependence is subsumed into the
density, and F[n] is equally applicable to atoms, molecules, or solids.

Evidently our goal is to minimize the energy functional subject to the constraint∫
n(r) = N , determine n0, and then compute other observables,

O[n0] = 〈ψ |O|ψ〉
〈ψ |ψ〉

∣∣∣
ψ |n0

.

In practice, this avenue to observables is difficult because the functional O[n] is
unknown. However, the ground state energy is readily computable (given E[n]), as is
the nuclear potential, which gives access to molecular geometry, charge distributions,
lattice constants, compressibilities, bulk moduli, etc. Furthermore, comparing systems of
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different sizes permits computing dissociation energies, electron affinities, and ionization
energies.

A serious obstacle is that the route to these riches passes through the functional F[n],
which is not known. The standard way to deal with this is to approximate F as the sum
of two terms:

F[n] ≈ FKS[n] + Ues[n],

where the second term is the electrostatic energy:

Ues[n] = 1
2

∫
d3xd3y

n(x)n(y)
|�x − �y| ,

and FKS is the Kohn-Sham functional, which is constructed from a single-particle
Hamiltonian in a way that will be specified shortly.

It is traditional to “correct” this approximation by placing all of the missing ele-
ments into another unknown functional, dubbed Exc[n], and known as the exchange-
correlation functional:

E[n] = F[n] + V [n] = FKS[n] + Ues[n] + V [n] + Exc[n]. (23.89)

At this point the reader may have the feeling that some sort of swindle is happening.
We are required to minimize an unknown functional that is being rewritten in terms of
known functionals and an unknown functional! Fortunately, the situation is not as bad as
it appears: recall that F , and therefore Exc, is universal and can therefore be determined
in a well-understood system and applied elsewhere. Furthermore, there is substantial and
well-established evidence that the exchange-correlation energy is small.

A technical issue with the method is that it is not known that a potential exists for
every possible electron density. This is referred to as v-representabilty. Alternatively,
any density can always be written as an integral over a wavefunction, as in Eq. 23.88.
This is called N-representability.

Kohn and Sham (1965) suggested that it is useful to make a local density approx-
imation (LDA) for the exchange-correlation functional:

Exc[n] ≈
∫

d3r n(r) εxc(n)

where εxc(n) is the exchange-correlation energy as obtained from a uniform electron gas
of density n. This function has been computed accurately with Monte Carlo techniques
and can be parameterized as some convenient function of density. Another common
approach is to split the correlation and exchange corrections:

Exc = Ex[n] + Ec[n].
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The local density approximation is rather restrictive as it ignores functional dependence
on the derivatives of the density or more complicated expressions such as:

Exc[n] =
∫

d3xd3y f (n(x), n(y)).

Nevertheless, the approximation is remarkably accurate for many purposes. Applications
and extensions will be discussed in the next few pages.

23.4.1 The Kohn-Sham procedure

The Kohn-Sham functional is an approximation to the (unknown) kinetic energy
functional T[n] and is defined as a sum over single-particle wavefunctions:

T[n] ≈ FKS[n] = −1
2

N∑

i=1

〈ϕi|∇2|ϕi〉.

Of course:

n(r) =
∑

i

|ϕi(r)|2. (23.90)

An equation for the Kohn-Sham single particle orbitals can be obtained by differen-
tiating E[n] with respect to ϕ∗(r) subject to

∫
n = N . Using

δn(x)
δϕ∗

i (r)
= ϕi(x)δ(�r − �x)

and recalling that ϕ∗ and ϕ are treated as independent variables when differentiating
gives

[
−1

2
∇2 + φ(r)+ Vext(r)+ εxc(n)+ n(r)

∂εxc

∂n

]
ϕi(r) = εiϕi(r) (23.91)

with

φ(r) =
∫

d3x
n(x)

|�r − �x| .

The similarity to the Hartree-Fock method is evident, and the same solution method
can be employed. In particular, one can choose one of the Hartree-Fock bases and iterate
the equations until convergence. An algorithm is:
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select initial n
iterate

form veff (n)
solve for the Kohn-Sham orbitals
obtain n

end
compute observables

Once the iteration has converged one knows the single particle orbitals and the
commensurate ground state electron density. A convenient expression for the ground
state energy combines Eqs. 23.89 and 23.91 to obtain

E0 =
∑

i

εi − Ues[n0] −
∫

d3r n2
0(r)

∂εxc

∂n

∣∣∣
n=n0

. (23.92)

23.4.2 DFT in practice

It is possible to forego the Kohn-Sham procedure and construct other approximations
to the energy functional. For example, the perturbative expression for the one-body
kinetic energy operator in the degenerate electron gas (this is a model with N interacting
electrons on a positive background of charge +eN) leads to the approximation

TD = 3
10m

(3π2)2/3
∫

d3r n5/3.

A factor of 2 for spin has been included in this expression. Minimizing

E = TD[n] + Ues[n]

gives rise to the famous Thomas-Fermi statistical model of atoms. This is explored
in Ex. 11.

A similar perturbative calculation, first made by Bloch in 1929, yields the following
expression for the exchange energy:

Ex = −3
4

(
3
π

)1/3 ∫
d3r n4/3. (23.93)

Slater (1951) has suggested using this expression with a correction factor of 1.05.
Over the years an industry has developed with the goal of fitting functions to numerical

computations of properties of the degenerate electron gas. As a result a plethora of
functional forms exist for Exc, Ec, and Ex. We seek a correlation functional to add to
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Ex; the simplest local form that fits Monte Carlo data we have been able to find is due to
Chachiyo (2016):

Ec =
∫

d3r n(r)εc(n)

with

εc = a log
(

1 + b
rs

+ b
r2
s

)
.

The parameters are a = (log(2)− 1)/(2π2) and b = 20.4562557.
An alternative approach is to fit the exchange and correlation functionals together. Of

the many models that exist, we present one due to Gunnarsson and Lundqvist (1976)
that is relatively compact.

Exc =
∫

d3r n(r)εxc(n)

with

εxc(n) = −0.0402
x

− 0.0333 g(x),

where

g(x) = (1 + x3) log
(

1 + 1
x

)
− x2 + 1

2
x − 1

3
.

Here x = rs/11.4 where rs is the Wigner-Seitz radius given by rs = r0/a0 and r0 is the aver-
age interparticle spacing defined by 1 = (4/3)πr3

0n. The reader can consult MacLaren
et al. (1991) or Parr and Yang (1989) for a list of other local density functionals.

Table 23.4 gives the ground state energy of helium for all of the functionals mentioned
above. These results were computed with Hartree-Fock methods using the discretization
method of Chapter 21 and extrapolated to the continuum limit. In practice over-
relaxation is often implemented in updating the density to avoid oscillations in the
solution. Run times were never longer than a few seconds. One sees quite good agreement
with experiment, even though helium is about as far removed from a uniform electronic
system as possible.

Table 23.4 Ground state energy for helium (a.u.)

Gunnarsson-Lundqvist Slater Slater + Chachiyo Hartree-Fock expt

−2.86024 −2.76635 −2.87457 −2.8616 −2.9033
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Figure 23.4 Thomas-Fermi (dotted line) and density functional (solid line) charge densities for argon.
After (Argaman and Makov, 2000).

A more complex computation of the electron density for argon is displayed in
Figure 23.4, showing clear shell structure. This level of detail is not reproduced in the
Thomas-Fermi model, which is shown as the dotted line. The computed DFT ground-
state energy is –525.9 hartrees to be compared to the Hartree-Fock energy of –526.8
hartrees and the experimental value of –527.6 hartrees.

23.4.3 Further developments

For large molecules, density functional theory is essentially the only viable tool available.
Diagonalization methods grow exponentially in complexity with the number of electrons,
whereas the complexity grows as approximately N3 in the density functional approach
(Argaman and Makov, 2000). As a result, properties of molecules with hundreds of atoms
can be reasonably computed. The additional local density approximation gives very good
results for many quantum problems, including atoms, molecules, and some solid state
systems.

In spite of these successes, the LDA does not give the proper dissociation limit of
diatomic molecules, and can fail for strongly correlated systems or for systems with van
der Waals intermolecular forces. Unfortunately, the latter issue means that biological
molecules are difficult to treat with the density functional formalism.

Various strategies for improving the formalism have been implemented over the
years. A simple improvement is to allow for spin-dependence in the functionals, thus
(Vosko et al., 1980)

∫
d3r f (n) → F[n↑, n↓].
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This mirrors the additional degrees of freedom that are available to the Hartree-Fock
method when open shells are considered.

An obvious additional extension is to permit the functionals to depend on derivatives
of the densities

∫
d3r f (n) → F[n,∇n,∇2n, . . .].

It transpires that too naive an approach to this generalization worsens the agreement with
experiment (this happenstance is common in our experience!). However, a more careful
development that respects known properties of the exchange-correlation functional is
able to improve the accuracy of the density functional approach. This class of functionals
is called the generalized gradient approximation (Perdew et al., 1992).

23.5 Conclusions

The inhomogenous and anisotropic environment created by a typical molecule presents
daunting challenges to attempts to describe them quantum mechanically. We are there-
fore fortunate that nature has simplified the problem somewhat, chiefly through the large
scale difference, me/mp � 1 and because inner electrons are screened and become
“inert”. These facts engender an extensive and very successful phenomenology that
chemistry students spend much time mastering. They also make it possible to accurately
(in most cases) represent the quantum mechanical properties of a system with an
effective single-particle approximation. The classic exemplars of this approach are the
Hartree-Fock and density functional methods, and we are happy to recommend them as
starting points.

It is possible, and instructive, to write your own code to obtain properties of simpler
atomic and molecular systems. For more complicated ones it is advisable to employ one
of dozens of available professional software packages. See Young (2001) or the wikipedia
page
List_of_quantum_chemistry_and_solid-state_physics_software

for much more information.
Finally, if these methods do not yield sufficiently accurate results, employing coupled

cluster, configuration interaction, or perturbative techniques are your best bet for
progress. These are mature technologies and one is well-advised to consult the literature
before expending serious effort. Try Fetter and Walecka (2003), Cramer (2004), or
Szabo and Ostlund (1996).

23.6 Appendix: Beyond Hartree-Fock

Several methods for improving the accuracy of Hartree-Fock computations are used
in the theoretical chemistry community. We will briefly discuss three of these in this
appendix.
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The most direct method to move beyond the Hartree-Fock approximation is to com-
bine the Hartree-Fock and LCAO methods by solving for single particle wavefunctions
for a set of configurations and then diagonalizing the Hamiltonian in this basis. As before,
the formalism can become tedious because it must be tailored to the atom or molecule
under consideration.

An alternative is to leverage the relative accuracy of the Hartree-Fock method by
employing perturbation theory around the Hartree-Fock Hamiltonian. This is known
as Møller-Plesset perturbation theory. Thus one performs Raleigh-Schrödinger
perturbation theory in:

V = V − VHF (23.94)

taking

H0 = H0 + VHF . (23.95)

A more elegant approach is to employ the power of the second quantization
formalism. A brief review of this formalism is presented here; the reader is referred
to Fetter and Walecka (2003) for an excellent introduction to the subject and for more
information and applications.

Amongst the advantages of second quantization are that statistics (antisymmetriza-
tion) is automatically incorporated and an arbitrary number of bodies can be considered
(including N → ∞). The latter feature is gained by relabeling states in terms of
occupation numbers rather than quantum numbers. Thus a state labelled, say,

Aϕ1(q1)ϕ2(q2)ϕ4(q3) (23.96)

is written as

〈q1q2q3|1, 2, 4〉. (23.97)

This is interpreted as meaning there is one fermion in state “1”, one in state “2”, and
one in state “4”. All other states have no fermions in them. Creation and annihilation
operators are introduced to construct the new states from the vacuum. For example,

|1, 2, 4〉 = a†
1a†

2a†
4|0〉. (23.98)

Quantization for Fermi-Dirac statistics is imposed with the anticommutation relations:

{ai , a†
j } = δij and {ai , aj} = 0. (23.99)

(as usual, we have set h̄ = 1.)
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With this formalism in place, the second quantized Hamiltonian is

H =
∑

ij

〈i|H0|j〉 a†
i aj + 1

2

∑

ijk�

〈ij|V |k�〉 a†
i a†

j a�ak. (23.100)

where one- and two-body matrix elements follow the same form as throughout this
chapter:

〈i|H0|j〉 =
∫

d3xϕ
†
i (x)H0(x)ϕj(x) (23.101)

and

〈ij|V |k�〉 =
∫

d3x d3y ϕ
†
i (x)ϕ

†
j (y)V (�x − �y) ϕk(x)ϕ�(y). (23.102)

The indices i and j refer to single particle quantum numbers, as in the Hartree-Fock
formalism.

A number of beautiful results lend the second quantized formalism its power. An early
theorem due to Brueckner and Goldstone (1959) is a proof that perturbation theory
is extensive (or exhibits size-consistency), meaning that terms in the perturbative
expansion of any observable are proportional to the number of particles. This property
is important because one is often interested in the difference between matrix elements
of different sized systems. Size-consistency is expressed by saying that only connected
expressions contribute to, say, eigenenergies.

Computations in the operator formalism are made dramatically simpler with the use
of Wick’s theorem, (which simplifies the process of computing with anticommuting
operators) and made simpler again with diagrammatic methods. The interested reader
is directed to Fetter and Walecka (2003) for more information.

Expressions for Green functions and other properties of many-body systems have a
graphical representation known as Goldstone diagrams. Two such diagrams, repre-
senting direct and exchange contributions to the ground state energy (Eq. 23.17), are
shown in Figure 23.5. Two diagrams contribute to second order in perturbation theory;
these are shown in Figure 23.6. These diagrams evaluate to the second order corrections:

E(2)
D = 1

2

∑

ij

∑

ab

〈ij|V |ab〉 〈ab|V |ij〉
εi + εj − εa − εb

(23.103)

and

E(2)
E = 1

2

∑

ij

∑

ab

〈ij|V |ab〉 〈ab|V |ji〉
εi + εj − εa − εb

. (23.104)
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Figure 23.5 Hartree and Fock diagrams contributing to the vacuum energy.

Figure 23.6 Second order contributions to the vacuum energy.

The indices i and j refer to occupied orbitals (holes), while a and b refer to virtual orbitals
(particles).

It is possible to go to higher order in perturbation theory using the diagrammatic
formalism, however the number of diagrams grows exponentially with the order of the
expansion, and the method quickly becomes unwieldy. One of the great advantages of
the diagrammatic formalism, however, is that it is possible to sum classes of diagrams to
all orders in perturbation theory, thereby obtaining nonperturbative, albeit approximate,
information.

A convenient way to achieve this is in terms of the Green function, which represents
the amplitude for a particle to be created at one spacetime point and annihilated at
another. Equivalently, a Green function is the inverse of a Hamiltonian:

G(�x, �x′;ω) =
∫

d(t − t′) eiω(t−t′) 〈x, t| 1
ih̄∂/∂t − H

|y, t′〉. (23.105)

Green function can be used to obtain the ground state energy and thus diagrammatic
methods can also be applied to this quantity. In the diagrammatic formalism a Green
function is denoted with a line whose ends correspond to the spacetime points (�x, t)
and (�x′, t′). Figure 23.7 displays an equation for the (inverse of) the Green function
(denoted by a line with a dot) in terms of the perturbative Green function (a line without
a dot) and two other diagrams. The equation involves the full Green function on the right
hand side, and therefore must be solved to obtain a self-consistent solution. This solution
corresponds precisely to the Hartree-Fock equations considered in this chapter.

Self-consistent equations of this sort sum infinitely many diagrams of perturbation
theory and are therefore very powerful. Choosing which diagrams to sum is an art
that is strongly dependent on the system under study. For example, Coulomb screening
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Figure 23.7 Hartree-Fock equations in terms of the Green function.
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Figure 23.8 Vacuum polarization corrections to the interaction.

Table 23.5 Hartree-Fock energies with second and
third order corrections for simple systems.
(Wilson, 1983). Atomic units.

system EHF E2 E3

Ne −128.54045 −0.210784 −0.000753

Ar −526.80194 −0.149200 −0.011657

N2 −108.97684 −0.326887 −0.009201

CO −112.77551 −0.300509 −0.005083

effects can be incorporated by replacing the interaction in Figure 23.7 with a dressed
interaction obtained by solving an equation such as in Figure 23.8; this is called the
ring approximation. While resummation can be powerful, the student is warned
that elaborations such as this introduce frequency dependence into the Hartree-Fock
equations, which greatly complicates their solution.

Corrections to Hartree-Fock energies tend to be small. This is illustrated in Table 23.5,
which shows second and third order corrections to Hartree-Fock ground state energies
for a variety of small systems.
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23.7 Exercises

1. [T] Electron Density.
Show that the two expressions given for the electron density (Eqs. 23.88 and 23.90)
agree for a product wavefunction.

2. [T] Weizsäcker Functional.
Argue that the kinetic energy functional for a single electron can be written as:

T = 1
8

∫
d3r

|∇n|2
n(r)

.

3. [T] Roothaan’s Relationship.
Prove that

1
R

dR
dr

|r=0 = −Z

where R is the single particle Hartree-Fock radial wavefunction for an atomic system.

4. [T] Yellowcake.
Construct the analogue of the Born-Oppenheimer Hamiltonian for purified yellow-
cake (UO2) using a two-step adiabatic approximation.

5. [T] LCAO Matrix Elements.
The LCAO method requires evaluating matrix elements of the type 〈β|H |α〉 where
α and β refer to atomic configurations. Show that this matrix element is zero if the
configurations differ by promoting a single electron into an excited orbital. This is
known as Brillouin’s theorem.

6. [T] Analytical Helium.

a) Show that the perturbative ground state energy of helium is given by:

E0 ≈ −Z2 + 5
8

Z.

b) By varying the range parameter in the ground state hydrogenic wavefunction
obtain the variational upper limit:

E0 < −
(

Z − 5
16

)2

.

7. Hartree-Fock Helium.

a) Show that the Hartree-Fock equation for helium reduces to:
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[
−1

2
∇2 − Z

r
+ VHF (r)

]
ϕ(r) = εϕ(r)

where

VHF (r) =
∫

d3x
|ϕ(x)|2
|�x − �r| .

Simplify this equation for S-waves.

b) Obtain the analytic form of the Hartree-Fock potential after one iteration
(assuming one starts with VHF = 0).

c) Obtain the Hartree-Fock ground state energy of helium using the point basis
method and compare to the exact result.

8. Hartree-Fock Helium in a Gaussian Basis.
Solve the Hartree-Fock equations for helium in a simple Gaussian basis:

〈r|n〉 ∝ exp(−αnr2).

a) Expand the Hartree-Fock orbital as φ = ∑4
n=1 cn exp(−αnr2). You should get

something like:

∑

nm

Tnmcm +
∑

pqnm

Vnpmqcpcqcm = ε
∑

nm

Nnmcm.

Provide expressions for T , V and N .

b) Find the expression for the ground state energy in terms of the cn.

c) You have obtained the Roothaan equations. As usual, they can be solved by
iteration. You will want to find a package that can deal with the generalized
eigenvalue problem H �v = εN �v. In Eigen try

#include <Eigen/Eigenvalues>
...
GeneralizedEigenSolver<MatrixXf> ges;
MatrixXf H = ...
MatrixXf N = ...
ges.compute(H, N);
cout << " E igenva lues : " << ges.eigenvalues().

transpose();

Code up and solve to obtain the ground state energy. Try using αn = 0.1 ·
exp(−n/0.7). Compare to the Hartree-Fock value of -2.8616 a.u.
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9. Bases.
Examine alternative bases by solving for the hydrogenic and Hartree-Fock ground
state energies for helium. Use:

a) 〈r|n〉 = δ(r − rn)

b) 〈r|n〉 = rn exp(αr2)

c) 〈r|n〉 = exp(αnr2)

10. LDA Helium.
Write code to evaluate the ground state energy and single particle eigenvalues for
helium in the density functional formalism in the following models.

a) E[n] = FKS + Ues + V .

b) E[n] = FKS + Ues + V + Ex where Ex is the Bloch exchange functional of
Eq. 23.93.

c) E[n] = FKS +Ues +V +Eα
x where Eα

x is the Slater variant of the Bloch exchange
functional.

d) E[n] = FKS +Ues+V +Eα
x +Ec where Ec is the Chachiyo correlation functional.

Compare all your results to the Hartree-Fock and exact values.

11. [P] The Thomas-Fermi Model.
We derive the Thomas-Fermi model from the simplest energy functional mentioned
in Section 23.4.2:

E[n] = 3
10m

(3π2)2/3
∫

d3r n5/3 + 1
2

∫
n(x)n(y)
|�x − �y| +

∫
d3r n(r)Vext.

a) Take the functional derivative with respect to n(r). Account for the constraint∫
n = N with a Lagrange multiplier μ.

b) Let φ(r) = ∫ n(y)/|�r − �y| and obtain an equation for ∇2φ in terms of φ and Vext.

c) Take Vext = −Z/r, let u = φ+Vext, and obtain a differential equation for u. You
will need ∇2Vext = 4πZδ(r).

d) Determine μ by considering the limit r → ∞.

e) Let u = −Z/r · χ(x = αr) and simplify your partial differential equation with
radial coordinates. Choose α to eliminate annoying constants. You should end
up with a second order nonlinear differential equation for χ .

f) Assume a power law solution and obtain the asymptotic behavior for the density
for large and small r. How do these compare to the desired asymptotic behaviors?

g) Solve the differential equation for χ(x) with appropriate boundary conditions
for a neutral atom. As a check you should obtain χ(1.0) = 0.425.

h) Use χ to obtain the electron density for argon and compare to Figure 23.4.
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12. Lithium.

a) Obtain the Hartree-Fock equations for lithium using the open shell configuration
1s22s1.

b) Code up and compare your results for the energy levels to those obtained with
a central (Hartree) approximation.

13. Beryllium.
Obtain Hartree-Fock estimates of the ground state and ionization energies for
beryllium. Use the 1s22s2 configuration.

14. Ionization Energies for Neon.

a) Obtain the ionization energy of neon (1s22s22p6) for a 1s electron using
Koopmans’ theorem. This is the statement that the ionization energy of the jth
electron is approximately given by εj .

b) Obtain the ionization energy of neon by direct computation (i.e., evaluating the
difference in energies E(N)− E(N − 1)).

c) Compare your results to the experimental value of 870.3 eV.

d) Repeat for 2s and 2p electrons.

15. H− Ion.

a) Show that the product Ansatz

ψ(r1, r2) = α3

π
exp[−α(r1 + r2)]

is incapable of establishing binding for the H− ion.

b) Following Chandrasekhar, introduce correlation in the variational Ansatz as
follows:

ψ(r1, r2) ∝ exp(−ar1 − br2)+ exp(−br1 − ar2).

Obtain E(a, b) = 〈ψ |H |ψ〉/〈ψ |ψ |〉.
c) Minimize E(a, b) and show that binding occurs for a �= b.

d) Repeat this procedure with the Ansatz

ψ(r1, r2) ∝ exp[−a min(r1, r2)− b max(r1, r2)]

and compare the ground state energy to that from part (c).
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16. [T] H+
2 Ion (i).

Consider the simplest LCAO trial functions for the H+
2 ion:

φg/u(r; R) = 1√
2
(ψ1s(rA)± ψ1s(rB))

where ψ1s(r) = exp(−r)/
√
π .

a) Show that the corresponding adiabatic surfaces are given by:

Eg/u(R) = E1s + 1
R
(1 + R) exp(−2R)± (1 − 2R2/3) exp(−R)

1 ± (1 + R + R2/3) exp(−R)

b) Obtain the minimum distance and energy for the gerade configuration. Compare
to the exact results of R0 = 1.06Å and De = 0.103 au = 2.79 eV.

c) The principle defect with the LCAO method is that the trial wavefunction does
not approach that of an atom with charge Z = 2 as R becomes small. Rectify
this problem by constructing a variational LCAO with atomic wavefunctions:

ψt(r) =
√

a3/π exp(−ar)

and compare your results to those above.

17. H+
2 (ii).

Solve the Hartree-Fock equation for the H+
2 ion by expanding the single particle

wavefunction in spherical harmonics.

a) Show that only even waves contribute to the interaction, and hence the eigen-
vectors, of the H+

2 wavefunction.

b) Show that the interaction is diagonal in the magnetic quantum number. Is this
physically sensible?

c) Show that the ground state belongs in the m = 0 sector.

d) Examine the convergence of the ground state energy in the number of partial
waves. You should obtain something like Figure 23.9.

18. [P] Monte Carlo H+
2 Ion.

Obtain the ground and first excited state energy surfaces of the H+
2 ion as a function

of the interproton radius using the quantum Monte Carlo guided random walk
algorithm. Compare this to the exact result.

19. H2 Integrals.
Evaluate the integral of Eq. 23.74 numerically using spherical coordinates.
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Figure 23.9 H+
2 Ion. Convergence in the partial wave expansion.

a) Let z1 = r̂1 · R̂ and z2 = r̂2 · R̂. Obtain an explicit expression for r̂1 · r̂2 in terms
of z1, z2, and another angle.

b) There are two azimuthal angles. Show that the integrand is not a function of a
linear combination of these angles and that performing the relevant integration
gives rise to a factor of 4π−2φ, where φ is the orthogonal azimuthal combination.

20. H2 Molecule.
Consider the Hartree-Fock equations for H2.

a) Argue that the m-dependence in the expansion of the single particle Hartree-
Fock wavefunction:

�(�r; �R) =
∑

�m

1
r
ϕ�m(r; R)Y�m(r̂)

is natural in this problem.

b) Numerically confirm that the waves �0 dominate for even �.

c) Confirm the convergence in the partial wave expansion and determine the
minimum ground state energy and interatomic distance.

21. [T] Perturbative Nuclear Matter.
We seek to describe a uniform gas of nucleons. In this case the Hartree-Fock and
perturbation theory merge because the Hartree-Fock orbitals are plane waves.
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a) Establish the last statement.

b) Assume a local central two-body interaction describes NN interactions and
simplify the Hartree-Fock expression for the system energy.

c) Show that the system collapses at sufficiently high density for an attractive
potential.

..........................................................................................
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24.1 Introduction

The basis of our current understanding of all physical phenomena is the quantum field. In
fact, the successes of the quantum field theoretical description of nature are so numerous
and precise that many physicists believe that a better description of nature will never be
found. At the heart of the method is the belief that the description of nature must be
relativistic, local, and causal. These qualities place significant constraints on acceptable
theories and confer tremendous predictive powers.

The Standard Model is the field theory that is currently thought to describe most
of the universe (it does not include gravity). It postulates that (almost) everything is
described in terms of one scalar field, ϕ(x, t), 24 spinor fields, ψα(x, t), and 12 vector

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
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fields, Aμ(x, t). Dynamics is specified by a Lagrangian and a procedure to compute with
the Lagrangian, namely the path integral and the renormalization prescription.

Unfortunately computing with quantum field theory can be daunting, and one is often
forced to rely on numerical methods to make progress. The chief technique employed
in the community is lattice field theory, wherein the path integral is represented as
a sum over discrete variables and the resulting multidimensional integral is evaluated
with stochastic methods. This idea was introduced in Section 7.6.2 and was applied to
continuum quantum mechanical problems in Chapter 21 and to discrete problems in
Chapter 22.

We shall review the lattice field method for a series of representative theories in this
chapter. The basic technique will be sketched for a self-interacting scalar field, then we
will apply it to a simple gauge theory, quantum electrodynamics, and non-Abelian gauge
theory. The realistic cases of SU(3) gauge theory and the Higgs sector are presented in
the exercises. In preparation for reading this chapter we encourage the assiduous student
to review material on classical fields (Chapter 19), stochastic methods (Chapter 7), the
renormalization group and universality (Chapter 8), and the sections mentioned in the
previous paragraph.

24.2 ϕ4 theory

The basic goal of any field theoretic computation is to evaluate matrix elements of an
observable, generically defined as:

O(x, t) = 1
Z

∫
DϕO[ϕ; x, t) eiS[ϕ]. (24.1)

Here the notation f [ϕ; x, t) means that f is a functional of ϕ and a function of x and t.
The partition function is defined by:

Z =
∫

Dϕ(x, t) eiS[ϕ] (24.2)

The measure Dϕ denotes a sum over all possible fields (with appropriate boundary
conditions). A concrete definition will be given in Eq. 24.6. The action given as:

S[ϕ] =
∫

ddxL(ϕ) (24.3)

(we work in d spacetime dimensions for the moment) and the Lagrangian we consider
in this section is:

L = 1
2
∂μϕ∂

μϕ − 1
2

m2
0ϕ

2 − 1
4!λ0ϕ

4. (24.4)

Although the parameters m0 and λ0 are commonly called the mass and coupling, at
this stage the meaning of these parameters is unknown and must be determined in
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an operational way by comparison with measurable quantities. For this reason, these
parameters are called bare and a subscript “0” is appended.

The path integral is a rather dubious mathematical entity and must be defined with
care. One such definition is in fact the mapping to the numerical procedure we shall
employ, namely, the field is defined in Euclidean space. In practice this means that
t → −iτ , precisely as done when mapping the Schrödinger equation to the diffusion
equation. This has the benefit of making the path integral convergent for real-valued
fields. The next step is to replace the integral over fields with a multidimensional Riemann
integral by discretizing spacetime:

ϕ(x, t) → ϕ(n1a, . . . , nda) → ϕn (24.5)

where n represents the collections of integers {ni}. The discretization scale a, is called
the lattice spacing and serves the dual purpose of defining the path integration and an
ultraviolet cutoff . At this stage the partition function is regulated: it is well-defined
and ready for numerical study.

The new form of the partition function is:

Z =
∫ ∏

n

dϕn exp

(

−ad
∑

m

L

)

(24.6)

with:

L = 1
2

∑

μ

#μϕm#μϕm + 1
2

m2
0ϕ

2
m + 1

4!λ0ϕ
4
m (24.7)

Here μ is a unit vector in the μth direction and is summed over. Notice that L is positive
definite and the integral for an observable is absolutely convergent if the operator is less
than exponentially divergent. The operator #μ is a differencing representation of the
derivative (see Chapter 19 for much more on this). Here we use the forward difference
operator

#μϕm = 1
a
(ϕm+aμ − ϕm). (24.8)

At this stage it is convenient to change variables to account for the dimensionality of
the terms in the action. Thus we let (ϕ, m0, λ0) → (φ, g, κ) as follows:

φn = ad/2−1
√
κ

ϕn (24.9)

g = κ2

24ad−2 λ0 (24.10)
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and

m2
0 = 2 − 4g

a2κ
− 2d

a2 . (24.11)

Finally the action becomes:

S =
∑

m

(

−κ
∑

μ

φmφm+aμ + (1 − 2g)φ2
m + gφ4

m

)

. (24.12)

Confirm that φn, κ, and g are dimensionless.

Notice that the last two terms of the action can be written as g(φ2 − 1)2 + φ2 − g,
thus φ is driven to ±1 as the coupling g becomes large, and it appears that the theory
approaches the Ising model with coupling J = κ. This can be checked by expanding

φn = sn + δφn

where sn = ±1. One obtains an Ising model that is coupled linearly and cubicly to the
field δφ(x). However δφ has a mass that is proportional to g and hence decouples from
the low energy dynamics as g becomes large (this is called the Appelquist-Carazzone
theorem). We conclude that the Ising limit is indeed recovered and that ϕ4 theory is in
the same universality class as the Ising model (for large coupling, and for all coupling if
no phase transition intervenes).

All computed properties depend on κ and g. Comparison to two measurable quanti-
ties, say O1 and O2, permits the identification:

O1 = f1(κ, g) = 1
Z

∫ ∏
dφO1e−S

O2 = f2(κ, g) = 1
Z

∫ ∏
dφO2e−S (24.13)

which can be solved to obtain κ(O1, O2) and g(O1, O2), thereby defining the parameters
of the theory.

Notice that all scales have been removed from the theory, thus O1 and O2 are
dimensionless. If one wants to make a prediction of a dimensionful quantity then the
lattice cutoff must be reinstated. For example

mphys = mlattice/a. (24.14)
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An experimental measurement of mphys and a theoretical measurement of mlattice
determines the lattice spacing. This then allows the determination of all dimensionful
quantities. This procedure is called setting the lattice scale.

Spacetime symmetry

At this point the perspicacious (or suspicious!) reader will ponder about the damage
we have done to the continuum theory by discretizing it. In particular, Euclidean O(D)

symmetry (in D dimensions) has been replaced by hypercubic symmetry, which
is described by a group that is of dimension 2DD! and is a subgroup of O(D). The
most obvious implications are that (i) rotational symmetry is lost (ii) it can be difficult
to construct operators of given continuum quantum numbers. The hope, of course,
is that the continuum symmetry is recovered as the lattice spacing is taken to zero.
In classical field theories one can guarantee that this happens by confirming that the
continuum theory is indeed recovered as one removes the lattice spacing. However, the
situation is more complicated in quantum field theories because of well-known issues
with divergences (ultraviolet infinities) that can ruin naive dimensional scaling of things
like field operators.

In the end our labor has not been in vain because the discretized theory does
successfully reproduce the continuum theory as the lattice spacing is removed. However,
this happenstance is nontrivial! Namely, it transpires that the set of all renormalizable and
hypercubic symmetric operators happens to also be O(D) invariant; thus O(D) symmetry
is recovered in the infrared, continuum, limit as an accidental symmetry1. This means
that differences between lattice and continuum values of correlation functions will vanish
as the lattice spacing squared, and the two implementations of the theories agree as the
lattice spacing is removed.

From now on we shall consider three dimensional φ4 theory. This case is especially
interesting because the theory exhibits parity symmetry breaking, as we will shortly
establish.

Analytical results

Debugging Monte Carlo code requires care, a good grasp of statistics, and results
with which to compare. Here we choose to compare to exact results computed in the
noninteracting case g = 0. In this case the action is quadratic in the fields and it is possible
to perform the path integral (or, in our case, the many-dimensional Riemann integral)
exactly. This is achieved with the aid of the well-known formula for multidimensional
Gaussian integrals.

∫ ∏
dφn exp

(
−1

2
φi Mijφj + φiJi

)
= 1√

det(M)
exp

(
1
2

Ji(M−1)ijJj

)
. (24.15)

1 In fact, the full Poincaré symmetry is recovered.
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Thus, for example, the correlation function 〈Tφ(x)φ(y)〉 is given formally by:

〈Tφ(x)φ(y)〉 ≡ 1
Z

∫
Dφ φ(x)φ(y) e−S. (24.16)

With our conventions this is (again, for g = 0):

〈Tφxφy〉 = 1
κL3

∑

k

cos(k · (x − y))

a2m2
0 + 4

∑
μ sin2(kμ/2)

(24.17)

where kμ = 2πnμ/L and nμ runs from 0 to L − 1.
There is a pole in this expression at:

kt = aE = 2 sinh−1
(

1
2

√
a2m2

0 + 4 sin2(apx/2)+ 4 sin2(apy/2)
)

. (24.18)

This defines the dispersion relation for free particles on the lattice and will prove useful
later for code validation. Notice that as the lattice spacing becomes small this approaches
the familiar dispersion relation E2 = m2

0 + �p2.

24.2.1 Evaluating the path integral

We seek to evaluate matrix elements such as 〈Tφxφy〉 with quantum Monte Carlo
methods. These have been described and employed in several places throughout the
text so we shall dive right in. In this and all subsequent sections we will impose periodic
boundary conditions on the fields.

Metropolis-Hastings method

The Metropolis-Hastings method is the simplest to code and is often the fastest to
execute. As with many other applications in this text, we choose to implement it via a
local sampling technique. Our approach will be to propose a new field φn → φ′

n and
accept it with probability:

p(φ → φ′) = min (1, exp(−δS)) , (24.19)

where:

δS = S(φ′ ≡ φ +�)− S(φ)|site n

= �
[
− κ

∑

μ

(φn+μ + φn−μ)+ 2(1 − 2g)φn + 4gφ3
n + (1 − 2g + 6gφ2

n)�

+ 4gφn�
2 + g�3

]
(24.20)
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It is possible to get fancy with the field update proposal distribution, but simple is
often best, and we choose the uniform density:

pφ(φ → φ′) =
{

1
�0

−1
2�0 ≤ φ′ − φ ≤ 1

2�0

0 elsewhere
. (24.21)

The parameter �0 should be chosen to maximize a figure of merit that minimizes errors,
taking into account the time to achieve those errors. In practice this means choosing �0
so that about one half of proposed updates are accepted.

Heat bath updates

Although the action looks fairly complicated, it is still possible to implement the heat
bath algorithm with a few tricks (Bunk, 1995). The idea is to re-write the action in a
form that yields an update density that is mostly tractable. The remainder of the density
is accounted for with the rejection method (Section 7.2.6). Some manipulation reveals:

S|site n = α

2

(
φn − N

α

)2

+ g(φ2
n − A)2 (24.22)

with

N = κ
∑

μ

(φn+μ + φn−μ) (24.23)

and

A = 1 + α − 2
4g

. (24.24)

The new parameter α can be choosen to optimize the efficiency of the updates, as
with �0.

The heat bath algorithm may now be implemented by generating a new field variable
φ′

n with probability:

p(φ′) =
√

α

2π
exp

(

−α

2

(
φ′ − N

α

)2
)

. (24.25)

The proposed change is then accepted with probability:

pa = min
(

1, exp[−g(φ′2 − A)2]
)

. (24.26)
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Microcanonical updates

The Metropolis and heat bath methods are good at updating the short wavelength modes
of the theory, but are less efficient at updating long wavelength modes. This often leads
to strong autocorrelation effects which must be addressed. A useful technique is to
implement microcanonical updates (also called over-relaxation in analogue with the
technique employed in continuum systems).

The method proceeds by replacing a local variable φn → φ′
n where the new variable

is chosen to leave the action invariant (Creutz, 1987):

S[φn] = S[φ′
n].

We see that no damage is done to the distribution of field configurations that the Markov
chain is generating, even though possibly large changes in the configuration can be
created. However, microcanonical updating is not ergodic, and thus must be combined
with Metropolis or heat bath updates.

In our case one could choose φ′ by solving the cubic equation δS[φ] = 0 for one of
the roots. A root is then chosen at random and accepted with probability (Creutz, 1987):

p(φ → φ′) = min
(

1,
∣∣∣∣

S′(φ)
S′(φ′)

∣∣∣∣

)
. (24.27)

While feasible, solving the cubic equation is rather computationally intensive (it can
be done with the aid of the companion matrix, see Chapter 3) for something that is
repeated as often as a Monte Carlo update. We therefore implement a different strategy
that involves making a reflection:

φ → φ′ = κ
∑

μ

(φm+μ + φm−μ)− φ (24.28)

Notice that the inverse relationship is the same, thus the factor

pc(φ
′ → φ)

pc(φ → φ′)

cancels in the expression for the Metropolis-Hasting update density (see Section 7.5.1).
The action is only partially invariant under this reflection, so the proposed update

cannot be accepted unconditionally. The remainder must be implemented as an update
probability:

p(φ → φ′) = min
(

1, exp
(
−g[−2φ′2 + φ′4 + 2φ2 − φ4)]

))
. (24.29)
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Autocorrelation

As we have stressed many times, autocorrelation is one of many effects that must be
monitored in quality Monte Carlo work. In general, autocorrelation depends on the
observable under consideration, model parameters, proximity to phase boundaries, and
even the order in which updates are executed. Figure 24.1 (top curve) displays the
autocorrelation function:

C(τ ) = 〈O(t)O(t + τ)〉 − 〈O〉2
〈O2〉 − 〈O〉2 (24.30)

for the operator

O = 1
L3

∑

xyt

φ2
xyt.

It is evident that one must generate one or two hundred Markov chain steps to reduce
autocorrelation to an acceptable level, which is, of course, very expensive. However, our
effort at developing an over-relaxation update pays off handsomely: the lower curve of
Figure 24.1 shows the substantial improvement in the autocorrelation when a Metropolis
update is followed by an over-relaxation update.

In general one must experiment with different update protocols in the tuning phase
of code verification. A typical protocol will be something like:

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

C

τ

Figure 24.1 Autocorrelation for L = 8, κ = 0.32, g = 0. Top curve: Metropolis updates. Bottom
curve: Metropolis plus over-relaxation updates.
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thermalize for Ttherm
loop for Tmeas

perform Tcorr Metropolis updates
perform Tover over-relaxation updates
measure observables

end loop

All the algorithmic parameters in this scheme should be optimized as a function of other
algorithmic parameters such as lattice size and the physical parameters (at least to the
extent that is practical).

24.2.2 Particle spectrum

With all onerous code validation and tuning accomplished, we are ready to measure
observables! Typical first tasks are to measure simple local matrix elements such as
〈φ(x)〉. We will instead examine the mass gap of the theory, which is the lowest energy
difference E1 − E0. We will focus on the single particle excitations on the following.

The single particle mass gap can be extracted from the two-point function by
expanding in a complete set of states. First the field is written in Euclidean time as:

φ(x, t) = eHtφ(x, 0)e−Ht. (24.31)

Thus (ignoring temporal boundary conditions for the moment):

C(t) ≡ 〈φ(t)φ(0)〉 =
∑

n

|〈n|φ(0)|0〉|2e−(En−E0)t (24.32)

where a complete set of (discrete) eigenstates of H has been inserted between the
operators and Eq. 24.31 has been used. Observe that it is possible to extract the leading
eigenvalue E1 of the system (defined as the lowest state with nonzero matrix element
〈n|φ(0)|0〉) by fitting the behavior of the correlation function in time. Eq. 24.32 makes
it clear that the correlation function must be evaluated for times sufficiently large that
contamination from excited states has died away. However, it cannot be evaluated for
times that are too long because the signal will devolve into noise.

An alternative is to plot the two-point correlation function as an effective mass
defined by:

meff = log
(

C(t)
C(t + a)

)
. (24.33)

(A slightly more general version of this was used in Section 22.4.)
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Figure 24.2 Correlation function C(t) = 〈�(t)�(0)〉 with fit. Inset: meff (t) with exact result.

Any operator that one prefers (and that can create the state of interest from the
vacuum) can be used with this method. Here we choose to use a zero momentum single-
particle operator

�(t) = 1
L2

∑

xy

φxyt.

The extracted correlation function is displayed on a log scale in Figure 24.2. These
results were obtained on a 243 lattice with κ = 0.32 and g = 0 with 200000 measure-
ments separated by a single Metropolis sweep followed by a single over-relaxation sweep.
The periodic boundary conditions in t are clearly evident in the figure.

The numerical results were fit with a function of the form:

c0 (exp(−mt)+ exp(−m(L − t)))

and yielded m = 0.4965(5). This can be compared with the analytic result of Eq. 24.18,
which gives E1 − E0 = 0.4949. The inset of Figure 24.2 shows the effective mass along
with the exact result. As can be seen, the effective mass cannot be trusted as t nears
L/2: errors grow substantially and the periodic boundary conditions begin to be felt (in
fact, the effective mass will turn over past L/2 and approach −m for larger t). However,
the agreement for t < L/2 is very good, lending confidence in the method and in our
implementation.
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Correlation matrix method

The method just presented is very good for extracting mass gaps. However it does poorly
if one is interested in excited states. Attempts to fit the subleading exponential typically
fail because the increased importance of statistical noise makes it more difficult to isolate
the excited state energy. The accepted method for extracting excited state energies in the
field is to employ a correlation matrix.

The idea is to define a set of interpolating operators {Oj}, each of which has
non-zero overlap with the states of interest (in fact this overlap can be optimized by
building parametric dependence into the operators). Then one computes the correlation
matrix:

Cij = 〈O†
i Oj〉.

The idea is that the increased information contained in this matrix permits the extraction
of several excited states. Depending on the perspicacity with which the researcher has
chosen her operators, this is usually successful and yields about N (typically a fraction
like N/3) levels for an N × N correlation matrix.

Although we will not pursue this method any further here, it is useful to see an
interpolating operator set. A useful way to construct these in our case is by considering
all possible one- and two-particle states of zero total momentum. Thus we define
momentum space operators via:

�(t, n1, n2) =
∑

x,y

φx,y,t exp(2π in1/L) exp(2π in2/L). (24.34)

The sole single particle state is:

O0(t) = �(t, 0, 0),

which we already used to extract the mass gap.
The next lowest five operators can be built from two-particle states as follows:

O1(t) = �(t, 0, 0)�(t, 0, 0)

O2(t) = �(t, 1, 0)�(t,−1, 0)

O3(t) = �(t, 0, 1)�(t, 0,−1)

O4(t) = �(t, 1, 1)�(t,−1,−1)

O5(t) = �(t, 1,−1)�(t,−1, 1). (24.35)

Evidently, the operator O1 produces a two-particle state in which both particles have
zero momentum, and O2 produces a two-particle state in which one particle has one unit
2π/(aL) of momentum in the +x̂-direction and the other has one unit of momentum in
the −x̂-direction, etc.
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24.2.3 Parity symmetry breaking

We have established that φ4 field theory is equivalent to the Ising model in the large
coupling limit. Since the 3d Ising model exhibits a phase transition at kBT∗ = 4.5115J
we expect a similar phase transition at κ∗ = 0.22166. Because the phase transition picks
out a “magnetization” direction, we say that parity symmetry has been spontaneously
broken and one speaks of a symmetric phase where 〈φ〉 = 0 and a broken phase,
where 〈φ〉 �= 0. Lastly, because this phase transition is defined in terms of a coupling
rather than a temperature, it is called a quantum phase transition (see Chapter 22 for
another).

Of course, all of our previous discussion about phase transitions remain relevant.
Thus the average field is strictly never nonzero. What happens in practice (say, in a
Markov chain, or in an experimental realization) is that the field spends much of its time
fluctuating around φ=+1, say, and then makes a transition to the “other vacuum”, where
it fluctuates about φ= − 1. The average over very long times is thus zero. However, as
the system gets larger the probability of switching vacua approaches zero and the system
is effectively trapped in one vacuum. This is the practical way in which spontaneous
symmetry breaking occurs in Monte Carlo computations and in nature.

One way to avoid these subtleties is to employ a robust order parameter to
distinguish phases. This can be as simple as 〈|φ|〉. Here we choose to examine the
putative parity breaking phase transition in φ4 theory by measuring the correlation of
fields a great distance apart. Since the greatest distance on a periodic lattice is L/2 we
consider:

M ≡ 1
L3

∑

xyt

φxyt φx+L/2,y+L/2,t+L/2 (24.36)

and evaluate 〈M〉. Intuitively, we are asking for the probability that a “spin” a great
distance from an “up spin” at the origin is also up. This will be zero if there is no long
range order, and nonzero if the vacuum has magnetized.

Running the code for a small lattice and g = 0.4 while looping over κ reveals something
dramatic happens near κ = 0.4. Running again near κ = 0.39 over a variety of lattice
sizes and with more statistics yields the curves shown in Figure 24.3. These have been
obtained on lattices of size L = 12, 16, 20, 24, and 28 (top to bottom). It is clear that a
transition is occurring just below κ = 0.4; furthermore, the transitions become sharper
and remain continuous as the lattice volume increases, lending strong evidence that we
have discovered a second order phase transition. The inset shows similar curves for
larger lattices, indicating that the phase transition occurs at κ∗(g = 0.4) ≈ 0.397.

More accurate methods to obtain critical points have been discussed in Chapter 8
(scaling and likelihood) and Chapter 20 (susceptibility). The applications of these
methods in lattice field theory are exactly the same, hence we will not go into them
here. Rather we simply present the results of a rough computation of the phase diagram
for parity symmetry breaking in the three dimensional φ4 model shown in Figure 24.4.
Notice that the large coupling limit does indeed agree with the Ising result.
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24.3 Z2 Gauge theory

The Ising model Hamiltonian, H = −J
∑

ij SiSj , makes it clear that the system is
invariant under a global reflection, Si → −Si , for all lattice sites i. This symmetry
implies that it is impossible for a finite Ising system to magnetize, since that implies that
a direction in spin space is preferred. However, as we have discussed, an infinite system
can magnetize, essentially because it takes an infinite amount of time for a system that



858 Z2 Gauge theory

is magnetized in one direction to “realize” that another possibility exists. In this case, we
speak of spontaneously breaking the global reflection symmetry.

Symmetries are often described in terms of mathematical constructs called groups.
A group is a set of objects {a, b, . . .} and an operation ◦ that obeys four axioms:

closure if a and b are elements of a group G then a ◦ b ∈ G.

associativity for all a, b, c in G, (a ◦ b) ◦ c = a ◦ (b ◦ c).

identity there exists an element of G, called e, such that a ◦ e = e ◦ a = a, for all a.

inverse for all a in G there exists an element b of G such that a ◦ b = b ◦ a = e.

A simple example of a group is the numbers {1,−1} under the operation of multi-
plication. This group is called Z2 and is the group that describes the global reflection
symmetry of the Ising model.

In 1971 Fritz Wegner constructed a novel quantum spin model in an attempt to find a
theory that did not magnetize but had a phase transition (Wegner, 1971). His idea was to
impose a local symmetry on the system. Whereas a global symmetry transforms each
element of a system in the same way, a local symmetry permits different transformations
for each degree of freedom. This is called “gauge” symmetry

A crucial part of Wegner’s construction was moving the spin degrees of freedom from
sites to links between sites. A link variable is thus labelled by its starting point on the
lattice n and the direction in which it points, μ̂. Thus Wegner replaced site variables Sn
with link variables L(n,μ) (we shall often omit the “hat” when denoting unit vectors in
the following).

With this change, a local Z2 symmetry transformation is implemented by reflecting
each spin variable that is attached to a given site, as indicated in Figure 24.5. A given link
will be affected by the local gauge transformation made at each end, thus we write:

L(x,μ) → g(x)L(x,μ) g(x + μ). (24.37)

For the Z2 symmetry being considered here, g(x) is ±1 at all sites (but not the same at
all sites!).

⇒ ⇒
⇒

⇒ ⇒
⇒⇒

⇒
⇒⇒

⇒⇒

⇒
⇒⇒

⇒ ⇒
⇒

⇒ ⇒

⇒

⇒
⇒

⇒⇒

⇒⇒
⇒

⇒⇒

Figure 24.5 Local gauge transformation. A local gauge transformation is made at the indicated point.
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Requiring that the Hamiltonian is invariant under arbitrary local transformations
imposes a severe constraint on the structure of the Hamiltonian. Some thought reveals
that the only way to achieve this invariance is if the Hamiltonian is described in terms of
loops of spin. For example, two links that share a site:

L(x,μ)L(x + μ, ν)

transform to:

g(x)L(x,μ) g(x + μ) g(x + μ)L(x + μ, ν) g(x + μ+ ν).

Of course the two intermediate factors of g cancel; and if this is carried around any
closed loop of link variables, all factors of g cancel. We say that a closed loop is a gauge
invariant operator.

The solution to Wegner’s problem is now apparent: to construct a Hamiltonian that
exhibits local gauge invariance work in terms of loops of link variables. The simplest (and
most local) loop is the product of four links around a square on a lattice. Because this
object is fundamental to all lattice gauge theories it has earned its own name: plaquette
(Fr. small plaque).

Finally, Wegner’s gauged Z2 spin model can be written as:

H = −β

2

∑

�
L� (24.38)

with

L� = L(n,μ)L(n + μ, ν)L(n + μ+ ν,−μ)L(n + ν,−ν). (24.39)

The choice of prefactor will be explained in the next section. The notation
∑

� means
sum over all plaquettes, which means

∑
n,μ<ν . The whole thing is called the gauged Z2

model, or Z2 gauge theory.

Elitzur’s theorem

Recall that Wegner’s motivation in developing Z2 gauge theory was an exploration
of phase transitions in systems that do not magnetize. This point is underscored by
Elitzur’s theorem, which states that it is impossible for a local gauge symmetry to break
spontaneously (Elitzur, 1975). It is clear that the expectation value of a gauge-variant
quantity like a link variable must be zero in the same way that an integral such as

∫
d3x �x f (|�x|)
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must be zero because of the rotational symmetry of the function f and the measure.
However, this statement applies to finite systems. What Elitzur succeeded in doing was
showing that the matrix element remains zero even in the thermodynamic limit.

Wegner avoided this issue by considering gauge invariant operators such as loops of
link variables. He then proved a remarkable result: at large temperatures (small β in
Eq. 24.38) the expectation value of a planar rectangular loop behaves as:

〈L�〉 ∼ exp(−A) [high T],

where A is the area enclosed by the loop. Alternatively, at low temperatures one has:

〈L�〉 ∼ exp(−P) [low T],

where P refers to the perimeter of the loop (Kogut, 1979). These results are referred to
as area laws and perimeter laws, respectively.

Much more is known about Z2 gauge theory, for example the two-dimensional model
can be mapped to the one-dimensional Ising model. Exact results are also known for
three and four-dimensional systems. The interested reader is directed to the masterful
review by Kogut (1979) for more details.

In the following we will study the three-dimensional gauged Z2 model with Monte
Carlo lattice field theory (often called lattice gauge theory in this case). We will find
that there is a phase transition at the critical point

β∗ = 1.5226

(Balian, 1975). Furthermore, perturbative expressions for observables such as the
average plaquette can be obtained. We report:

〈�〉 = 1
2
β + O(β2) [small β] (24.40)

and

〈�〉 = 1 − 8 exp(−4β) [large β]. (24.41)

Although these expressions are not difficult to derive, we will forego this exercise and get
straight to numerics.

A final note on nomenclature: actions for other gauge theories often yield values of β
that are inversely proportional to couplings, thus large coupling refers to small β. Also, the
similarity of Euclidean time field theories with finite temperature classical systems leads
to the identification of β with 1/kBT . Thus the following are all equivalent:

small β ↔ large coupling ↔ hot
large β ↔ small coupling ↔ cold.
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24.3.1 Heat bath updates

As with φ4 theory, we seek to evaluate matrix elements of operators:

〈O〉 =
∑

{L}
O[L] exp

(
β

2

∑

�
L�

)

, (24.42)

where the notation is made less obscure in the description following Eq. 24.38.
Because the action is relatively simple and the variables are discrete numbers, we

choose to the employ the Gibbs sampling variant of heat bath Monte Carlo to evaluate
these matrix elements. Thus we require the conditional probability for a single link
variable. In two dimensions this link will form part of two plaquettes, and in three it
will be part of four plaquettes, as illustrated in Figure 24.6. The arrows in this figure
imply that the link variables are oriented – this will be become relevant in subsequent
sections.

Factoring the link variable L(R,μ) out of the action leaves (in three dimensions) four
three-sided objects called staples. Thus:

S|local = β

2
L(R,μ) ·

∑

staples

S(R,μ, ν). (24.43)

More explicitly, the sum over staples is given by the following code:

int staple(int x, int y, int t, int mu) {
// compute the sum of staples wrt to link L(R,mu)
int st = 0;
int R[3] = {x,y,t};
int Rmu[3] = {x,y,t};
Rmu[mu] = pl[R[mu]];
for (int nu=0;nu<3;nu++) {
if (nu != mu) {
vector<int> Rnu = {x,y,t};

R

R + μ

R + 

R + μ + 

R − 

R −   + μ

L (R, μ)

ν ν

νν

Figure 24.6 Shared plaquettes in two dimensions.



862 Z2 Gauge theory

Rnu[nu] = pl[R[nu]];
vector<int> Rnum = {x,y,t};
Rnum[nu] = mn[R[nu]];
vector<int> Rnumu(Rnum.begin(),Rnum.end());
Rnumu[mu] = pl[Rnum[mu]];
st += latt[Rmu[0]][Rmu[1]][Rmu[2]][nu] *

latt[Rnu[0]][Rnu[1]][Rnu[2]][mu] * // ^*
latt[x][y][t][nu]; // ^*

st += latt[Rnumu[0]][Rnumu[1]][Rnumu[2]][nu] * // ^*
latt[Rnum[0]][Rnum[1]][Rnum[2]][mu] * // ^*
latt[Rnum[0]][Rnum[1]][Rnum[2]][nu];

}
}
return st;

}

We encourage the student to study this code snippet carefully to understand (i)
the sum over nu and (ii) the arrangement of indices in the matrices. Notice that the
link variables are stored in a four-dimensional matrix latt[x][y][t][mu]. Moving
around the staple is accomplished by adding unit vectors to R = (x, y, t) in the μ or ν

directions. As always, the arrays pl and mn implement periodic boundary conditions.
Finally, we define all unit vectors to be in the positive directions, thus, for example, the
lower right link in Figure 24.6 is given by

L(R + ν,−ν) = L(R, ν)†.

Again, the complex conjugation indicated here will become relevant in subsequent
sections – it can be ignored for Z2 models.

Because all link variables are ±1, all staples evaluate to ±1, and the sum over staples
evaluates to one of S ≡ {−4,−2, 0,+2,+4}. Thus the conditional probability becomes:

p(L → L′) = exp(L′ β
2 S)

∑
�=±1 exp(� β

2 S)
. (24.44)

The code snippet implementing this is quite simple:

double r0 = wt[4+staple(x,y,t,mu)];
r0 = r0/(r0+1.0/r0);
if (uDist(mt) < r0) {
latt[x][y][t][mu] = 1;

} else {
latt[x][y][t][mu] = -1;

}
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Random numbers are generated with uniform_real_distribution<double> via
a Mersenne twister engine. Probabilities have been pre-computed and stored:

for (int i=-4;i<=4;i=i+2) {
wt[i+4] = exp(beta*i/2.0);

}

24.3.2 Average Plaquette and Polyakov loop

As we have stressed, code validation, tuning, and checking autocorrelation and conver-
gence must all be carried out. The techniques are the same as with φ4 theory, so we will
not pursue these points further.

Moving on to observables, the simplest gauge invariant quantity is the plaquette and
thus it is natural to measure its expectation value as an initial computation. This can be
achieved with a small function that computes plaquettes:

int plaquette(int x, int y, int t, int mu, int nu) {
// compute the plaquette at (xyt) in the mu-nu direction
// mu != nu !!
int R[3] = {x,y,t};
int Rmu[3] = {x,y,t};
Rmu[mu] = pl[R[mu]];
int Rnu[3] = {x,y,t};
Rnu[nu] = pl[R[nu]];
int plaq = latt[x][y][t][mu] *

latt[Rmu[0]][Rmu[1]][Rmu[2]][nu] *
latt[Rnu[0]][Rnu[1]][Rnu[2]][mu] * // ^*
latt[x][y][t][nu]; // ^*

return plaq;
}

Again, the student is encouraged to carefully examine the indexing as this is a typical
source of errors in lattice gauge code. An additional routine is used to sum all plaquettes
in all orientations over the lattice. These are then averaged over the Markov chain to
arrive at a final estimate (with error) of the average plaquette. Consistency between hot
(random initial spins) and cold (all spins up) starts was used to check thermalization.
Typical results on small lattices and with modest statistics (runs lasted for less than a
minute) are shown in Figure 24.7. The figure also shows the small and large coupling
perturbative results, Eqs. 24.40 and 24.40, as dashed and dotted lines. Checks like this
are essential in all Monte Carlo work.

Despite the appearance that something might be going on near β = 1.5, the figure
makes it clear that the average plaquette is not a good order parameter as it is not zero
in any phase. The discussion of Elitzur’s theorem implies that “global” properties of the
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Figure 24.7 Average plaquette in 3d Z2 gauge theory. The points are for L = 10 and L = 20 lattices.
Leading results for strong and weak coupling are shown as dashed and dotted lines respectively.

field theory must be probed to test for possible phase transitions. Of course the operators
must also be gauge invariant. A viable choice is a large loop of link variables. Rectangular
planar loops of size R×T are called Wilson loops and will be considered later. Here we
pursue a simpler option, called a Polyakov loop, which consists of a line of links that
extend up the temporal axis and traverse the entire lattice. Periodic boundary conditions
imply that the line is actually a loop because the link at t = L − 1 connects to the link at
t = 0. Thus a Polyakov loop is gauge invariant and highly nonlocal.

As with the average plaquette, computing the Polyakov loop matrix element is best
achieved with a utility function:

int polyLoop(int x, int y) {
// compute the Polyakov loop at location x,y
int ell = latt[x][y][0][2];
for (int t=1;t<L;t++) { // march up the t-axis

ell *= latt[x][y][t][2];
}
return ell;

}

Results for L = 10, 20, and 40 are shown in Figure 24.8. Unlike the plaquette,
the Polyakov loop does indeed serve as an order parameter. The figure indicates that
a second order phase transition is occurring near β = 1.50, in good agreement with the
exact result, which is shown by the arrow. Of course, more detailed analysis of the type
mentioned earlier would be required to pin the critical coupling down. We do not pursue
this here since the techniques have already been presented elsewhere.



Quantum field theory 865

0

0.2

0.4

0.6

 0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
ol

ya
ko

v 
lo

op

β

Figure 24.8 Polyakov loop in 3d Z2 gauge theory. L = 10: plusses; L = 20: crosses; L = 40: bursts.
The arrow shows the analytic critical coupling.

24.4 Abelian gauge theory: compact photons

The concept of local gauge invariance is likely familiar to the reader in a different context,
namely the transformation:

Aμ(x) → Aμ(x)− 1
e
∂μ�(x) (24.45)

that leaves Maxwell’s equations invariant. In this case locality is made evident by
the space-time dependence of the gauge function, �(x). In fact, Maxwellian gauge
invariance is related to Wegnerian gauge invariance, as we will demonstrate shortly. This
has the important implication that it is possible to construct a lattice field theory of
electromagnetism that is locally gauge invariant. Before launching into the formalism,
let us reminds ourselves about classical relativistic electromagnetism.

The action for electromagnetism is written:

S = −1
4

∫
d4x FμνFμν , (24.46)

where the field strength (Faraday) tensor is given by:

Fμν = ∂μAν − ∂νAν . (24.47)

Notice that this tensor is trivially invariant under the gauge transformation of Eq. 24.45
with some modest assumptions about the smoothness of the gauge function. The electric
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and magnetic fields are given in terms of the vector potential by:

�E = ∂t �A −∇A0

�B = ∇ × �A. (24.48)

With these fields the action becomes:

1
2

∫
d4x (E2 − B2).

We now make the rotation to Euclidean space in the usual way: t → −iτ , or, more
relativistically, x0 → −ix4. We also set

A0 → +iA4.

This is motivated by considering the pure gauge field, Aμ = ∂μ�, thus:

Aμ = (A0,− �A) = ∂

∂xμ
� → (

∂

−i∂x4 ,−∇)� = (iA4,− �A) ≡ Aμ
E .

Finally, the generating functional for quantum electrodynamics is:

Z[J] =
∫

DAμ exp
(
−1

4
i
∫

d4x FμνFμν + i
∫

d4x AμJμ

)

→
∫

DAμ
E exp

(
−1

4

∫
d4xE Fμν

E Fμν
E −

∫
d4xE Aμ

EJμ
E

)
. (24.49)

Here Jμ
E is defined in the same way as Aμ

E , thus:

Aμ
EJμ

E = A1
EJ1

E + A2
EJ2

E + A3
EJ3

E + A4
EJ4

E

and

Fμν
E = ∂

μ
E Aν

E − ∂νEAμ
E .

Notice that the path integral is now a sensible convergent integral. Please be aware that
all reminders of the Euclidean nature of the formalism will be dropped henceforth!
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24.4.1 Gauge invariance and quenched QED

The construction of a lattice version of quantum electrodynamics parallels that of
Wegner’s gauged Z2 model exactly. Thus gauge fields are assigned to links while matter
fields (electrons) are defined on lattice nodes (electrons will be discussed later). We
establish a connection with the lattice gauge transformation of Eq. 24.37 by generalizing
Eq. 24.45 slightly:

Aμ(x) → g(x)Aμ(x)g−1(x)− i
e
g(x)∂μg−1(x) (24.50)

Note that the factors of g cancel in the first term and that the second term implies that:

g = exp(i�).

Now consider the gauge transformation of a Schwinger integral:

U (x, y) ≡ exp
(

ie
∫ y

x
dzμAμ(z)

)
→ g(x)U (x, y) g−1(y). (24.51)

This is precisely the form of the Z2 link transformation of Eq. 24.37! One is led to identify
link variables with Schwinger integrals. If the points x and y are separated by one lattice
unit, a, then this relationship establishes a physical meaning for link variables:

U (x, x + aμ̂) ≈ exp
(
ieaAμ(x + μ/2)

) ≡ L(x,μ). (24.52)

This remarkable connection is strengthened even more when the expression for the
plaquette is expanded in powers of a. One obtains:

L� = L(n,μ)L(n + μ, ν)L(n + μ+ ν,−μ)L(n + ν,−ν)

≈ exp(iea2FμνFμν) (24.53)

This implies that (Rothe, 1992):

1
e2

∑

�
(1 − Re L�) → 1

4
a4
∑

nμν

Fμν(n)Fμν(n). (24.54)

Finally, a discretized version of matterless Euclidean quantum electrodynamics can
be expressed in terms of a (very) large-dimensional Riemann integral:

Z =
∫ ∏

nμ

dL(n,μ) exp

⎛

⎝β

2

∑

�=n,μ<ν

Re L�

⎞

⎠ . (24.55)
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with

β = 2

e2
0

. (24.56)

In writing this equation we have dropped the uninteresting constant in Eq. 24.54 and
have reminded ourselves that the Lagrangian parameters are bare by appending the
subscript “0”.

The last detail in the model definition is specifying the measure. In the case of U (1)
variables this is easy:

∫
dL(n,μ) =

∫ π

−π

dθ(n,μ)
2π

. (24.57)

Alternatively, we will find it useful to represent an element of U (1) with two numbers,
(a0, a1), subject to the constraint a2 = 1. In this case one can write:

∫
dL(n,μ) = 1

π

∫ ∞

−∞
da0 da1 δ(a2 − 1). (24.58)

Why one would take this seemingly retrogressive step is discussed below.

Noncompact QED

It is worthwhile to pause here and reflect on the form of the theory we have constructed.
If one were not familiar with Wegner’s gauge theory, one might be tempted to discretize
spacetime and consider the variables A(n,μ). Thus the path integral would be defined
via the measure

∫
DAμ(x) →

∏

n,μ

∫ ∞

−∞
dA(n,μ).

Notice, in particular, that the integrals are defined over infinite domains rather than the
finite ones of Eq. 24.57. For this reason, our version of quantum electrodynamics is called
compact QED.

A discretization in terms of Aμ(x) can be used in numerical computations, however
it explicitly breaks U (1) gauge invariance. Unlike the case of spacetime symmetry
discussed on page 848, gauge invariance is not recovered in the continuum limit. In
particular, gauge non-invariant operators are created by quantum effects. These include
such operators as

AμAμ or AμAμAμAμ,

which are disasters for the theory: the first is dimension 2 and the second is not O(D)

invariant. In principle these operators can be cancelled by the judicious addition of
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explicitly noninvariant operators, but this requires tuning the couplings to ensure the
cancellation, which is extremely tedious. In short, one is well-advised to listen to Wegner
and Wilson!

24.4.2 Computational details

With the model in place, the next step is to implement a computational strategy. As
usual, the Metropolis-Hastings algorithm provides an efficient and simple method for
evaluating many-dimensional integrals. However, compact U (1) gauge theories are
nearly as simple as Z2 gauge theories and it is possible, and instructive, to implement
the heat bath algorithm.

Heat bath updates

As with Z2 gauge theory, the Gibbs conditional probability is given in terms of
staples:

dp(L) ∝ exp
(
β

2
Re L · S

)
,

where S is the sum of staples at the link in question. This sum is proportional to an
element of U (1) (i.e., it is a complex number) and thus we can write S = kU where
k = |S| and U is an element of U (1). Call the phase of L, θ and the phase of U , φ and
change variables from θ to θ + φ. One obtains:

dp(L(θ)) ∝ exp
(
β

2
Re kL

)

= exp
(

k
β

2
a0

)
, (24.59)

where a0 = Re L.
One might be tempted to evaluate this by using the measure shown in Eq. 24.58

but this is something of a disaster, because performing the integral over a1 yields a
probability

dp(a0) ∝ 1
√

1 − a2
0

exp
(
β

2
ka0

)
,

which is awkward at the limits a0 → ±1. It is better to change variables from (a0, a1) to
θ and generate probabilities according to

dp(θ) ∝ exp
(
β

2
k(cos(θ)− 1)

)
.
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Our final algorithm is:

void update(int N) {
uniform_real_distribution<double> uDist(0.0,2.0*M_PI);
uniform_real_distribution<double> unDist(0.0,1.0);
for (int sw=0;sw<N;sw++) {

for (int x=0;x<L;x++) {
for (int t=0;t<L;t++) {
for (int mu=0;mu<2;mu++) {
U1 S = staple(x,t,mu);
double bk = beta*S.mag()/2.0;
repeat: double theta = uDist(mt);
double wt = exp(bk*(cos(theta)-1.0));
if (unDist(mt) > wt) goto repeat;
Latt[I(x,t,mu)] = U1(theta)*S.pinv();

}}}
}
return;

} // end of update

There are several things to notice in this code snippet.

1. we work in two dimensions.

2. staples are of datatype U1.

3. there is a goto statement. Boudreau rails against these as some sort of coding
monstrosity; but Swanson finds it more intuitive than other constructs. We can’t
settle this so please just develop your own style.

4. lattice indexing appears odd.

We expand on all these points in the next subsection.

Coding considerations

It is of course simple to work in an arbitrary number of dimensions. Here we choose two
dimensions because it is possible to solve the theory exactly in this case which makes it
a useful pedagogical example.

The goto statement forces the algorithm to continue to throw new link configurations
until one is accepted. Thus this method is equivalent to the heat bath algorithm. This
approach is computationally efficient in this case because the calculation of the sum
over staples is the most expensive part of the update routine, and it is best not to waste
this effort.

An indexing function I(x,t,μ) has been introduced. This is implemented with the
following method:
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int I(int i1, int i2, int mu) {
// indexing for 2d lattice x,y => 0:L-1 and mu => 0:1
return (i1*L+i2)*2 + mu;

}

Of course, this can be easily generalized to any number of dimensions with any number
of points along each axis.

Lattices can become quite large (an LD array of SU (N) objects requires 8 ·N2 ·D ·LD

bytes of memory. Thus a lattice of SU (3) matrices on a 484 lattice requires approximately
1.5 GB of memory). Variables that are declared in threaded code are created in a thread
stack that can be very limited in size; this limitation can be cirumvented by allocating
memory on the heap, e.g.:

Latt = new U1[L*L*2];

Alternately, use of collection classes like std::vector can solve the problem, because
even if the std::vector is allocated on the stack, its internal storage is allocated on
the heap. Finally, the indexing function is introduced to compress D-dimensional indices
to a single super-index. It is possible to invert this process but this is never required in
lattice code.

Notice that lattice variables and staples are declared as type U1. The idea here is to
leverage the power of (computational) objects in C++ to simplify manipulations with the
(mathematical) objects that live on links. So far these have been elements of the group
Z2 or U (1). In general they can be elements of any group. This is precisely why C++
classes exist.

The first task in designing the class for the link variables is choosing the representation.
The most memory efficient approach would be to store the phase at each link. However,
this requires evaluating trigonometric functions to perform group multiplies, which is
very slow. It is better to trade memory for speed and to employ the two-component
representation

(a0, a1) = (cos θ , sin θ)

mentioned above. In this case multiplying group elements becomes linear:

a ∗ b = (a0b0 − a1b1, a0b1 + a1b0),

greatly increasing computational speed.
Typical tasks that we require of the class are creating elements, adding elements,

multiplying elements, and inverting elements. The first is achieved with constructors,
while the second two are achieved by overloading the addition and multiplication
operators. In the case of U (1) all of this functionality is contained in std::complex<T>
and this class can be used to implement the necessary functionality.
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We have also employed classes to simplify multi-threading. The idea is that all
variables should be isolated by thread, and this is simply achieved with the encapsulation
property of classes. Thus the main code declares a vector of classes called Markov:

vector<Markov> vecM;

These are instantiated and pushed onto the vector

for (int th_id=0;th_id<nthreads;th_id++) {
vecM.push_back(Markov(seed+th_id,L,beta));

}

so that they can be run in separate threads:

for (int th_id=0;th_id<nthreads;th_id++) {
th.push_back(thread(&Markov::run,&vecM[th_id],start_op,

Ntherm,Nmeas,Ncorr));
}

Notice that the classes are initialized with a random engine seed, the lattice size (L), and
the coupling (beta). The run methods are initialized with a start option (hot or cold
starts in this case), and integers that specify the update protocol. The class Markov
creates the Latt array, initializes it, implements boundary conditions, updates link
variables, and computes a variety of lattice observables – all of which occur in a safely
encapsulated environment.

The remainder of the code in main waits for the threads to finish

for (auto &t : th) { // wait for threads to exit
t.join();

}

and then combines the results from each thread to obtain final estimates for observables.

24.4.3 Observables

Let us blunder ahead and compute some observables. The “blundering” is happening
because one must carefully consider the lattice spacing dependence of the coupling β

before making definitive claims. We will take care of that in the next section.
Computation of the average plaquette is always a good first task because it is relatively

simple to code and easy to evaluate. In this case we were able to obtain accurate results
with only a few hundred configurations. Recall that we chose to work in two dimensions
because analytic results are available thanks to a trick due to Gross and Witten (1980).
The result for the average plaquette is:

〈�〉 = I1(β/2)
I0(β/2)

, (24.60)
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where I1 and I0 are modified Bessel functions. Since the techniques for evaluating the
plaquette have been discussed in the case of Z2 gauge theory, confirming this result is
left as an exercise for the student.

Computing correlators is a more challenging task. One could, for example,
compute〈�(t)�(0)〉 where �(t) = ∑

x �(x, t)/L. Using Eq. 24.31 and inserting a
complete set of states gives

〈�(t)�(0)〉 =
∑

n

|〈�(0)|0〉|2 exp(−(En − E0)t). (24.61)

Here the energy levels refer to any state that can be created from the vacuum by the
operator �(t). Because the plaquette carries no indices, these must be states with vacuum
quantum numbers, JPC = 0++. Because our theory is pure gauge (in other words,
there are no electrons), the states {|n〉} must be interpreted in terms of photons: say
weakly interacting two-photon states, or possibly as bound states of photons. The latter
interpretation may seem strange but is possible in compact electrodynamics. In non-
Abelian theories (to be discussed shortly), such states are called glueballs.

Here we shall focus on the correlator of Polyakov loops, which carries interesting
information on the long distance dynamics of the theory. Thus we seek to measure:

〈PL(R) · PL†(0)〉

as a function of R = x (or | �R| in more than two dimensions). This correlator is equivalent
to a Wegner loop (also referred to as a Wilson loop) that is of extent R×T where T = L.
This follows because the Wilson loop can be written as

WL(R, T) = PL(R) · L(R → 0, T) · PL†(0) · L(0 → R, 0)

where L(R → 0, T) means the product of link variables from x = R to x = 0 at time T .
But

L(0 → R, 0) = L(0 → R, T)

because of the periodic boundary conditions, and

L(0 → R, T) = L†(R → 0, T).

Finally the theory is Abelian (which means that group elements commute) so the
temporal portions of the Wilson loop cancel, leaving the correlator of Polyakov loops.

This is an interesting observation because the Wilson loop can be related to the
interaction energy of static electrons, V (R):

〈WL(R, T)〉 = exp(−V (R)T) (24.62)
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as T becomes large (Kogut, 1979). Notice that Wegner’s area and perimeter laws apply
to the same matrix element and therefore carry strong implications on the nature of the
static interaction. These will be discussed in more detail shortly.

Maxwell’s equation in two dimensions imply that the interaction of a very heavy
electron and a very heavy positron is:

V (R) = e2

2
R.

The unusual R-dependence arises because electromagnetic flux cannot spread out in a
single spatial dimension. Alternatively, dimensional analysis shows that the charge e has
units of energy and thus a linear potential between static particles must arise. Notice that
we have not defined the coupling e! This happens in a few paragraphs.

The Polyakov loop correlator for β = 6.0 is shown in Figure 24.9. Because this is a
log plot, the straight line for small r reveals that the interaction is indeed linear in r. The
line is a fit of the form:

1
2

[exp(−σ r T)+ exp(−σ(L − r)T)]

where the second term is required by the periodic boundary conditions and T is the
temporal extent of the lattice. The coefficient of the linear potential has been dubbed σ ;
this is referred to as the string tension, and is a quantity of high interest in the Standard
Model.

The results of Figure 24.9 were obtained with T = L = 10, which is a fairly small
lattice. This choice is forced on us because the exponential decay of the correlator implies
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Figure 24.9 Static potential for 2d U(1) gauge theory at β = 6.0. The fit is shown as a line.
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Figure 24.10 String tension for 2d U (1) gauge theory. The exact result is shown as a line.

that it is extremely difficult to obtain for large L. In fact, even for L as small as 10, we
evaluated the correlation function with 32 million configurations (recall that only a few
hundred were required for the average plaquette!). It turns out that smaller values of
β yield larger slopes so that even these statistics were incapable of obtaining reliable
correlators. In the case of β = 1.0 we were forced to run on a tiny lattice of size L = 6.

The fit yields the result σ(6) = 0.21076(7). Repeating this exercise for a collection of
couplings gives the string tension shown in Figure 24.10. These results can be compared
to the analytic result

σ = log
I0(β/2)
I1(β/2)

which is shown as a line in the figure.

24.4.4 The continuum limit

Interpreting the results just obtained requires that we address the lattice spacing depen-
dence of the coupling, β = β(e0(a)).

If the universe were discrete at a given scale, say 1 fm, then the numerical procedure
is straightforward: one would set a = 1 fm in the code, compute some quantity, compare
the result to an experimental determination of the same quantity, and thereby determine
β(a). All other computations then become predictions of the theory. In fact, this is
precisely the procedure followed for statistical mechanical or condensed matter systems.

This simple program is disrupted in the case of quantum electrodynamics (and in the
rest of the Standard Model) because there is no evidence of granularity in the universe
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down to scales of 10−18 m or lower. There are two possible ways in which the physics
can play out:

1. theoretical predictions are insensitive to the scale a as this scale becomes very small;

2. theoretical predictions retain a dependence on a, however the effects of this
dependence are suppressed by powers of a. The theory must be modified once
it probes physical scales of order a.

Theories that follow the first option are called renormalizable, whereas those that follow
the second are called effective.

Our U (1) lattice gauge theory is renormalizable, and hence it is possible to sensibly
consider the continuum limit (at this point the reader may want to re-read Section 8.4 on
universality and the renormalization group). Of course, in practice this must be carefully
obtained by considering a series of measurements at various lattice spacings a. Recall
that this dependence is implemented indirectly via the value of the coupling β.

Although we did not state it, the results from the Polyakov loop correlator have been
presented in lattice units. Thus R, T , and σ are all dimensionless. Let us call them R̂, T̂ ,
and σ̂ to emphasize this fact and retain R etc for quantities with units.

The lattice interaction we obtained can be written as

V̂ (R̂,β, a) = σ̂ (β)R̂.

Thus

V (R,β, a) = V̂
a

= σ̂ (β)

a2 R.

We appear to have run into a problem: the interaction diverges as the lattice spacing
is taken to zero! This nonsensical result is avoided by recalling that:

β = 2

e2
0(a)

.

Thus it is possible to tune the behavior of the bare coupling, e0, so that a sensible
interaction arises. In fact this can be achieved simply by setting

e = e0

a
.

This can be seen with dimensional analysis: β, and therefore e0, has no units, but the
coupling in two-dimensional QED has units of energy.
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It is now possible to define a sensible continuum limit of the lattice model. Namely
one defines:

V (R, e) = lim
a→0

V (R,β(a), a) = 1
2

e2 R (24.63)

with

β(a) = 2
e2a2 .

Notice that the divergence that was in the interaction has been transferred to the coupling.
This is fine: bare couplings cannot be measured, only renormalized ones such as in
Eq. 24.63.

Scaling windows

In general determining the renormalized theory is not as simple as presented here (if you
want to be fancy, you can say that the simplicity is because two-dimensional quantum
electrodynamics is superrenormalizable). The normal procedure is set β to some
value, measure a lattice observable and adjust a so that theory and experiment agree.
Repeating this for various β then traces a trajectory β = β(a) such that physics remains
the same.

In practice this procedure cannot be implemented over arbitrary values of β because
the lattice becomes incapable of accurately representing physics. Thus, too large a
coupling implies a small lattice spacing and a lattice volume that is too small to contain
the observable of interest (say, a proton). Alternatively, too small a coupling forces a large
lattice spacing which is too coarse to accurately reproduce the observable of interest. The
sweet spot in the middle in which physics is accurately reproduced is called the scaling
window. Employing larger lattices increases the size of the scaling window at the expense
of more difficult Monte Carlo computations.

24.5 SU(2) Gauge theory

It is instructive to compare the generating functionals for Z2 and U (1) gauge theories
(see Eqs. 24.42 and 24.55). You will see that the forms are identical, the only differences
are in the interpretation of the coupling and in the link variables. In the first case they are
elements of the group Z2 and in the second they are elements of the group U (1). This
powerful observation was exploited by Yang and Mills (1954) to obtain new field theories
that were soon to find application in the description of the weak and strong forces. In
particular, Yang and Mills considered non-Abelian gauge theories where link variables
(or gauge fields) transform as elements of a non-Abelian group (or algebra), such as
SU (N). This is the group of N × N unitary matrices with a determinant of unity. The
nomenclature “non-Abelian” refers to the fact that group elements do not commute.
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The generalization of gauge theory to non-Abelian groups presents no special
difficulties (there were substantial difficulties to overcome in the analytic treatment of
these theories, but that is not our concern). To illustrate, we consider SU (2), the special
unitary group of 2×2 unitary matrices. The generators of the group will be familiar to
you as the Pauli matrices of spin physics that we labored over so much in Chapter 22.

A general element of SU (2) can be written in terms of three real numbers �ω as:

a(ω) = exp
(

i �ω · �σ
2

)
= 11 cos

ω

2
+ iω̂ · �σ sin

ω

2
. (24.64)

As with U (1), employing this representation requires the computation of many trigono-
metric functions and it is faster to use a linear representation:

a = 11 a0 + i �a · �σ , (24.65)

where the four numbers ai are subject to the constraint:

a2 ≡ a2
0 + �a · �a = 1. (24.66)

The generating functional is a slight generalization of the expression given in
Eq. 24.55:

Z =
∫ ∏

nμ

dL(n,μ) exp

⎛

⎝ β

N

∑

�=n,μ<ν

Re Tr L�

⎞

⎠ . (24.67)

U (1) link variables are replaced with SU (N) link variables; a trace over plaquettes must
be taken, and the coupling is defined as:

β = 2N

g2
0

. (24.68)

With these definitions the continuum limit of the Euclidean lattice action is:

S = −1
2

∫
dDx Tr FμνFμν .

with

Fμν = σ a

2
(∂μAa

μ − ∂νAa
ν − g0ε

abcAb
μAc

ν)

for SU (2). Notice that there are now three gauge fields. After some manipulation, these
correspond to the W± and Z0 bosons of the weak force.
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The Haar measure

The remaining piece to be defined in the generating functional is the measure. In general
one seeks to integrate over the group manifold. If one defines a group element in terms
of a set of parameters a( �ω) then this is defined by the group metric

Mij = Tr
(

a−1 ∂a
∂ωi

a−1 ∂a
∂ωj

)

as
∫

dL ∝
∫

d �ω |detM|1/2.

This is referred to as the Haar measure (Creutz, 1983).
The formalism is rather simple when applied to our four-component representation

of SU (2) elements:

∫
dL =

∫
d4a
2π2 δ(a2 − 1). (24.69)

24.5.1 Implementation

Heat bath updates

Surprisingly, the heat bath algorithm can be applied to SU (2) gauge theory following the
same tricks as used in U (1) gauge theory (Creutz, 1983). We seek to draw new elements
of SU(2) according to the local conditional probability:

dp(L) ∝ exp
(
β

2
Tr(L · S)

)
(24.70)

(traces of SU (2) matrices are real) where S is the traditional sum over staples associated
with the link L. As with U (1), a sum of SU (2) matrices is proportional to an SU (2)
matrix:

S = k · U (24.71)

with k2 = det S. Now one changes variables to W = L · U :

dp(W ) ∝ exp
(
β

2
kW
)

= exp(βka0)
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where we have used Eq. 24.65 to evaluate the trace of the matrix W . Thus:

dp(W ) ∝ d4a δ(a2 − 1) exp(βka0)

= da0 dâ (1 − a2
0)

1/2 exp(βka0).

Since most of the variation in the probability density is carried by the exponential it is
convenient to set z = exp(βka0). We obtain:

dp(z) ∝ dz

(

1 − log2(z)
β2k2

)1/2

.

The strategy is then to draw z uniformly in the domain [exp(−βk), exp(βk)] and use
rejection to realize dp(z). Finally, the rest of the group element is determined by choosing
a random direction for â and the new value for the link is set to be:

L → L′ = W (a) · U−1.

Microcanonical updates

As we have discussed in Section 24.2.1, autocorrelation can be significantly reduced
with microcanonical updates. In the case of SU (2) a particularly simple algorithm due
to Creutz (1987) exists: one simply replaces link variables

L → L′ = Ŝ† L† Ŝ† (24.72)

where

Ŝ = S
k

is the projection of the staples with respect to the link L onto SU (2). It is easy
to verify that this transformation preserves the action (because Tr(a†) = Tr(a) for
SU (2)). Because this transformation is symmetric and perfectly action preserving, it
is always accepted, making it especially efficient. Subsequent numerical results will be
obtained with an update protocol that alternates between heat bath and microcanonical
updates.

Code

We choose to work in four dimensions in the following. Thus indexing for the lattice
array is written as:

int I(int i1, int i2, int i3, int i4, int mu) {
// indexing for 4d lattice 0:L-1 and mu 0:3
return (((i1*L+i2)*L + i3)*L + i4)*4 + mu;

}
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The class that defines the requisite SU (2) algebra is identical to the U (1) class in
structure—the essential differences are in the implementation of group multiplication
and inversion:

SU2 inv() {
SU2 b(a0,-a1,-a2,-a3);
return b;

}

and

SU2 SU2::operator*(const SU2 & other) {
double c0 = a0*other.a0 - a1*other.a1 - a2*other.a2 - a3*

other.a3;
double c1 = a0*other.a1 + other.a0*a1 - a2*other.a3 + a3*

other.a2;
double c2 = a0*other.a2 + other.a0*a2 + a1*other.a3 - a3*

other.a1;
double c3 = a0*other.a3 + other.a0*a3 - a1*other.a2 + a2*

other.a1;
return SU2(c0,c1,c2,c3);

}

24.5.2 Observables

As usual, we test the code by computing the average plaquette. Results are shown in
Figure 24.11. These were obtained on a lattice of size 84 with very few configurations.
A small lattice such as this suffices to obtain the average plaquette quite accurately
because the plaquette is an “ultraviolet” quantity, meaning that its size approaches zero in
the continuum limit. Furthermore, few lattice configurations are required because each
lattice contains 6L4 plaquettes that are summed to obtain the estimated average. The
figure also shows the small and large coupling perturbative results:

〈�〉 = β

2
small β

and:

〈�〉 = 2 − 3
2β

large β.

SU(2) string tension and confinement

We now turn to consideration of the string tension for SU (2) pure gauge theory. Recall
that this has the interpretation of a linear potential between static charges in U (1) gauge
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Figure 24.11 Average plaquette for 4d SU (2) gauge theory.

theory in two dimensions and is the coefficient of the area law for Z(2) gauge theory
(of course, the linear static potentials are also area laws). An interaction energy that rises
linearly with distance is termed a confinement potential because it implies that opposite
charges require infinite energy to separate them asymptotically far. This behavior
is not unexpected in two-dimensional electrodynamics since the Coulombic field is
necessarily confined to a one-dimensional tube. Somewhat confusingly, confinement
also occurs in four-dimensional lattice electrodynamics, which definitely does not agree
with experience. The resolution to this conundrum is that a phase transition occurs
and the continuum limit of the theory lies on the side of the transition where the string
tension is zero. In effect, confining compact electrodynamics evolves into nonconfining
noncompact electrodynamics as the continuum is approached.

We seek to explore this same behavior for the case of non-Abelian SU (2) gauge
theory, and, in particular, discover if SU (2) gauge theory confines in the continuum
limit. We choose to find the string tension by evaluating the Wilson loop, which is
expected to behave as in Eq. 24.62 for large T . The interaction is best parametrized as a
combination of a weak coupling Coulombic term and a strong coupling linear interaction.
Thus we write:

V (R) = σR − α/R + C. (24.73)

Notice that this is a simple sum of Wegner’s area and perimeter laws.
The strong coupling (small β) expression for the Wilson loop is given by:

〈WL(R, T)〉 = 2
(
β

4

)RT

. (24.74)
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Thus in this limit the string tension is given by:

σ = − log
(
β

4

)
, (24.75)

which is useful for code verification.
Obtaining decent estimates of Wilson loops is not difficult if the loops are not too

large and the lattices are small. For small β the linear dependence of the static interaction
is nearly exact and thus only a few values of R and T are necessary to extract the string
tension. We are thus able to obtain the string tension on lattices of size 104 or smaller
with only a few hundred configurations. For larger couplings extracting the string tension
becomes tougher because the Coulombic interaction begins to become important and
larger loops are required to accurately extract the linear term. Useful strategies are to
perform a two-dimensional fit of the Wilson loop to exp(−σ RT −α(T/R)+CT), make
a one-dimensional fit in the variable RT , or to make a one-dimensional fit of 〈WL(R, R)〉
to exp(−σ R2 − α + CR).

Results from the second and third methods are presented in Figure 24.12. These
were generated on a 104 lattice and were confirmed on a 144 lattice. The string tension
obtained from the second method is plotted as crosses with error bars. Notice that
they follow the perturbative behavior (dotted line) very closely for β � 2.0. After this
point the string tension obtained with this method disagrees with the third method
(which is disconcerting, but is an indication that sometimes numerical work devolves
into something of an art). Results for the third method are shown as solid squares for

0.01

0.1

1

0 0.5 1 1.5 2 2.5 3 3.5

σ

β

Figure 24.12 String tension for 4d SU(2) gauge theory. Solid line: renormalization group scaling.
Dotted line: perturbative expression. Solid points: fit to WL(R, R) for L = 10. Open points: fit to
WL(R, R) for L = 14. Crosses: fit to WL(R, T) for L = 10.



884 SU(2) Gauge theory

L = 10 and open squares for L = 14. As can be seen, these agree quite well, indicating
that finite size effects are under control.

Argue that the second fitting method should work well for small β and the third
should work better for β in the scaling region.

Extracting the continuum limit from these results follows a similar path as that used
above for U (1) gauge theory except that the formalism must be generalized. As before,
we have computed

V̂ (R̂, g0, a) → σ̂ (g0)R̂, large R

and we identify

a2σ = σ̂ .

The dependence of the bare coupling on the ultraviolet cutoff is chosen to keep σ

constant thus one must have the renormalization group equation:

a
d
da

σ = a
d
da

a−2σ̂ = 0.

Or
(

a
∂

∂a
+ a

dg0

da
∂

∂g0
− 2
)
σ̂ = 0. (24.76)

The derivative appearing in the second term can be evaluated in the weak coupling
limit (which corresponds to the continuum limit). This is traditionally defined in terms
of the renormalized coupling g rather than the bare coupling g0 and is called the beta
function (not our β!). For pure SU (N) gauge theory it is given by:

β(g) = a
∂g
∂a

= − 1
(4π)2

11
3

Ng3 − 1
(4π)4

34
3

N2g5 + O(g7) ≡ β0g3 + β1g5 + O(g7).

(24.77)

Applying the renormalization group idea to the renormalized coupling gives the relation-
ship (Creutz, 1980)

a
dg0

da
= −β0g3

0 + . . . .
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We can now solve Eq. 24.76 to obtain:

σ̂ = a2F

(

a exp

(∫
dg0

β0g3
0

))

= a2F
(

a exp
(

3π2

11
β

))

where F is an unknown function. But σ̂ is a2σ so the argument of F must be constant
and the dimensionless string tension must be given by:

σ̂ = exp
(
−6π2

11
β

)
· const.

This is plotted as a solid line in Figure 24.12; the normalization constant was fit to the
data and is approximately

exp
(

12π2

11

)
.

The agreement of the renormalization group result with the lattice result indicates that
the scaling window is in the range of approximately β ∈ (2.0, 2.5) for lattices of size 104

or so. Most importantly, this agreement implies that the continuum limit can be attained
on the lattice with no intervening phase transition. Thus the confinement that exists in
the strong coupling limit also exists in the continuum limit, and hence is a property of
nature. Creutz’s 1980 lattice study of SU (2) pure gauge theory was the first to establish
this central feature of the Standard Model.

The phases of Gauge theory

Thus far we have seen two ways in which lattice gauge theories can manifest in the
continuum limit: as a confining theory, or as theory without confinement. In general
there are three possibilities, listed here

confinement phase a mass gap exists and the Wilson loop obeys the area law.

Higgs phase a mass gap exists and the Wilson loop obeys the perimeter law.

Coulomb phase there is no mass gap and the Wilson loop obeys the perimeter law.

These mass gaps are defined in the pure gauge theory and therefore can be interpreted
as the mass of the gauge boson. The three phases map directly to Standard Model
phenomenology: the strong interaction manifests in the confinement phase, while elec-
tromagnetism does so in the Coulomb phase. The “Higgs phase” refers to the famous
construction of gauge field theories with massive gauge bosons which are required to
explain the weak force.

These phases collapse to two possibilities when the Higgs field transforms in the
fundamental representation of the gauge group because the Higgs and confinement
phases are smoothly connected (Fradkin and Shenker, 1979). In fact, Elitzur’s theorem
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implies that the Higgs field cannot take on a nontrivial vacuum expectation value. Since
the Standard Model does indeed place the Higgs field in the fundamental representation,
the usual textbook development of the Higgs mechanism is flawed, and the phenomenon
must be investigated in far more detail.

Practical observables

The computations presented in this chapter make it appear that obtaining statistically
meaningful results is a simple matter of generating sufficiently many field configurations.
We feel compelled to inform the reader that this convenient situation is rarely seen
in practical lattice gauge computations. In particular, measuring physical observables
such as glueball masses, can be extremely difficult. Thus, for example, the plaquette-
plaquette correlation function can access the JPC = 0++ glueball mass. But attempting
to do this will simply introduce the numericist to persistent and frustrating noise. Some
reflection reveals the problem: a glueball is a physical entity with extent of order one
fermi, whereas a plaquette is an ultraviolet operator that disappears as the continuum is
approached. Thus the plaquette has negligible overlap with the physical glueball (look
at the coefficient in Eq. 24.32 or Eq. 24.61). Bashing at the problem with configurations
will not be sufficient to overcome a poor overlap in all but the simplest of cases.

Because of this, lattice physicists expend great care in choosing operators that have
good overlap with the physical objects that they wish to measure. Thus, in the case of
glueballs, it is important to construct gluonic operators with a size of roughly 1 fermi.
An elegant way to achieve this is with link smearing in which “skinny links”, L(x,μ),
are replaced with “fat links”, Leff (x,μ). An automatic way of achieving this is explored
in Exercise 14.

24.6 Fermions

The presentation so far has ignored a rather important portion of the universe, namely
the fermions that comprise matter. This is not an accident, as incorporating fermions in
a stochastic formalism is a notoriously difficult task.

Grassmann fields

As with bosons, fermions are represented by classical fields that serve as variables of
integration in the path integral. However, since fermions anticommute, these fields are
written in terms of Grassmann numbers that behave peculiarly (Berezin, 1966):

ηξ = −ξη.

Not surprisingly, this is a disaster for evaluating the probabilities that underpin stochastic
methods.

The resolution to this problem is both straightforward and unfortunate (for reasons we
will expand on below). Namely, all fermions in the Standard Model appear quadratically
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in the action, and hence can be explicitly integrated using the Grassmann Gaussian
integral:

∫
Dψ̄Dψ exp(−ψ̄Mψ) = det(M). (24.78)

We follow this approach as well.

Euclidean fermions

Our immediate goal is to obtain the matrix M of Eq. 24.78 in Euclidean space. The
starting point is the Minkowski action:

∫
dDx ψ̄(i /D − m0) ψ

with Dμ = ∂μ + ie0Aμ.
Following the same rules as before for the temporal derivative and for the vector

potential, the covariant derivative becomes:

Dμ = (iD4
E ,− �DE).

The Euclidean version of the Dirac matrices is defined via

γ μ = (γ 0
, �γ ) = (γ 0

E , i �γE).

Notice that this implies that

{γ μ
E , γ ν

E } = 2δμν .

Putting it together gives

i /D = −(γ 4
E D4 + �γE · �DE)

and the fermionic part of the Euclidean path integral becomes

∫
Dψ̄ Dψ exp

(
−
∫

d4xEψ̄(γ
μ
E Dμ

E + m0)ψ

)
. (24.79)

We drop the subscripts henceforth.
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Discretization

If we ignore the gauge fields for the moment, placing the action on a lattice simply
involves discretizing the derivative:

∂μψ(x) → 1
2a

(ψn+aμ̂ − ψn−aμ̂).

As usual, we will refer to aμ̂ as μ in the following. At this point one might think that using
the central difference is as good as the forward or backward difference; however, the latter
two are not hypercubic symmetric and hence would not yield the correct continuum limit
without tedious tuning.

The full expression for the free fermionic action reads:

aD
∑

nμ

1
2a

(ψ̄nγμψn+μ − ψ̄n+μγμψn)+ m0aD
∑

n

ψ̄nψn. (24.80)

The matrix M is then (rescaling a bit):

Mnm = am0δmn +
∑

μ

1
2
γμ(δm+μ,n − δm−μ,n).

If we generalize for the moment to SU (N) theory on an LD lattice this is an enormous,
but sparse, matrix of size 4NLD × 4NLD!

Fermion doublers

It is useful to evaluate the free fermion propagator as we did for the scalar field in
Section 24.2. The result is

〈Tψ̄(x) ψ(y)〉 =
∑

k

cos(k · (x − y))
am0 + i

∑
μ γμ sin(akμ)

(24.81)

which has a pole at

aE = sinh−1
√

a2m2
0 +

∑

i

sin2(api). (24.82)

This result is very similar to that for the scalar field (Eq. 24.18) and obeys the continuum
dispersion relation E2 = �p2 +m2

0 as desired. Nevertheless, the minor differences in form
have a major impact: because of the missing factors of two, there is an additional pole in
the propagator at pi = π/a. This means that there is effectively an additional identical
fermion in the spectrum along each direction, and therefore a total of 16 identical
fermions in four dimensions. The 15 extra fermions are called doublers and are a generic
and serious problem with the lattice formulation of the Standard Model.
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When Wilson first formulated quantum chromodynamics on the lattice he solved the
doubler problem by adding a term to the dispersion relation that moves the doubler poles
to O(1/a) while at same time not affecting the continuum limit. Wilson’s term was:

r
∫

ψ̄ a∂2 ψ

where r is an arbitrary dimensionless constant. The result is called a Wilson fermion.

Chiral symmetry

The Wilson prescription does great damage to the theory when fermions are massless.
In this case the continuum theory is symmetric under a chiral transformation:

ψ → exp(−iγ5θ)ψ

where

γ5 = γ1γ2γ3γ4.

The discrete action is also symmetric under this transformation; however the Wilson term
explicitly breaks chiral symmetry. This is problematic because the electroweak sector of
the Standard Model is a chiral gauge theory in which left-handed and right-handed
fermions behave differently. The Wilson prescription couples these two types of fermions
and therefore mixes up the chirality properties of the weak interaction.

The practical implication of this is that it was possible to place quantum chromody-
namics on the lattice, but not the electroweak theory. Fortunately, in the past few decades
this problem has been solved with the development of domain wall and overlap
fermions which implement chiral fermions on the lattice, although at great computational
expense (Jansen, 1996; Giusti, 2003). In the following we focus on non-chiral gauge
theories, which allows us to press ahead with Wilson fermions.

Interacting fermions

The free action of Eq. 24.80 is clearly not gauge invariant. A natural way to make it so
is to connect the fermion fields that appear at different sites with a link variable. Thus
Eq. 24.80 is replaced with:

S = aD
∑

nμ

1
2a

(ψ̄nγμL(n,μ)ψn+μ − ψ̄n+μγμL†(n,μ)ψn)+ m0aD
∑

n

ψ̄nψn +

+raD
∑

nμ

1
2a

(2ψ̄nψn − ψ̄nL(n,μ)ψn+μ − ψ̄n+μL†(n,μ)ψn). (24.83)

In fact this simple procedure reproduces the desired continuum limit, as substituting
L(nμ) = exp(ieaAμ(x+μ/2)) and expanding reveals. The end result is a fermionic matrix
M(L) that appears in the Wilson action and is ultimately integrated out using Eq. 24.79.
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24.6.1 Fermionic updating

Integrating the fermionic portion of the generating functional yields:

Z =
∫

DA detM(A) exp(−SA) =
∫

DA exp(−SA + Tr logM(A))

where we have reverted to continuum notation. A Metropolis update thus relies on an
update probability:

p(A → A′) = exp
(
�SA(A → A′)

) · detM(A′)
detM(A)

.

The determinants in this expression make the probability extraordinarily difficult to
compute. In fact, for several decades this difficulty was sufficient to induce the entire
field to avoid the determinant by setting it equal to unity. This drastic step was called
the quenched approximation but is actually not an approximation because it ruins
the causal structure of the field theory. More recently a number of strategies have been
successfully employed to account for the fermionic part of the action.

The simplest approach is to rely on the fact that gauge variables are typically updated
locally (i.e., a link at a time) and therefore only a small portion of M(A) changes. This
can be leveraged to directly evaluate the ratio of determinants.

Alternatively, the ratio of determinants can be re-written in terms of a complex scalar
field as

detM(A′)
detM(A)

=
∫

Dφ∗ Dφ exp(−φ∗ M(A) φ)
∫

Dφ∗ Dφ exp(−φ∗ M(A′) φ)
.

One can store 〈M(A)〉 = detM(A) and compute the denominator in terms of the change

detM(A′) = 〈�M〉 + 〈M(A)〉.

This yields the ratio of determinants and the value of 〈M(A′)〉 for the next update step.
Notice that �M is local and therefore only a few bosonic sweeps should suffice to
determine 〈M(A′)〉 accurately.

Hybrid Monte Carlo

The nonlocal nature of the effective action that fermions introduce represents a serious
problem for Monte Carlo techniques. What is needed is a method to update the entire
lattice with reasonable acceptance rates. A way forward (as discussed in Section 18.3.3)
is provided by the observation that the expectation value of operators in canonical
ensembles are equivalent to expectation values in microcanonical ensembles if the energy
is fixed by the temperature, and these are given by time averages over trajectories
(Callaway and Rahman, 1982):
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〈O〉(β)can →
thermo

〈O〉(E = E(β))micro →
ergodic

lim
τf →∞

1
τf

∫ τf

0
dτ O(ϕ(τ)). (24.84)

The degrees of freedom in the action are represented generically as ϕ here and in the
following discussion.

This relationship has the important implication that methods we have studied in
Chapter 18 can be applied to quantum field theory. Thus, for example, the Langevin
method can be applied to an action S[ϕ] if a fictitious time τ is introduced (Parisi and
Wu, 1981). In this case new configurations are generated with the aid of random variables
η̂ as (discrete indices on ϕ are suppressed):

ϕ(τ + h) = ϕ(τ)− 2h
∂S

2 ∂ϕ
+√

2h η̂, (24.85)

with η̂ chosen from a Gaussian distribution:

p(η̂) = 1√
2π

exp(−η̂2/2). (24.86)

Alternatively, one can employ molecular dynamics methods directly if a fictitious time
and fictitious momenta are introduced (Callaway and Rahman, 1982). In this case the
expectation value of an operator is given by:

〈O〉 = 1

Z̄

∫
DπDϕO[ϕ] exp(−βH[π ,ϕ]) (24.87)

where Z̄ is the usual normalization and the fictitious Hamiltonian is given by:

H = 1
2

∑

i

π2
i + S[ϕ]. (24.88)

Eq. 24.87 holds, of course, because the path integral over momentum cancels between
numerator and denominator.

As with the Langevin approach, Eq. 24.84 permits computing expectation values
by following the relevant operator over its trajectory, in this case, as computed with
Hamilton’s equations of motion.

It is instructive to compare the molecular dynamics and Langevin approaches. In
particular, the analogue of Eq. 24.85 is (we employ the symmetric discretization of ϕ̈

and use ε as the temporal step size):

ϕ(τ + ε) = ϕ(τ)− ε2 ∂S
2 ∂ϕ

+ επ(τ) (24.89)
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with:

π(τ) = 1
2ε

(ϕ(τ + h)− ϕ(τ − h)).

Thus the methods are related by the mapping 2h ↔ ε2 and η̂ ↔ π . It is evident that
molecular dynamics method explores phase space much more rapidly than the Langevin
method when similar temporal spacings are used. On the other hand, the Langevin
method will probe the local environment more closely.

In 1985 Duane (1985) suggested combining the merits of the two approaches by
running a molecular dynamics simulation while occasionally choosing the momenta
randomly from a Gaussian distribution. While successful, Duane’s method suffers from
a problem shared by the Langevin and molecular dynamics approach, namely a temporal
step size dependence exists. This is a serious issue because lattice gauge computations
tend be exceptionally costly, hence performing many of them to permit extrapolation in
the temporal spacing is to be avoided if at all possible.

Remarkably, this problem can be overcome by combining everything with occasional
Metropolis updates (Scalettar, 1986). A generic algorithm achieving this follows.

initialize ϕi

loop

generate π according to its Gaussian pdf

compute π ′
i = πi − ε

2
∂S[ϕ]
∂ϕi

call the initial configuration (π ,ϕ)

iterate
ϕi(τ + ε) = ϕi(τ )+ επ ′

i (τ )

π ′(τ + ε) = π ′(τ )− ε
∂S[ϕ]

∂ϕi(τ+h)
end iterate

call the final configuration (π̃ , ϕ̃)
accept the final configuration with probability

min(1, exp(−βH[π̃ , ϕ̃])+ βH[π ,ϕ]))

continue with either ϕ or ϕ̃

end loop
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Notice that leap-frog updating is used for the molecular dynamics portion of the
algorithm.

If the equations of motion were integrated exactly then H would be constant along a
molecular dynamics trajectory and the configuration would always be accepted by the
Metropolis test. This is not possible because of the finite temporal step size; however,
the Metropolis test eliminates the error induced by the step size dependence (Duane,
1987)! Thus a combination of Langevin, molecular dynamics, and Metropolis updating
succeeds in combining the superior elements of all methods. The result is called hybrid
Monte Carlo. This forms the state of the art when combined with methods for updating
fermionic determinants discussed above.

24.7 Exercises

1. [T] Wilson Fermions.
Confirm that the dispersion relation for a free Wilson fermion behaves as expected.
What is the O(a) correction to the fermion energy? What is the coefficient of the
O(1/a) term in the doubler mass?

2. U (1) String Tension.
Obtain the string tension for compact U (1) gauge theory in four dimensions as a
function of β. You should find a phase transition near β = 1. Compare your results
to the high temperature expansion σ = − log(β/2)+ β2/8.

3. Z2 String Tension.
Obtain the string tension for two-dimensional Z2 theory. Is there a phase transition?
The high temperature expression for the string tension is σ = log tanh(β).

4. [T] The Hopping Parameter.
Rescale free φ4 theory so that:

S =
∑

m

φ2
m + κ

∑

mn

φmφn.

Show that in the continuum limit the hopping parameter κ goes to unity at a rate
that depends on the bare mass.

5. Mass Gap and Correlation Length.
Study the mass gap for three-dimensional φ4 theory as a function of κ for g = 0.4.
How does the mass gap behave near the critical coupling? Discuss this behavior in
light of the correlation length.

6. Z2 Polyakov Loops.

a) Obtain the average Polyakov loops in two-dimensional Z2 theory as a function
of β using cold starts.

b) Repeat with hot starts. Explain the observed behavior.

c) Use hysteresis to evaluate the Polyakov loop. Check Section 20.3 if this is unfa-
miliar.
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7. Random Gauge Transformations.
Local gauge transformations leave physics and observables invariant. This provides
a powerful test for code.

a) Write code to evaluate the plaquette in SU (2) gauge theory in four dimensions.

b) Implement a random gauge transformation over the entire lattice. The relevant
formula is Eq. 24.51, where g(x) is a random element of SU (2). You can generate
this by selecting aμ ∈ (−1, 1), rejecting sets with a2 > 1, otherwise normalize a2

to unity and accept. Making two transformations at a given link is awkward so in
your routine you should replace Eq. 24.51 with the following operation:

L(x,μ) → g(x)L(x,μ)

L(x − μ,μ) → L(x − μ,μ)g†(x).

Confirm that this is equivalent to the original formulation of the gauge transfor-
mation.

c) Compute the value of a particular plaquette in a particular gauge configuration,
make the random gauge transformation, recompute the plaquette and confirm
that the new value agrees exactly with the old one.

8. [T] Temporal Gauge Transformations.
Construct the gauge transformation that makes U (x, t̂) = 1. Apply the transforma-
tion to a Polyakov loop and show that the value of the loop does not change.

9. Two-dimensional U (1) Average Plaquette.
Compute the average plaquette in 2d U (1) gauge theory. Confirm that your results
agree with the exact result of Eq. 24.60.

10. [T] Microcanonical SU (2) Updates.
Confirm that the microcanonical transformation of Eq. 24.72 preserves the action.

11. SU (2) Kennedy-Pendleton Heat Bath.
For values of β that are physically interesting the accept/reject step in the Creutz heat
bath algorithm can experience high rejection rates. Kennedy and Pendleton (1985)
have addressed this issue with the following update algorithm:

compute S = staple and k = √
detS

repeat:
D = −(log(η1)+ log η2 · cos2(2πη3))/(βk)
if (η2

4 > 1 − D/2) goto repeat
a0 = 1 − D
generate â
new link = a ∗ (S/k)−1

All ηi are uniform variates in (0, 1).
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Implement this algorithm and compare its run times to Creutz updating.

12. [T] Langevin Algorithm.
Prove that the Langevin algorithm obeys detailed balance in the limit h → 0 by
considering the probability for making a transition from ϕ to ϕ′. Hint: what must η̂
be for this transition to occur?

13. [P] Hybrid Adiabatic Energy Surface.
The Wilson loop can be used to obtain the ground state interaction between static
fermions:

〈WL(R, T)〉 ∝ exp(−T V (R))

for large T . This potential expresses the lowest energy response of the gauge degrees
of freedom to the source and sink. It is commonly called the �+

g adiabatic energy
surface. The first excited state, called the $u hybrid adiabatic surface, represents
the interaction between the source and sink when the gauge degrees of freedom are
in an excited mode. (The reader may recognize the notation as that for diatomic
molecules.) We explore this structure in pure gauge four-dimensional SU (2)
theory.

a) Use the Wilson loop to obtain the ground potential. Be sure to work in the scaling
window.

b) Obtain the $u surface. To do this we need to form a gluonic state that is
orthogonal to the ground state (and with $u quantum numbers). This can be
achieved by replacing the spatial legs of the Wilson loop with large, asymmetric
staples, as indicated in Figure 24.13. Sum the staples over all the directions
orthogonal to the spatial leg with weights of ±1 depending on whether the staple
moves in the ±ν̂ direction. We recommend going two or three lattice spacings in
the ±ν̂ directions to improve the overlap of the configuration with the physical
state.

Your answer will be similar to that for SU (3) gauge theory. For help consult
Juge (1998).

+

–

+

–

ˆ

ˆ

μ

ν

Figure 24.13 $u link configuration.
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14. [P] SU (2) 0+ and 2+ Glueball Masses.

a) The particle excitations in pure gauge theories are called “glueballs”. Compute
the mass of the JP = 0+ and 2+ glueballs in four-dimensional SU (2) gauge
theory. You can do this by fitting the correlation function

CJ(t) = 〈φ†
J (t)φJ(0)〉

or plotting the effective mass. Use the following for interpolating fields:

φ0(t) = 1
L3

∑

xyz

[
�xy(R; t)+�xz(R; t)+�yz(R; t)

]

and:

φ2(t) = 1
L3

∑

xyz

[
�xz(R; t)+�yz(R; t)− 2�xy(R; t)

]
.

Here �xy(R; t) denotes a spatial loop of extent R × R in the xy plane at time t.
The scale R should maximize overlap with the physical state; choosing it to be 3
or 4 is not a bad idea.

The scalar glueball requires some care since it has the quantum numbers of
the vacuum. Thus you should employ the connected correlator:

C0(t) = 〈φ†
0φ0(0)〉 − 〈φ0(0)〉2.

Since the two terms in C0 are strongly correlated it is advisable to use jackknife
or similar techniques to estimate the error in the 0+ glueball mass.

b) These operators do not have good overlap with physical glueballs, even for
optimal R. As discussed in the text, the problem can be ameliorated by using
“smeared links” which have transverse size. A simple iterative scheme for smear-
ing links is called APE smearing (Albanese, 1987). The algorithm is as follows:

iterate nζ times
L(x,μ) → L(x,μ)+ ζS(x,μ)
project L to SU (2)

end iterate

Here S is the sum of staples with respect to L. The parameters nζ and ζ should
be tuned to optimize the desired signal. We have found that nζ = 8 and ζ = 0.3
do well.

Repeat your calculation of the 0+ and 2+ glueball masses with smeared
operators. Fix the scale by setting the string tension equal to 0.18 GeV2 and
determine the physical glueball masses. Compare your results to (Teper, 1998).
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15. [P] SU (3) Gauge Theory.
We seek to generalize the SU (2) heat bath algorithm to SU (3) gauge theory. The
action is given by Eq. 24.67.

The first task is to find a convenient representation of an element of SU (3). It is
tempting to write a group element in terms of the group generators as we did with
SU (2),

g = exp(i �ω · �T)

where Ti = λi/2 and λi is a Gell-Mann matrix. However, there is no simple
constraint on the determinant of g and this method bogs down. An alternative is
to toss in the towel and simply keep track of 18 real numbers (i.e., 3 × 3 complex
numbers). A middle ground would be to store 12 real numbers that correspond to
the first two rows of g and then reconstruct the third row as:

g =
⎛

⎜
⎝

�a
�b

�a∗ × �b∗

⎞

⎟
⎠ .

The vectors �a and �b must be normalized and mutually perpendicular. As usual the
best choice is dictated by the tradeoff of memory and speed. We note that round off
error accumulates in the group elements and it is useful to periodically project link
variables to unitarity.

The SU (2) heat bath algorithm can be extended to SU (N) by updating in
SU (2) subgroups (Cabibbo and Marinari, 1982). For SU (3) one uses the Creutz
or Kennedy-Pendleton algorithms to update each of:

R =
⎛

⎜
⎝

r11 r12 0

r21 r22 0

0 0 1

⎞

⎟
⎠ , S =

⎛

⎜
⎝

s11 0 s12

0 1 0

s21 0 s22

⎞

⎟
⎠ , T =

⎛

⎜
⎝

1 0 0

0 t11 t12

0 t21 t22

⎞

⎟
⎠

and forms g′ = RST .

a) Compute the average plaquette for four-dimensional SU (3) gauge theory. Com-
pare your results to the large and small coupling expressions:

〈�〉 = β

6
, 〈�〉 = 3 − 6

β
.

b) At what coupling does the Polyakov loop take on a non-zero value?

c) Repeat the finite size scaling analysis of the string tension of Section 24.5.2.
Consult (Cabibbo and Marinari, 1982) for help.
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16. [P] Center Vortex Confinement Hypothesis.
The center of SU (N) is comprised of the elements of that group that commute
with all other elements. This subgroup is isomorphic to the cyclic group ZN that we
have studied earlier. It is easy to convince yourself that multiplying all the links on a
particular time slice by z ∈ ZN is a global symmetry of SU (N) (this has no effect on
spatial plaquettes and yields a factor of zz† in temporal plaquettes. Thus Yang-Mills
theory has a global ZN symmetry.

Notice, however, that the Polyakov loop is not symmetric under this operation;
in particular it transforms to z · PL since only one link in the loop is modified by
the transformation. For this reason the average Polyakov loop serves as an order
parameter of the global ZN symmetry:

〈PL〉 =
{

zero, unbroken ZN ,
not zero, broken ZN .

Interestingly, this observation can be related to confinement because the expectation
value of the Polyakov loop is related to the free energy of a quark:

〈PL〉 = exp(−FqL)

and this is zero when quarks are confined (i.e., their free energy is infinite)
(Greensite, 2011).

ZN transformations are an example of “singular gauge transformations” (which
are not gauge transformations!); namely they can be generated by performing a
gauge transformation that is periodic modulo a ZN phase factor:

L(t, �x, t̂) → g(t, �x)U (t, �x, t̂)g†(t + 1, �x) (24.90)

with g(L, �x) = z∗g(0, �x). For example the symmetry transformation L(t0, �x, t̂) →
zL(t0, �x, t̂) can be achieved by setting g(t, �x) = 1 for t ≤ t0 and g(t, �x) = z∗
for t > t0. Singular gauge transformations are of central interest to the study of
confinement because (in this case) they are associated with D−2 dimensional gauge
field structures called vortices.

It has been postulated that vortices drive confinement (’t Hooft, 1979) because
they are localized field configurations which percolate (Chapter 8!) the lattice. The
argument is quite general and relies on the fact that localized field distributions
contribute independently to the expectation value of the Wilson loop operator, and
hence yield an area law interaction.

Our goal is to test this hypothesis by computing the effect of removing vortices
from lattice field configurations on the string tension in four-dimensional SU (2)
gauge theory. Vortices can be identified by making a gauge transformation that
brings a link variable as close as possible to the center group elements, ±1. This
can be done by maximizing the quantity
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D =
∑

x,μ

[
1
2

trL(x,μ)
]2

over the space of gauge transformations, L(xμ) → L(g)(x,μ). This is called direct
maximal center gauge (Del Debbio, 1998).

The projection onto vortex configurations is then made with the replacement:

L(g)(x,μ) → Z(x,μ) ≡ sgn[trL(g)(x,μ)].

Alternatively, removing vortices from the field configuration can be achieved by
setting:

L(g)(x,μ) → V (x,μ) ≡ Z†(x,μ) · L(g)(x,μ).

The task of minimizing the quantity D is difficult because a large space must be
searched and D[{L(x,μ)}] has many local minima. We therefore recommend mini-
mizing D with the simulated annealing algorithm. The idea is to slowly “cool”
(i.e., lower D) by making Metropolis updates with random gauge transformations.
The (inverse) annealing temperature will be called βA in the following, and we wish
to increase its value as the link variables are updated. An implementation is

loop in βA from a minimum to a maximum value
loop to NA

anneal(βA,Ntouch)
end loop

end loop
// obtain projected and vortex configurations
loop in (x,μ)

Z(x,μ) = 1
if (tr(L(x,μ) < 0) Z(x,μ) = −1
V (x,μ) = Z(x,μ) · L(x,μ)

end loop

The annealing algorithm is

loop in (x,μ)
loop until Ntouch updates are made

select g, a random element of SU (2)
compute δD(L, L(g))

if η̂ < min(1, exp(βAδD))

transform L(x,μ) and L(x − μ,μ)
end if

end loop
end loop
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That there is art in the simulated annealing algorithm is made evident by the number
of parameters that define it. In particular one needs to define the values of βA to
be probed, the number of times to sweep through the lattice at each annealing
temperature (NA), and the number of times a Metropolis update is made at each
site. It is very difficult to run the algorithm and declare that an absolute minimum
has been obtained. We therefore recommend studying the behavior of observables
as a function of NA. Useful values for the parameters are Ntouch = 4; NA = 10,20, or
40; and βA = (1, 2, . . . , 20).

a) Obtain the average plaquette with L, Z, and V configurations.

b) Obtain the Polyakov loop in L, Z, and V configurations.

c) Use the Wilson loop to obtain the static quark interaction in L, Z, and V
configurations. Confirm that the string tension goes to zero when vortices are
removed and that it remains approximately constant when vortex configurations
are used. Compare this behavior to that for the plaquette and Polyakov loop.

17. [P] ZN Gauge Theory with ZN Matter Fields.
The analogue of gauge theory coupled to fermions is pursued in the Z2 gauge model
in this project. The “matter” field will be represented as elements of Z2 that reside
on lattice sites. We call these Sx. The action is defined to be:

S = βM

∑

x,μ

(1 − SxL(x,μ)Sx+μ)+ βG

∑

�
(1 − L�).

This theory is invariant under the gauge transformation:

L(x,μ) → gxL(x,μ)gx+μ, Sx → Sxgx.

We seek to explore the phase diagram for this theory in four dimensions using the
average plaquette and gauge invariant link defined by:

1
6
〈1 − L�〉

and

1
4
〈1 − S · L · S〉

respectively.
The theory has a first order phase transition at βG = log(1+√

2)/2 when βM = 0.
The exact results for the average plaquette and gauge invariant link for βG = 0 are
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2
1 + exp(2βM)

and

1 − tanh4(βM)

respectively. These results will be useful for code verification.
Do your best to determine the phase structure of the theory. You will want to

restrict your investigation to βG ∈ (0, 1) and βM ∈ (0, 0.6). Consult Creutz (1980b)
for help.

18. [P] The Higgs Boson Mass.
The Higgs mechanism is an ideal application of lattice field theory because it couples
a scalar field to an SU (2) gauge boson. We shall consider a Higgs doublet in the
fundamental representation with continuum Minkowski action:

∫
d4x

[
(Dμ�)†(Dμ�)− m2

0�
†�+ λ0(�

†�)2 − 1
4

Fμν
a Fμνa

]

where

Dμ� = [∂μ + ig0
σa

2
Aμ

a ]�

and

Fμν
a = ∂μAν

a − ∂νAμ
a − g0εabcA

μ
b Aν

c .

The lattice version of this is:

S = −β

2

∑

�
L� +

∑

x

[
1
2

trφ†
xφx + λ

(
1
2

tr[φ†
xφx] − 1

)2
]

− κ
∑

xμ

trφ†
x L(x,μ) φx+μ

where λ = κ2λ0, β = 4/g2
0, and

κ = 1 − 2λ

8 + a2m2
0

.

We use the “SU(2)” notation of (Bunk, 1995) to represent the scalar field: if the
original field is defined as
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� =
(

ϕ1 + iϕ2
ϕ3 + iϕ4

)

then

φ = ϕ3 + i�σ · (ϕ2,ϕ1,−ϕ4).

Notice that �†� = trφ†φ/2 = detφ.
Fix parameters to β = 8, κ = 0.131, and λ = 0.0033 in the following. Update as

follows

one gauge heat bath sweep
two scalar heat bath sweeps
one gauge microcanonical update
four scalar microcanonical updates

Allow ten of these between measurements to reduce autocorrelation.
Your task is to measure the Higgs and W gauge boson masses. Use the following

for the Higgs interpolating operator:

H(t) = 1
L3

∑

�x

1
2

trφ†
xφx.

For the W use:

W a
μ(t) =

1
L3

∑

�x

1
2

tr[−iσ aφ†
x L(x,μ) φx+μ].

Use your results and the mass of the W to predict the mass of the Higgs boson. For
more details consult (Bunk, 1995) or (Wurtz and Lewis, 2013).

19. [P] Symanzik Improvement.
The Wilson action is the simplest action that reproduces the required continuum
field theory. It is possible to construct more complicated actions that have better
convergence or improve rotational invariance. This idea was first promoted by
Symanzik (1983) who used it to construct lattice actions that remove subleading
terms in the lattice spacing. In particular, the following action has a lattice spacing
error of order a4, rather than the a2 of the standard Wilson action2:

∑

μ>ν

TrL� → 5
3

∑

μ>ν

TrL� − 1
12

∑

μ>ν

(
Tr��μν + Tr��νμ

)
.

2 More precisely, if the correlation length is ξ the error is reduced from a2/ξ2 log(a/ξ) to a4/ξ4 log(a/ξ).
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The objects in the second term are 1 × 2 plaquettes. Code up and compare the
recovery of rotational invariance in the Wilson loop to that obtained with the Wilson
action. You might want to use Metropolis updating for this project. A detailed study
of the problem can be found in Berg (1985).

..........................................................................................
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binomial distribution
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bit reversal 670
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method 380
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Born-Oppenheimer
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Bose-Einstein
condensation 116

boson 116
W 488
Z 485, 488

bound function 39, 43
boundary condition
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boundary value problem 353
Box-Müller method 212
Bragg peak 509
Breit-Wigner distribution

208, 768
bremsstrahlung 491, 492
Brillouin’s theorem 836
broken ergodicity 724
broken phase 704
built-in datatypes 32
Burger’s equation 689
Butcher tableau 362
butterfly effect 449
byte 31, 32

C++ 3
C++ classes 43
C++ concurrency library 289
C++11 199, 415, 577,

578, 580
C++14 577, 580
C++17 577
c++filt 7
callback function 335, 338
calorimeter 37
camera coordinates 314
canonical transformation

387, 444
capture clause 585
cardiac dynamics 691
Cash-Karp method 381
cast operator 174
catch 25
Cauchy distribution 202, 208
caustic 448
Cayley tree 267, 331, 341, 728
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central difference 644
central limit theorem 211, 227,

272, 743
central processing unit 33,

37, 275
CFL condition 647, 685
Chachiyo correlation

functional 829
Chan’s algorithm 698
charge conjugation 764

charmonia 147, 764
Chebyshef acceleration 663
Chebyshev polynomials 105
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707
chi squared distribution 202
chiral gauge theory 889
class 30

abstract base 415
pure interface 416
template 40

class SU2 881
class accessor 44
class constructor 39
class declaration 39
class instance 39
class interface 39
class method 43
class relationships 406
class scope 160
class template 557
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coefficients 193, 194
client-server architecture 302
closed channel 758
cloud computing 21
cluster algorithm 243, 713
co-moving coordinates 634
coarray fortran 279
coarse graining 260, 270, 271
Coin nodes 315
Coin3d 315
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command line arguments 9
commutation relations 458
compact QED 868
companion matrix 71, 851
compilation error 5
compilation unit 4
compiler 4
completeness relationship 735
Compton scattering 488, 498
Computational Geometry

Algorithms Library 682,
698

conditional stability 394
configuration interaction 809
confinement 898
confinement interaction 765,

882
confinement phase 885

conjugate gradient method 680
const (keyword) 167, 183
constrained dynamics 611
constructor 39
constructor (class) 160
container (Standard

Library) 565
container adaptors 571
container class 566
continued fraction 98
continuity equation 645
convex hull 698
convolution 210
convolution theorem 695
Cooley-Tukey algorithm 670
Cooper pair 116
Cooper pair 817
copy constructor (class) 162
core 275
core-cusp problem 633
correlation coefficient 214, 515
correlation function 254, 607,

727, 853, 896
correlation length 253, 705,

893
correlation matrix 855
cosmological concordance

model 619
Coulomb phase 885
coupled channel scattering 757
covariance matrix 214, 515
CPU 33, 37
Cramér-Rao bound 512
Crank-Nicolson algorithm 648,

651, 654
Creutz heat bath 879
critical exponent 255, 705
critical slowing down 710
critical temperature 704
cross section 488
cubic spline 90
cumulative chi-squared

distribution 215
CVS 21

damped harmonic
oscillator 344, 398, 438

dark matter 619
data container (Standard

Library) 565
data parallel model 279
data stack 289
debugger 26
default template argument 563
Delauney triangulation 682
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delta ray 485
dendrite 726
density effect 504
density functional theory 824
density waves 619
deque 568
destructor (class) 165
detailed balance 222,

715, 895
deuteron 147
diagonalization-variational

method 735
differencing 644, 846
diffusion 259
diffusion equation 846
Dirac matrix 887
Dirac matrix 472
Dirac spinor 470–3
Dirac spinor 467
direct interaction 810
direct maximal center

gauge 898
Direct3d 315
Dirichlet boundary

conditions 644, 658
disease dynamics 400, 688
disk galaxy 633
displacement operator 654
dissociation energy 822
DNA 629

stacking potential 629
domain wall fermion 889
double Compton

scattering 500
double pendulum 399
Duffing oscillator 450
dynamic type 413

eclipse 4
editor 4
Edwards-Anderson model 724,

729
effective field theory 876
EGS 494
Eigen 54, 680
electromagnetic shower 493
electroweak theory 889
Elitzur’s theorem 859
elliptic differential

equation 644
encapsulation 30, 38, 43
energy drift 383
engine (coin) 335
EPR Paradox 503
equipartition theorem 596

ergodicity 222, 426, 851
broken 724

Euclidean time 231, 846, 866
Euler angles 456, 479
Euler method 359
Euler parameters 456
Euler-Cromer method 388,

393, 439
Euler-Lagrange equations 348
exception 25

catch 36
throw 36

exception handling 187
exchange interaction 810
exchange-correlation

functional 826
excitable medium 691
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exponential distribution 202
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extrapolation 95

Faraday tensor 473, 865
fast Fourier transform 669
Feigenbaum constant 435, 452
Fermi statistics 773, 832
fermion 116
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Wilson 889, 893
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fermion sign problem 787
ferromagnet 703
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Feynman diagram 495
Feynman path integral 231
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theorem 747
FFT 671
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field tensor 473
FIFO list 571
file (command) 7
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fine structure interaction 765
finite element

conforming 678, 682, 695
finite element method 673
finite size scaling 727
first order phase transition 717
FitzHugh-Nagumo model 691
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fixed point 222, 262, 427,

430, 691
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unstable 431

fixed-point notation 32
flop 275
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fluctuation-dissipation

theorem 604
FLUKA 494
Flynn’s taxonomy 278
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forward time, centered space
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four-vectors 467

contravariant 467
covariant 467
polarization 468
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fractal 249, 326, 327, 443
Fredholm equation 753
frequentist statistics 512
Fresnel’s equations 310
Friedmann equation 633
friend class 171
friend function 171
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function
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function parameter pack 578
function template 557
functor 67, 354
future object 296

gamma distribution 202
gamma matrix 472
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gauge invariance 859,

865, 868
gauge transformation 894
Gauss-Hermite quadrature 147
Gauss-Legendre

integration 132
Gauss-Seidel iteration 662
Gaussian quadrature 132
GEANT4 494, 505
gedit 4
Gell-Mann matrix 897
generalized gradient

approximation 831
generic programming 556



908 Index
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geometry transformation 329
ghost bit 34
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849, 861
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global error 359
glueball 873, 886, 896
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Goldstone boson 721, 796
Goldstone diagrams 833
Goldstone’s theorem 775, 796
GPU 314
Graham scan 698
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graphical processing unit 276
graphics engine 313, 314
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Green function 693, 752,

760, 834
group 858
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group manifold 879
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algorithm 740
Gunnarsson-Lundqvist

exchange-correlation
functional 829

H2 molecule 820
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Hückel theory 824
Hénon map 436, 451
Hénon-Heiles model 446
Haar measure 868, 879
hadrons 488, 494
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regularization 754, 770
Haldane’s conjecture 795
Hamilton’s equations of

motion 350
Hamiltonian 350
Hanna, R. C. 500
hartree 804
Hartree-Fock equation 809
Hartree-Fock method 809
Hausdorff dimension 250
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heap (memory) 413, 581, 871
heat bath algorithm 229, 706

heat bath method 850, 879,
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Hebbs’ rule 726
Heisenberg ladder model 798
helicity 475
helicity formalism 475
helium 813
Hermite polynomials 82
Hessian matrix 515
heuristic algorithm 238
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Higgs mechanism 775, 886,
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Higgs phase 885
histogram 203
Hohenberg-Kohn theorem 825
Hopfield model 725, 729
hopping parameter 893
Hubbard model 799
Hubble constant 634
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hybrid Monte Carlo 890
hyperbolic differential

equation 644
hypercubic symmetry 848
hyperfine interaction 765
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image processing 695
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in-class initialization 589
include guard 15
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inertia tensor 114
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inheritance 340
inhomogeneous differential

equation 352
initial value problem 353
initialization (class) 162
initializer lists 586
instantiation 39
integrable Hamiltonian 444
integro-differential

equation 688, 812
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Environment 4
interpolating operator 855,

896, 902
irreducible representation 457
Ising model 229, 264, 270, 271,

774, 847, 856, 858, 860

ISO C++ standard 9
istringstream 11
iteration, unbounded, see

limitless regress
iterative map 429
iterator 569
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Output 573
RandomAccess 573

iterator (Standard
Library) 565

J/ψ meson 478
Jacobi iterator 659
Jacobi method 659, 685
Jarvis march 698
Java3d 315
Jones matrix 154
Jones vector 154
Julia set 437

Kalman filter 543
Kalman gain matrix 548
Kalman gain matrix

formalism 548
KAM theorem 445
KAM tori 444
Kato’s theorem 825
Kennedy-Pendleton heat

bath 894
Klein-Nishina formula 495
Koch snowflake 266
Kohn-Sham functional 826
Koopman’s theorem 839
Kosterlitz-Thouless phase

transition 728
Kosterlitz-Thouless topological

order 629
Kosterlitz-Thouless topological

phase 721
krill 409
Kroupa mass distribution

633
kurtosis 114

l-value 573
lagged logistics map 451
Lagrange interpolating

polynomial 85
Lagrange multiplier 611
Laguerre polynomial 761,

808
lambda (anonymous

function) 584
lambda declarator 585
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lambda expression (anonymous
function) 584

lambda transition 630
lambda-introducer 585
Lanczos algorithm 778
Lanczos miracles 779
Langevin

velocity autocorrelation 629
Langevin method 891, 895
latency 278
latent heat 719
lattice spacing 846
Lax method 647
Lax-Wendroff scheme 690
LD_LIBRARY_PATH 12
ldd 7
leap frog method 598,

648, 893
Legendre polynomial 130
Lennard-Jones potential 597
LHC 37
libraries 17
LIFO 571
light weight code 279
likelihood function 246
limit cycle 428
limitless regress, see infinite

loop
Lindemann’s law 628
linear combination of atomic

orbitals 818
linear congruential

generator 323
linear perspective 313
link 5, 18
link error 5
link smearing 886
link variable 858
linker 4
Linux 3
Liouville’s theorem 444
Lippmann-Schwinger

equation 752
Lipshitz continuity 359
list initialization 567
LM741 37
local density

approximation 826, 830
local error 359
local force 676
local stiffness matrix 676
local symmetry 858
logistic map 430

invariant density 434, 450
long range order 775

isotropic Heisenberg
antiferromagnet 790

loop, infinite, see iteration,
unbounded

Lorentz force 346
Lorentz group 456, 461
Lorentz transformation 456,

460, 461, 468–74
orthochronous 460
proper 460

Lorentz transformation 467
Lorentzian distribution 208
Lorenz attractor 452
Lorenz model 348, 426, 452
Lyapunov exponent 440, 632

macOS 3
machine precision 33, 37
Madelung’s rule 806
magnon 721
Mahalanobis distance 215
make 5
make system 6, 19
makefile 6, 19
Mandelbrot set 438, 451
Mandelstam variables 495
Manhatten project 426
MANIAC-I 426
mantissa 34
Markov chain Monte Carlo

method 221
Markov process 222
mass attenuation

coefficient 489
mass gap 796, 853, 885, 893
matrix exponentiation 458
maximum likelihood

estimator 512
Maxwell construction 149
Maxwell-Boltzmann

distribution 595, 600, 636
mean 114
mean field theory 706, 724,

809
mean free path 601
member data 157
member functions 157
memory 726
memory effects 608
memory leak 176, 414
memory overwrite 176
Mermin-Wagner theorem 721,

775
Mersenne twister 199, 322,

863

mesh generation 677
message passing model 279
metastability 719
method

Bogacki-Shampine 380
Box-Müller 212
Cash-Karp 381
conjugate gradient 680
Crank-Nicolson 648, 651
diagonalization-

variational 735
Euler 359
Euler-Cromer 388,

393, 439
finite element 673
Hartree-Fock 809
heat bath 850
Jacobi 659, 685
Langevin 891, 895
Lax 647
Lax-Wendroff 690
leap frog 648
Markov chain Monte

Carlo 221
Metropolis-Hastings 849
multiscale 664
Neri 393
Newton-Raphson 70, 82,

135, 689
Numerov 734
rejection 850
rejection (random

variates) 204
Ritz 675
Romberg’s 127
Runge-Kutta 362
Ruth 393
transformation (random

variates) 207
Verlet 393
Visscher 658

method (class) 43
metric tensor problem 614
Metropolis algorithm 223, 706
Metropolis-Hastings

algorithm 223, 237, 849
microcanonical updates 851,

880, 894
midpoint rule

(quadrature) 118
minimum image

convention 600
minimum ionizing particle

504
MO-LCAO 818



910 Index

model
alternating chain 797
anisotropic Heisenberg

antiferromagnet 774
Baxter-Wu 728
billiard 447
cosmological

concordance 619
Edwards-Anderson 724, 729
FitzHugh-Nagumo 691
FPU 426, 453
Hénon-Heiles 446
Heisenberg ladder 798
Hopfield 725, 729
Hubbard 799
Ising 229, 774, 847, 856,

858, 860
Lorenz 348, 426, 452
PBD 629
Potts 718, 728
random field Ising 729
SEIR 400
Sinai billiard 448
SIR 688
Thomas-Fermi 828, 830,

839
Vicsek 638
XY 721, 728, 774

molecular dynamics 594, 891
molecular orbital 818
molecule

conformation 616
moment of inertia 115
Monte Carlo renormalization

group 263
Monte Carlo reweighting 709
Monte Carlo, prime

directives 722
Moore’s law 276
Morse potential 148,

609, 629
MPI 279
MPI_Datatype 283
MPI_Reduce 283
Mueller matrices 192
multimodality 228
multiple compilation units 12
multipole expansion 115, 148
multipole moments 467
multiscale method 664
Murphy’s eyeballs 450
mutable (keyword) 88
mutation (function) 167
mutex 293
mutual exclusion 293

mysterious problems 6, 7
Møller-Plesset theory 832

N-representability 826
Néel state 774, 782
name mangling 422
namespace 39
NaN 35

quiet 35
signalling 35

Navier-Stokes equations
643, 689

Neri method 393
Neumann boundary

conditions 644, 658
neural net 729
neuron 725
Neville’s algorithm 87
Newton-Raphson method 70,

82, 135, 612, 689
nine-point stencil 653, 685,

693
nm 7
node 275
non-Abelian gauge theory 877
non-aggregate class 587
non-type template

parameters 564
nonautonomous differential

equation 344
nondimensionalization 142,

252
normal distribution 202
normalized numbers 34
Nosé-Hoover

thermometer 604
nullptr 583
Numerov’s method 734
Nyquist frequency 669

object code 4, 5
object-oriented analysis and

design 421
objective function 530
occupation number 832
on shell 753
one-body operator 805
OOAD 152, 354, 404, 421
open channel 758
Open Inventor 315
Open Inventor Toolkit 421
open multi-processing 285
OpenGL 315
openMP 279, 285, 602
openMP join 285

OpenSceneGraph 315
operator delete 174
operator new 174, 413
operator overloading 167
operator splitting 655
optical filters 153
optimization 517
order parameter 704, 796, 856
orthogonal series density

estimation 534
orthographic camera 313
otool 7
over-relaxation 662, 824,

829, 851
overlap fermion 889
overload resolution rules 560
overloading 157
overloading on const 184
override (keyword) 415

Padé approximant 98
pair correlation function 596
pair production 488, 490, 491
parabolic differential

equation 644
parity 764, 856
partial specialization 562
partial wave expansion 750,

753, 813
partial wave projection 738
Particle Data Group 764
particle mesh method 627
particle-particle particle-mesh

method 627
partition function 703
parton distribution

function 485
pass by reference 164
pass by value 163
PATH environment variable 10
Pauli exclusion principle 116,

806
Pauli matrix 193, 458, 470,

776, 878
Pauli principle 773
PBD model 629
percolation 240
perimeter law 860
period doubling 433
periodic boundary

conditions 707
perspective camera 313
Persson-Strang

triangulation 683
phase diagram 439
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phase portrait 427
phase shift 751
phase transition

first order 717
infinite order 721

photoelectric effect 488
pipelining 275
pituitary gland 509
plaquette 859, 863, 872,

881, 894
plugins 422
Poincaré map 440, 446
Poincaré section 429
Poisson bracket 391
Poisson distribution 202, 524
Poisson equation 627, 658, 675
polarization vectors 468
Polyakov loop 864, 873, 893,

894, 898
polymorphism 137, 340, 402
positronium 500
posix thread 279
posterior density 539
potential

Lennard-Jones 597
Morse 148, 609, 629
stacking 629
van der Waals 830
Woods-Saxon 399

Potts model 718, 728
Prandtl function 697
principal value 754
Principia 425
principle of least privilege

575
principle value 760
prior density 539
private (keyword) 44, 157
process 275
processor 275
product Ansatz 805
prolongation operator 665
promise object 296
proposal distribution 223
protein folding 616
proton therapy 509
pseudorandom number

generator 199
public (keyword) 44, 157
public inheritance 406
pull

statistical 527
pure interface class 416
pure virtual function 415
purify (tool) 176

Qat 76
Qhull 698
Qt 76
quadratic map 437
quantum chaos 449
quantum chromodynamics 889
quantum phase transition 856
quark 898
quasi-ergodic problem 601
quaternions 456
quenched (material) 725
quenched approximation 890
quotient-difference

algorithm 99

R matrix 769
r-value 573
radiation length 491
rainbow 310
random engine 199
random field Ising model 724,

729
random walk 688, 740
RANDU 322
range-based for loop 582
rapid mixing 224
rapidity 461
rasterization 314
reaction matrix 755
receive buffer 281
recursion 327, 579, 621,

670, 684
recursive function 327
reference counting 318
rejection method 850
rejection method (random

variates) 204
relativistic kinematics 739
rendering

deferred 313
real time 313

renormalizable field theory 876
renormalization group 258,

262, 270, 271, 727
renormalization group

equation 884
renormalization group

flow 262
renormalized couplings 877
replica method 729
repository 21
representation

irreducible 457
representation theory 456
resonance 208, 767, 769

resonant tori 444, 445
restricted three body

problem 397
restriction operator 665
reweighting 709, 727
Reynolds number 689
Richardson extrapolation 96
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